1
|
Zeng S, Wang S, Lin Z, Jin H, Li H, Yu H, Li J, Yu L, Luo L. Functions of the Sinorhizobium meliloti LsrB Substrate-Binding Domain in Oxidized Glutathione Resistance, Alfalfa Nodulation Symbiosis, and Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23908-23916. [PMID: 39418129 DOI: 10.1021/acs.jafc.4c07925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
To successfully colonize legume root nodules, rhizobia must effectively evade host-generated reactive oxygen species (ROS). LsrB, a redox regulator from Sinorhizobium meliloti, is essential for symbiosis with alfalfa (Medicago sativa). The three cysteine residues in LsrB's substrate domain play distinct roles in activating downstream redox genes. The study found that LsrB's substrate-binding domain, dependent on the cysteine residue Cys146, is involved in oxidized glutathione (GSSG) resistance and alfalfa nodulation symbiosis. LsrB homologues from other rhizobia, with Cys172/Cys238 or Cys146, enhance GSSG resistance and complement lsrB mutant's symbiotic nodulation. Substituting amino acids in Azorhizobium caulinodans LsrB with Cys restores lsrB mutant phenotypes. The lsrB deletion mutant shows increased sensitivity to NCR247, suggesting an interaction with host plant-derived NCRs in alfalfa nodules. Our findings reveal that the key cysteine residue in the LsrB's substrate domain is vital for rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Shuang Zeng
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Sunjun Wang
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiyin Lin
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huibo Jin
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hongbo Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huilin Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaze Li
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Zhang L, Li N, Wang Y, Zheng W, Shan D, Yu L, Luo L. Sinorhizobium meliloti ohrR genes affect symbiotic performance with alfalfa (Medicago sativa). ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:595-603. [PMID: 35510290 DOI: 10.1111/1758-2229.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sinorhizobium meliloti infects the host plant alfalfa to induce formation of nitrogen-fixation root nodules, which inevitably elicit reactive oxygen species (ROS) bursts and organic peroxide generation. The MarR family regulator OhrR regulates the expression of chloroperoxidase and organic hydrogen resistance protein, which scavenge organic peroxides in free-living S. meliloti cells. The single mutant of ohrR genes SMc01945 (ohrR1) and SMc00098 (ohrR2) lacked symbiotic phenotypes. In this work, we identified the novel ohrR gene SMa2020 (ohrR3) and determined that ohrR genes are important for rhizobial infection, nodulation and nitrogen fixation with alfalfa. By analysing the phenotypes of the single, double and triple deletion mutants of ohrR genes, we demonstrate that ohrR1 and ohrR3 slightly affect rhizobial growth, but ohrR2 and ohrR3 influence cellular resistance to the organic peroxide, tert-butyl hydroperoxide. Deletion of ohrR1 and ohrR3 negatively affected infection thread formation and nodulation, and consequently, plant growth. Correspondingly, the expression of the ROS detoxification genes katA and sodB as well as that of the nitrogenase gene nifH was downregulated in bacteroids of the double and triple deletion mutants, which may underlie the symbiotic defects of these mutants. These findings demonstrate that OhrR proteins play a role in the S. meliloti-alfalfa symbiosis.
Collapse
Affiliation(s)
- Lanya Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ningning Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yawen Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjia Zheng
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dandan Shan
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|