1
|
Wang J, Mao H, Liu R, Zeng Z, Xie L, Yang Y, He Y. LL37-DNA Complex Drives Vitiligo Progression Through TLR9-MyD88 Signaling Pathways. Pigment Cell Melanoma Res 2025; 38:e13202. [PMID: 39344705 DOI: 10.1111/pcmr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Vitiligo is an autoimmune disorder characterized by chronic depigmentation and milk-white patches on the skin. Skin infiltration by autoreactive CD8+ T cells causes melanocyte destruction in vitiligo. Multiple risk factors, particularly immune-related inflammatory factors, are involved in the disappearance of melanocytes. LL37 is a classic damage-associated molecular pattern molecule that is involved in the development of various autoimmune diseases. An enhanced expression of LL37 in vitiligo is known; however, the exact role of LL37 in melanocyte loss has not yet been elucidated. In the present study, we detected increased LL37 expression in vitiligo serum and lesions. Furthermore, we confirmed that cultured keratinocytes released LL37 after treatment with H2O2. Moreover, the LL37-DNA complex enhanced the secretion of CXCL9, CXCL10, and CXCL16 from keratinocytes via the TLR9-MyD88 signaling pathway and facilitated the migration of CD8+ T cells. Altogether, our study demonstrates that LL37 released from keratinocytes binds to DNA and contributes to melanocyte destruction under oxidative stress-induced autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, Medical Center Hospital of Qionglai City, Qionglai, Sichuan, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ziyuan Zeng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lvsha Xie
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- Department of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Rashwan E, Ibrahim N, Salem ML. Evaluation of NFKB1 and MyD88 expression levels in a sample of non-Hodgkin lymphoma patients before and during chemotherapy. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:386-401. [DOI: 10.1080/2314808x.2024.2347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/19/2024] [Indexed: 12/03/2024]
Affiliation(s)
- Eman Rashwan
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nagi Ibrahim
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
| | - Mohamed Labib Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Nafar S, Hosseini K, Shokrgozar N, Farahmandi AY, Alamdari-Palangi V, Saber Sichani A, Fallahi J. An Investigation into Cell-Free DNA in Different Common Cancers. Mol Biotechnol 2024; 66:3462-3474. [PMID: 38071680 DOI: 10.1007/s12033-023-00976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/23/2023] [Indexed: 11/15/2024]
Abstract
Diagnosis is the most important step in different diseases, especially in cancers and blood malignancies. There are different methods in order to better diagnose of cancer, but many of them are invasive and also, some of them are not useful for immediate diagnosis. Cell-free DNA (cfDNA) or liquid biopsy easily accessible in peripheral blood is one of the non-invasive prognostic biomarkers in various areas of cancer management. In fact, amounts of cfDNA in serum or plasma can be used for diagnosis. In this review, we have considered some cancers such as hepatocellular carcinoma, lung cancer, breast cancer, and hematologic malignancies to compare the various methods of cfDNA diagnosis.
Collapse
Affiliation(s)
- Samira Nafar
- Medical Genetic Department, Shiraz University of Medical Science, Shiraz, Iran
| | - Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Hematology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12:e1356. [PMID: 39073297 PMCID: PMC11284964 DOI: 10.1002/iid3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.
Collapse
Affiliation(s)
- Luping Chen
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Linfang Zhang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Hua Hua
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Li Liu
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Yuejian Mao
- Global R&D Innovation CenterInner Mongolia Mengniu Dairy (Group) Co. Ltd.HohhotInner MongoliaChina
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
6
|
Műzes G, Bohusné Barta B, Szabó O, Horgas V, Sipos F. Cell-Free DNA in the Pathogenesis and Therapy of Non-Infectious Inflammations and Tumors. Biomedicines 2022; 10:biomedicines10112853. [PMID: 36359370 PMCID: PMC9687442 DOI: 10.3390/biomedicines10112853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The basic function of the immune system is the protection of the host against infections, along with the preservation of the individual antigenic identity. The process of self-tolerance covers the discrimination between self and foreign antigens, including proteins, nucleic acids, and larger molecules. Consequently, a broken immunological self-tolerance results in the development of autoimmune or autoinflammatory disorders. Immunocompetent cells express pattern-recognition receptors on their cell membrane and cytoplasm. The majority of endogenous DNA is located intracellularly within nuclei and mitochondria. However, extracellular, cell-free DNA (cfDNA) can also be detected in a variety of diseases, such as autoimmune disorders and malignancies, which has sparked interest in using cfDNA as a possible biomarker. In recent years, the widespread use of liquid biopsies and the increasing demand for screening, as well as monitoring disease activity and therapy response, have enabled the revival of cfDNA research. The majority of studies have mainly focused on the function of cfDNA as a biomarker. However, research regarding the immunological consequences of cfDNA, such as its potential immunomodulatory or therapeutic benefits, is still in its infancy. This article discusses the involvement of various DNA-sensing receptors (e.g., absent in melanoma-2; Toll-like receptor 9; cyclic GMP-AMP synthase/activator of interferon genes) in identifying host cfDNA as a potent danger-associated molecular pattern. Furthermore, we aim to summarize the results of the experimental studies that we recently performed and highlight the immunomodulatory capacity of cfDNA, and thus, the potential for possible therapeutic consideration.
Collapse
Affiliation(s)
| | | | | | | | - Ferenc Sipos
- Correspondence: ; Tel.: +36-20-478-0752; Fax: +36-1-266-0816
| |
Collapse
|
7
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
8
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
9
|
Vella V, De Francesco EM, Bonavita E, Lappano R, Belfiore A. IFN-I signaling in cancer: the connection with dysregulated Insulin/IGF axis. Trends Endocrinol Metab 2022; 33:569-586. [PMID: 35691786 DOI: 10.1016/j.tem.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023]
Abstract
Type I interferons (IFN-Is) are prototypical inflammatory cytokines produced in response to stress. IFN-Is have a critical role in antitumor immunity by driving the activation of leukocytes and favoring the elimination of malignant cells. However, IFN-I signaling in cancer, specifically in the tumor microenvironment (TME), can have opposing roles. Sustained IFN-I stimulation can promote immune exhaustion or enable tumor cell-intrinsic malignant features. Herein, we discuss the potential impact of the insulin/insulin-like growth factor system (I/IGFs) and of metabolic disorders in aberrant IFN-I signaling in cancer. We consider the possibility that targeting I/IGFs, especially in patients with cancer affected by metabolic disorders, contributes to an effective strategy to inhibit deleterious IFN-I signaling, thereby restoring sensitivity to various cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Fondazione Humanitas per la Ricerca, Laboratory of Cellular and Molecular Oncoimmunology, 20089 Rozzano, Italy; Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy.
| |
Collapse
|
10
|
Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G. Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 2022; 10:biomedicines10020431. [PMID: 35203640 PMCID: PMC8962440 DOI: 10.3390/biomedicines10020431] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/07/2022] Open
Abstract
Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
Netting Gut Disease: Neutrophil Extracellular Trap in Intestinal Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541222. [PMID: 34712384 PMCID: PMC8548149 DOI: 10.1155/2021/5541222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Many gut disease etiologies are attributed to the presence of robust inflammatory cell recruitment. The recruitment of neutrophils plays a vital role in inflammatory infiltration. Neutrophils have various antimicrobial effector mechanisms, including phagocytosis, oxidative burst, and degranulation. It is suggested that neutrophils could release neutrophil extracellular traps (NETs) to kill pathogens. However, recent evidence indicates that neutrophil infiltration within the gut is associated with disrupted local immunological microenvironment and impaired epithelial barrier. Growing evidence implies that NETs are involved in the progression of many diseases, including cancer, diabetes, thrombosis, and autoimmune disease. Increased NET formation was found in acute or chronic conditions, including infection, sterile inflammation, cancer, and ischemia/reperfusion injury (IRI). Here, we present a comprehensive review of recent advances in the understanding of NETs, focusing on their effects in gut disease. We also discuss NETs as a potential therapeutic target in gut disease.
Collapse
|
12
|
Zhu H, Zhao M, Chang C, Chan V, Lu Q, Wu H. The complex role of AIM2 in autoimmune diseases and cancers. Immun Inflamm Dis 2021; 9:649-665. [PMID: 34014039 PMCID: PMC8342223 DOI: 10.1002/iid3.443] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Absent in melanoma 2 (AIM2) is a novel member of interferon (IFN)-inducible PYHIN proteins. In innate immune cells, AIM2 servers as a cytoplasmic double-stranded DNA sensor, playing a crucial role in the initiation of the innate immune response as a component of the inflammasome. AIM2 expression is increased in patients with systemic lupus erythematosus (SLE), psoriasis, and primary Sjogren's syndrome, indicating that AIM2 might be involved in the pathogenesis of autoimmune diseases. Meanwhile, AIM2 also plays an antitumorigenesis role in an inflammasome independent-manner. In melanoma, AIM2 is initially identified as a tumor suppressor factor. However, AIM2 is also found to contribute to lung tumorigenesis via the inflammasome-dependent release of interleukin 1β and regulation of mitochondrial dynamics. Additionally, AIM2 reciprocally dampening the cGAS-STING pathway causes immunosuppression of macrophages and evasion of antitumor immunity during antibody treatment. To summarize the complicated effect and role of AIM2 in autoimmune diseases and cancers, herein, we provide an overview of the emerging research progress on the function and regulatory pathway of AIM2 in innate and adaptive immune cells, as well as tumor cells, and discuss its pathogenic role in autoimmune diseases, such as SLE, psoriasis, primary Sjogren's syndrome, and cancers, such as melanomas, non-small-cell lung cancer, colon cancer, hepatocellular carcinoma, renal carcinoma, and so on, hopefully providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCaliforniaUSA
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of MedicineThe University of Hong KongHong KongChina
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
13
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol 2021; 79:91-104. [PMID: 34280576 DOI: 10.1016/j.semcancer.2021.07.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Beyond their well-known functions in the acute phases of the immune response, neutrophils play important roles in the various phases of tumor initiation and progression, through the release of their stored or newly synthesized mediators. In addition to reactive oxygen species, cytokines, chemokines, granule proteins and lipid mediators, neutrophil extracellular traps (NETs) can also be released upon neutrophil activation. NET formation can be achieved through a cell-death process or in association with the release of mitochondrial DNA from viable neutrophils. NETs are described as extracellular fibers of DNA and decorating proteins responsible for trapping and killing extracellular pathogens, playing a protective role in the antimicrobial defense. There is increasing evidence, however, that NETs play multiple roles in the scenario of cancer-related inflammation. For instance, NETs directly or indirectly promote tumor growth and progression, fostering tumor spread at distant sites and shielding cancer cells thus preventing the effects of cytotoxic lymphocytes. NETs can also promote tumor angiogenesis and cancer-associated thrombosis. On the other hand, there is some evidence that NETs may play anti-inflammatory and anti-tumorigenic roles. In this review, we focus on the main mechanisms underlying the emerging effects of NETs in cancer initiation and progression.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
14
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
15
|
Hasan S. An Overview of Promising Biomarkers in Cancer Screening and Detection. Curr Cancer Drug Targets 2020; 20:831-852. [PMID: 32838718 DOI: 10.2174/1568009620666200824102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
Applications of biomarkers have been proved in oncology screening, diagnosis, predicting response to treatment as well as monitoring the progress of the disease. Considering the crucial role played by them during different disease stages, it is extremely important to evaluate, validate, and assess them to incorporate them into routine clinical care. In this review, the role of few most promising and successfully used biomarkers in cancer detection, i.e. PD-L1, E-Cadherin, TP53, Exosomes, cfDNA, EGFR, mTOR with regard to their structure, mode of action, and reports signifying their pathological significance, are addressed. Also, an overview of some successfully used biomarkers for cancer medicine has been presented. The study also summarizes biomarker-driven personalized cancer therapy i.e., approved targets and indications, as per the US FDA. The review also highlights the increasingly prominent role of biomarkers in drug development at all stages, with particular reference to clinical trials. The increasing utility of biomarkers in clinical trials is clearly evident from the trend shown, wherein ~55 percent of all oncology clinical trials in 2019 were seen to involve biomarkers, as opposed to ~ 15 percent in 2001, which clearly proves the essence and applicability of biomarkers for synergizing clinical information with tumor progression. Still, there are significant challenges in the implementation of these possibilities with strong evidence in cost-- effective manner.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
16
|
Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci 2020; 16:2323-2339. [PMID: 32760201 PMCID: PMC7378639 DOI: 10.7150/ijbs.46651] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Despite great progress has been made in treatment strategies, colorectal cancer (CRC) remains the predominant life-threatening malignancy with the feature of high morbidity and mortality. It has been widely acknowledged that the dysfunction of immune system, including aberrantly expressed cytokines, is strongly correlated with the pathogenesis and progression of colorectal cancer. As one of the most well-known cytokines that were discovered centuries ago, interleukins are now uncovering new insights into colorectal cancer therapy. Herein, we divide currently known interleukins into 6 families, including IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family and IL-17 family. In addition, we comprehensively reviewed the oncogenic or antitumour function of each interleukin involved in CRC pathogenesis and progression by elucidating the underlying mechanisms. Furthermore, by providing interleukins-associated clinical trials, we have further driven the profound prospect of interleukins in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ling Huang
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hanzhang Zhao
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuheng Yan
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
17
|
Qian J, Meng H, Lv B, Wang J, Lu Y, Su L, Zhao S, Li W. High expression levels of TLR9 and PD-L1 indicates a poor prognosis in patients with angioimmunoblastic T-cell lymphoma: a retrospective study of 88 cases in a single center. J Cancer 2020; 11:57-68. [PMID: 31892973 PMCID: PMC6930404 DOI: 10.7150/jca.37033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The role of TLR9 expressed by tumor cells in evading immune surveillance was confirmed. PD-L1 expression in tumor cells plays a key role in tumor immune escape, which is associated with poor prognosis. However, the clinical relevance of TLR9 and PD-L1 expression in angioimmunoblastic T-cell lymphoma (AITL) has not been evaluated. Materials and methods: In this study, we identified differentially expressed genes in AITL samples by bioinformatic analysis, and we first examined TLR9 and PD-L1 expression by immunohistochemical staining in patients with AITL and compared these data with clinical features and survival time. Results: It was found that the expression of PD-L1 and multiple TLRs was higher in AITL than normal T-cell samples, and TLR9 and PD-L1 expression displayed complex interactions by bioinformatic analysis. The rates of TLR9 and PD-L1 high expression were 69% and 50%, respectively. High expression of either TLR9 or PD-L1 indicated a poor survival rate for patients with AITL. Multivariate analysis further confirmed that high expression levels of TLR9 and PD-L1 were unfavorable prognostic factors for AITL. We further found inferior overall survival in AITL with clinical features of ECOG status ≥ 2, advanced-stage, elevated serum LDH levels, elevated serum β2-MG levels, and high IPI score. Conclusion: TLR9 and PD-L1 expression may be a novel predictor of prognosis for patients with AITL and may serve as potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingrong Qian
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Bowen Lv
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Jie Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Yingying Lu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Liju Su
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P. R. China
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Wenhui Li
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
18
|
Malinovskaya EM, Ershova ES, Okorokova NA, Veiko VP, Konkova MS, Kozhina EA, Savinova EA, Porokhovnik LN, Kutsev SI, Veiko NN, Kostyuk SV. Ribosomal DNA as DAMPs Signal for MCF7 Cancer Cells. Front Oncol 2019; 9:445. [PMID: 31205871 PMCID: PMC6552851 DOI: 10.3389/fonc.2019.00445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: The cell free ribosomal DNA (cf-rDNA) is accrued in the total pool of cell free DNA (cfDNA) in some non-cancer diseases and demonstrates DAMPs characteristics. The major research questions: (1) How does cell free rDNA content change in breast cancer; (2) What type of response in the MCF7 breast cancer cells is caused by cf-rDNA; and (3) What type of DNA sensors (TLR9 or AIM2) is stimulated in MCF7 in response to the action of cf-rDNA? Materials and Methods: CfDNA and gDNA were isolated from the blood plasma and the cells derived from 38 breast cancer patients and 20 healthy female controls. The rDNA content in DNA was determined using non-radioactive quantitative hybridization. In order to explore the rDNA influence on MCF7 breast cancer cells, the model constructs (GC-DNAs) were applied: pBR322-rDNA plasmid (rDNA inset 5836 bp long) and pBR322 vector. ROS generation, DNA damage, cell cycle, expression of TLR9, AIM2, NF-kB, STAT3, and RNA for 44 genes affecting the cancer cell viability were evaluated. The methods used: RT-qPCR, fluorescent microscopy, immunoassay, flow cytometry, and siRNA technology. Results: The ratio R = cf-rDNA/g-rDNA for the cases was higher than for the controls (median 3.4 vs. 0.8, p < 10−8). In MCF7, GC-DNAs induce a ROS burst, DNA damage response, and augmentation of NF-kB and STAT3 activity. The number of the apoptotic cells decreases, while the number of cells with an instable genome (G2/M– arrest, micronuclei) increase. Expression of anti-apoptotic genes (BCL2, BCL2A1, BCL2L1, BIRC3, MDM2) is elevated, while expression of pro-apoptotic genes (BAX, BID, BAD, PMAIP1, BBC3) is lowered. The cells response for pBR322-rDNA is much more intense and develops much faster, than response for pBR322, and is realized through activation of TLR9- MyD88 - NF-kB- signaling. This difference in response speed is owing to the heightened oxidability of pBR322-rDNA and better ability to penetrate the cell. Induction of TLR9 expression in MCF7 is followed by blocking AIM2 expression. Conclusion: (1) Ribosomal DNA accumulates in cfDNA of breast cancer patients; (2) Cell free rDNA induce DNA damage response and stimulates cells survival, including cells with an instable genome; (3) Cell free rDNA triggers TLR9- MyD88- NF-kB- signaling, with significantly repressing the expression of AIM2.
Collapse
Affiliation(s)
| | | | - Natalya A Okorokova
- Biotechnology Research Center, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Veiko
- Biotechnology Research Center, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Nataly N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | | |
Collapse
|
19
|
Influence of Interleukin-8 and Neutrophil Extracellular Trap (NET) Formation in the Tumor Microenvironment: Is There a Pathogenic Role? J Immunol Res 2019; 2019:6252138. [PMID: 31093511 PMCID: PMC6481028 DOI: 10.1155/2019/6252138] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
In this review, we will highlight several studies that revolve around interleukin-8 (IL-8) and show the multiple facets that could take in the tumor microenvironment. Chemokines that attract neutrophils (to a large extent, IL-8) can have a bimodal behavior inducing the migration of them in the first place and later favoring the formation of NETs in the place of emission focus of the chemokine. Also, this mechanism occurs when neutrophils migrate to tumor cells and where the extrusion of NETs in the tumor is observed. A possible participation of NETs in cancer progression was considered; however, until now, it is difficult to decide if NETosis plays a pro- or antitumor role, although it is necessary to emphasize that there is more experimentation focused on the protumorigenic aspect of the NETs. The formation of NETs has a relevant role in the inhibition of the immune response against the tumor generated by neutrophils and in turn favoring the processes involved in the development of tumor metastasis. It is striking that we do not have more complete information about the effects of circulating chemokines on neutrophils in cancer patients and hence the suitability of this review. No one has observed to date the impact that it could have on other cell populations to inhibit the arrival of neutrophils and the formation/elimination of NETs. However, the extent to which NETs affect the function of other cells of the immune system in the tumor context has not been directly demonstrated. It is necessary to identify possible combinations of immunotherapy that involve the modulation of neutrophil activity with other strategies (immunomodulatory antibodies or adoptive cell therapy). Therefore, knowing the mechanisms by which tumors take advantage of this ability of neutrophils to form NETs is very important in the search for antitumor therapies and thus be able to take advantage of the possible immunotherapeutic combinations that we currently have in clinical practice.
Collapse
|
20
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|