1
|
Barrett J, Leysen S, Galmiche C, Al-Mossawi H, Bowness P, Edwards TE, Lawson AD. Chimeric antigens displaying GPR65 extracellular loops on a soluble scaffold enabled the discovery of antibodies, which recognized native receptor. Bioengineered 2024; 15:2299522. [PMID: 38184821 PMCID: PMC10773626 DOI: 10.1080/21655979.2023.2299522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
GPR65 is a proton-sensing G-protein coupled receptor associated with multiple immune-mediated inflammatory diseases, whose function is relatively poorly understood. With few reagents commercially available to probe the biology of receptor, generation of an anti-GPR65 monoclonal antibody was desired. Using soluble chimeric scaffolds, such as ApoE3, displaying the extracellular loops of GPR65, together with established phage display technology, native GPR65 loop-specific antibodies were identified. Phage-derived loop-binding antibodies recognized the wild-type native receptor to which they had not previously been exposed, generating confidence in the use of chimeric soluble proteins to act as efficient surrogates for membrane protein extracellular loop antigens. This technique provides promise for the rational design of chimeric antigens in facilitating the discovery of specific antibodies to GPCRs.
Collapse
Affiliation(s)
- Janine Barrett
- UK Research Department, UCB Pharma, Slough, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | | - Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
Schlimgen RR, Peterson FC, Heukers R, Smit MJ, McCorvy JD, Volkman BF. Structural basis for selectivity and antagonism in extracellular GPCR-nanobodies. Nat Commun 2024; 15:4611. [PMID: 38816420 PMCID: PMC11139983 DOI: 10.1038/s41467-024-49000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal therapeutic targets, but their complex structure poses challenges for effective drug design. Nanobodies, or single-domain antibodies, have emerged as a promising therapeutic strategy to target GPCRs, offering advantages over traditional small molecules and antibodies. However, an incomplete understanding of the structural features enabling GPCR-nanobody interactions has limited their development. In this study, we investigate VUN701, a nanobody antagonist targeting the atypical chemokine receptor 3 (ACKR3). We determine that an extended CDR3 loop is required for ACKR3 binding. Uncommon in most nanobodies, an extended CDR3 is prevalent in GPCR-targeting nanobodies. Combining experimental and computational approaches, we map an inhibitory ACKR3-VUN701 interface and define a distinct conformational mechanism for GPCR inactivation. Our results provide insights into class A GPCR-nanobody selectivity and suggest a strategy for the development of these new therapeutic tools.
Collapse
Affiliation(s)
- Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Raimond Heukers
- Amsterdam Institute of Molecular and Life Sciences, Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute of Molecular and Life Sciences, Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, 1081 HZ, Amsterdam, The Netherlands
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Zhang S, Fan Z, Liu J. Generation and characterization of nanobodies targeting GPCR. BIOPHYSICS REPORTS 2024; 10:22-30. [PMID: 38737476 PMCID: PMC11079602 DOI: 10.52601/bpr.2023.230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 05/14/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell membrane proteins that are important targets for drug discovery. Nanobodies, also known as VHH (variable domains of heavy chain-only antibodies, HcAbs) antibodies, are small antibody fragments derived from camelids that have gained significant attention as potential therapeutics for targeting GPCRs due to their advantages over conventional antibodies. However, there are challenges in developing nanobodies targeting GPCRs, among which epitope accessibility is the most significant because the cell membrane partially shields the GPCR surface. We developed a universal protocol for making nanobodies targeting GPCRs using the cell membrane extract of GPCR-overexpressing HEK293 cells as the llama/alpaca immunization antigen. We constructed an immune VHH library and identified nanobodies by phage display bio-panning. The monoclonal nanobodies were recombinantly expressed in Escherichia coli (E. coli) and purified to characterize their binding potency.
Collapse
Affiliation(s)
- Shenglan Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Zhiran Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jianfeng Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Cyranka L, Mariegaard I, Skjødt MO, Bayarri-Olmos R, Mollnes TE, Garred P, Rosbjerg A. Functional Analysis of a Novel Complement C5a Receptor 1-Blocking Monoclonal Antibody. J Innate Immun 2023; 15:836-849. [PMID: 37952515 PMCID: PMC10691831 DOI: 10.1159/000535084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
INTRODUCTION The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Mariegaard
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mikkel-Ole Skjødt
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Ion Channel Involvement in Tumor Drug Resistance. J Pers Med 2022; 12:jpm12020210. [PMID: 35207698 PMCID: PMC8878471 DOI: 10.3390/jpm12020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Over 90% of deaths in cancer patients are attributed to tumor drug resistance. Resistance to therapeutic agents can be due to an innate property of cancer cells or can be acquired during chemotherapy. In recent years, it has become increasingly clear that regulation of membrane ion channels is an important mechanism in the development of chemoresistance. Here, we review the contribution of ion channels in drug resistance of various types of cancers, evaluating their potential in clinical management. Several molecular mechanisms have been proposed, including evasion of apoptosis, cell cycle arrest, decreased drug accumulation in cancer cells, and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. Thus, targeting ion channels might represent a good option for adjuvant therapies in order to counteract chemoresistance development.
Collapse
|