1
|
Lin P, Qi J, Liu W. Expert's views and perspectives: an interview with distinguished investigator Dr. Ira Pastan at the National Cancer Institute at NIH. Antib Ther 2021; 3:163-166. [PMID: 33928228 PMCID: PMC7990248 DOI: 10.1093/abt/tbaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peng Lin
- Chinese Antibody Society, Cambridge, MA 02139, USA
- Fish & Richardson PC, 1 Marina Park Drive, Boston, MA 02210,
USA
- To whom correspondence should be addressed: Peng Lin or Junpeng Qi,
or
| | - Junpeng Qi
- Department of Immunology and Microbiology, The
Scripps Research Institute, Jupiter, FL 33458, USA
- To whom correspondence should be addressed: Peng Lin or Junpeng Qi,
or
| | - Weijing Liu
- Chinese Antibody Society, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021; 8:9. [PMID: 33504363 PMCID: PMC7839214 DOI: 10.1186/s40779-021-00302-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Bera TK. Anti-BCMA Immunotoxins: Design, Production, and Preclinical Evaluation. Biomolecules 2020; 10:biom10101387. [PMID: 33003418 PMCID: PMC7600380 DOI: 10.3390/biom10101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to the restricted expression and being a cell surface membrane protein, BCMA is an ideal target for immunotherapy approaches in MM. Recombinant immunotoxins (RITs) are a novel class of protein therapeutics that are composed of the Fv or Fab portion of an antibody fused to a cytotoxic agent. RITs were produced by expressing plasmids encoding the components of the anti-BCMA RITs in E. coli followed by inclusion body preparation, solubilization, renaturation, and purification by column chromatography. The cytotoxic activity of RITs was tested in vitro by WST-8 assays using BCMA expressing cell lines and on cells isolated from MM patients. The in vivo efficacy of RITs was tested in a xenograft mouse model using BCMA expressing multiple myeloma cell lines. Anti-BCMA recombinant immunotoxins are very effective in killing myeloma cell lines and cells isolated from myeloma patients expressing BCMA. Two mouse models of myeloma showed that the anti-BCMA immunotoxins can produce a long-term complete response and warrant further preclinical development.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Mazor R, Pastan I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front Immunol 2020; 11:1261. [PMID: 32695104 PMCID: PMC7333791 DOI: 10.3389/fimmu.2020.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotoxins are cytolytic fusion proteins developed for cancer therapy, composed of an antibody fragment that binds to a cancer cell and a protein toxin fragment that kills the cell. Pseudomonas exotoxin A (PE) is a potent toxin that is used for the killing moiety in many immunotoxins. Moxetumomab Pasudotox (Lumoxiti) contains an anti-CD22 Fv and a 38 kDa portion of PE. Lumoxiti was discovered in the Laboratory of Molecular Biology at the U.S. National Cancer Institute and co-developed with Medimmune/AstraZeneca to treat hairy cell leukemia. In 2018 Lumoxiti was approved by the US Food and Drug Administration for the treatment of drug-resistant Hairy Cell Leukemia. Due to the bacterial origin of the killing moiety, immunotoxins containing PE are highly immunogenic in patients with normal immune systems, but less immunogenic in patients with hematologic malignancies, whose immune systems are often compromised. LMB-100 is a de-immunized variant of the toxin with a humanized antibody that targets mesothelin and a PE toxin that was rationally designed for diminished reactivity with antibodies and B cell receptors. It is now being evaluated in clinical trials for the treatment of mesothelioma and pancreatic cancer and is showing somewhat diminished immunogenicity compared to its un modified parental counterpart. Here we review the immunogenicity of the original and de-immunized PE immunotoxins in mice and patients, the development of anti-drug antibodies (ADAs), their impact on drug availability and their effect on clinical efficacy. Efforts to mitigate the immunogenicity of immunotoxins and its impact on immunogenicity will be described including rational design to identify, remove, or suppress B cell or T cell epitopes, and combination of immunotoxins with immune modulating drugs.
Collapse
Affiliation(s)
- Ronit Mazor
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Bruins WSC, Zweegman S, Mutis T, van de Donk NWCJ. Targeted Therapy With Immunoconjugates for Multiple Myeloma. Front Immunol 2020; 11:1155. [PMID: 32636838 PMCID: PMC7316960 DOI: 10.3389/fimmu.2020.01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The introduction of proteasome inhibitors (PI) and immunomodulatory drugs (IMiD) has markedly increased the survival of multiple myeloma (MM) patients. Also, the unconjugated monoclonal antibodies (mAb) daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7) have revolutionized MM treatment given their clinical efficacy and safety, illustrating the potential of targeted immunotherapy as a powerful treatment strategy for MM. Nonetheless, most patients eventually develop PI-, IMiD-, and mAb-refractory disease because of the selection of resistant MM clones, which associates with a poor prognosis. Accordingly, these patients remain in urgent need of new therapies with novel mechanisms of action. In this respect, mAbs or mAb fragments can also be utilized as carriers of potent effector moieties to specifically target surface antigens on cells of interest. Such immunoconjugates have the potential to exert anti-MM activity in heavily pretreated patients due to their distinct and pleiotropic mechanisms of action. In addition, the fusion of highly cytotoxic compounds to mAbs decreases the off-target toxicity, thereby improving the therapeutic window. According to the effector moiety, immunoconjugates are classified into antibody-drug conjugates, immunotoxins, immunocytokines, or radioimmunoconjugates. This review will focus on the mechanisms of action, safety and efficacy of several promising immunoconjugates that are under investigation in preclinical and/or clinical MM studies. We will also include a discussion on combination therapy with immunoconjugates, resistance mechanisms, and future developments.
Collapse
Affiliation(s)
- Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Li H, Li Y, Wang C, Wang S, Ho M. Highlights of 2019 Protein Engineering Summit (PEGS) in Boston, USA: Advancing Antibody-Based Cancer Therapies to the Clinic. Antib Ther 2019; 2:79-87. [PMID: 31844838 PMCID: PMC6913531 DOI: 10.1093/abt/tbz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 15th Annual Protein Engineering Summit (PEGS) organized by Cambridge Healthtech Institute was held in Boston, USA, from 8 to 12 April 2019. This report highlights the presentations in the Oncology Stream of this meeting with a focus on bispecific antibodies (BsAbs). A variety of BsAb formats with different target antigens (CD3, CTLA4, PD-1, PD-L1, EGFR, HER2, BCMA, CD19, CD20, CD38, CD123, TGFβ, PSMA, etc.) have been discussed, in which the T-cell engaging (anti-CD3) BsAb is the most studied construct to exhibit promising immunotherapeutic activities. The BsAb formats include IgG-like structures or antibody fragments composed of antigen-binding sites only. Preclinical and clinical data from different BsAbs demonstrated the potential therapeutic applications in various solid tumors and hematological malignancies. The ongoing development of BsAb formats will help overcome current clinical issues, such as tumor selectivity and antigen coverage. This report also covers several presentations about emerging targets (e.g. mesothelin, CD47) and new technologies in the field of antibody engineering and therapeutics.
Collapse
Affiliation(s)
- Hong Li
- Klus Pharma, 8 Clarke Drive, Cranbury NJ 08512, USA
| | - You Li
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cheng Wang
- CoWin Venture, Taikang Financial Tower 2917, Chaoyang District, Beijing, 100026, China
| | - Shouye Wang
- Chinese Antibody Society, 955 Massachusetts Ave #276, Cambridge, MA 02139, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Anti-BCMA immunotoxins produce durable complete remissions in two mouse myeloma models. Proc Natl Acad Sci U S A 2019; 116:4592-4598. [PMID: 30782819 DOI: 10.1073/pnas.1821733116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a B cell malignancy for which new treatments are urgently needed. The B cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed on myeloma. Recombinant immunotoxins (RITs) are proteins composed of the Fv or Fab portion of an antibody fused to a bacterial toxin. We previously treated H929 myeloma s.c. tumors with anti-BCMA immunotoxins, very active on killing cultured cells, and observed tumor growth inhibition but not complete tumor responses. To determine if immunotoxins were more active against cells growing in the bone marrow (BM), the normal location of myeloma cells, we developed a BM mouse model that is more relevant to human disease. H929 cells were transfected with luciferase and GFP, enriched by flow, recycled through the BM of a mouse, and injected IV into nonobese diabetic scid γ mice (NSG) mice. A second myeloma mouse model used the MM.1S-GFP-luc cell line. Mice were treated IV with immunotoxins, and the tumor burden was assessed using bioluminescence imaging. We achieved complete durable remissions when treating mice with H929-GFP-luc cells with anti-BCMA RITs both leptomycin B-75 (LMB-75) [anti-BCMA-disulfide-stabilized (ds)-Fv-PE24] (where PE represents Pseudomonas exotoxin A) or LMB-70 (anti-BCMA-Fab-PE24) given every other day for 5-d (QOD×5) doses beginning on day 4 or day 8. Mice were disease free at 3 months; untreated mice became moribund around day 40. We also achieved long-term responses using the MM.1S-GFP-luc myeloma cell line. Treatment with an 1.5 mg/kg LMB-75 QOD×5 anti-BCMA RIT beginning on day 4 caused the complete disappearance of tumors for 80 days. To summarize, LMB-75 and LMB-70, our anti-BCMA RITs, induced complete durable responses in two myeloma models.
Collapse
|