2
|
Kanda M, Shimizu D, Nakamura S, Sawaki K, Umeda S, Miwa T, Tanaka H, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Nakayama G, Iguchi Y, Katsuno M, Kodera Y. Blockade of CHRNB2 signaling with a therapeutic monoclonal antibody attenuates the aggressiveness of gastric cancer cells. Oncogene 2021; 40:5495-5504. [PMID: 34331011 DOI: 10.1038/s41388-021-01945-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Here, we evaluated the therapeutic potential of antibodies (Abs) targeting cholinergic receptor nicotinic beta 2 subunit (CHRNB2) in gastric cancer. To investigate the effects of these Abs on malignant phenotypes in vitro and in mouse xenograft models, we generated gene knockouts through genome editing, performed RNA interference-mediated knockdown of gene expression, and ectopically expressed CHRNB2 in gastric cancer cells. The effects of anti-CHRNB2 Abs on the proliferation of cancer cells were evaluated both in vitro and in vivo. We determined the effects of Chrnb2 deficiency on mice and the clinical significance of CHRNB2 expression in gastric cancer clinical specimens. Knockdown of CHRNB2 attenuated gastric cancer cell proliferation, whereas forced overexpression of CHRNB2 increased cell proliferation. Knockout of CHRNB2 significantly influenced cell survival and functions associated with metastasis. The effects of polyclonal Abs targeting the C- and N-termini of CHRNB2 guided the development of anti-CHRNB2 monoclonal Abs that inhibited the growth of gastric cancer cells in vitro and in vivo. Pathway analysis revealed that CHRNB2 interfered with signaling through the PI3K-AKT and JAK-STAT pathways. Chrnb2-deficient mice exhibited normal reproduction, organ functions, and motor functions. CHRNB2 regulates multiple oncological phenotypes associated with metastasis, and blockade of CHRNB2 expression using specific Abs shows promise for controlling metastasis in gastric cancer.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Sawaki
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Hu J, Wang Z, Chen Z, Li A, Sun J, Zheng M, Wu J, Shen T, Qiao J, Li L, Li B, Wu D, Xiao Q. DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer. Biomed Pharmacother 2020; 127:110229. [PMID: 32559853 PMCID: PMC7523634 DOI: 10.1016/j.biopha.2020.110229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
There are limited options for targeted therapies for colorectal cancer (CRC). Anti-EGFR therapy is limited to CRC without KRAS mutations. Even worse, most of CRC are refractory to currently immune checkpoint blockade. DKK2, which is upregulated in CRC, was recently found to suppress host immune responses, and its blockage effectively impeded tumor progression in benign genetic CRC models in our previous study. Here, our recent study demonstrated that in human CRC tumor samples expressing high levels of DKK2, DKK2 blockade caused stronger activation of tumor infiltrating CD8+ T cells in ex vivo culture. Intriguingly, we observed a correlation of high DKK2 expression with increased lymph node metastasis prevalence in these CRC patients as well. Furthermore, in a mouse genetic CRC model with mutations in APC and KRAS, which more closely mimics advanced human CRC, we confirmed the tumor inhibitory effect of DKK2 blockade, which significantly retarded tumor progression and extended survival, with increased immune effector cell activation and reduced angiogenesis. Based on this, we performed a combined administration of DKK2 blockade with sub-optimal anti-VEGFR treatment and observed a synergetic effect on suppressing tumor angiogenesis and progression, as well as extending survival, better than those of every single therapy. Thus, this study provides further evidence for the potential therapeutic application of DKK2 blockade in the clinical treatment of human CRC.
Collapse
Affiliation(s)
- Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengxi Chen
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Li
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jibo Wu
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianli Shen
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ju Qiao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States
| | - Lin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States.
| | - Qian Xiao
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|