1
|
Lautrou M, Narcy A, Dourmad JY, Pomar C, Schmidely P, Létourneau Montminy MP. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements. Front Vet Sci 2021; 8:734365. [PMID: 34901241 PMCID: PMC8654138 DOI: 10.3389/fvets.2021.734365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The sustainability of animal production relies on the judicious use of phosphorus (P). Phosphate, the mined source of agricultural phosphorus supplements, is a non-renewable resource, but phosphorus is essential for animal growth, health, and well-being. P must be provided by efficient and sustainable means that minimize the phosphorus footprint of livestock production by developing precise assessment of the bioavailability of dietary P using robust models. About 60% of the phosphorus in an animal's body occurs in bone at a fixed ratio with calcium (Ca) and the rest is found in muscle. The P and Ca requirements must be estimated together; they cannot be dissociated. While precise assessment of P and Ca requirements is important for animal well-being, it can also help to mitigate the environmental effects of pig farming. These strategies refer to multicriteria approaches of modeling, efficient use of the new generations of phytase, depletion and repletion strategies to prime the animal to be more efficient, and finally combining these strategies into a precision feeding model that provides daily tailored diets for individuals. The industry will need to use strategies such as these to ensure a sustainable plant-animal-soil system and an efficient P cycle.
Collapse
Affiliation(s)
- Marion Lautrou
- Département des sciences animales, Université Laval, Quebec, QC, Canada
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Agnès Narcy
- UMR Biologie des oiseaux et aviculture, INRA, Nouzilly, France
| | | | - Candido Pomar
- Agriculture et Agroalimentaire Canada, Sherbrooke, QC, Canada
| | - Philippe Schmidely
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | | |
Collapse
|
2
|
Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences on growth performance and body composition of growing pigs. Animal 2017; 12:1165-1173. [PMID: 29065940 DOI: 10.1017/s1751731117002567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The effect of a calcium (Ca) and phosphorus (P) depletion and repletion strategy was studied in four consecutive feeding phases of 28 days each. In all, 60 castrated male pigs (14±1.6 kg initial BW) received 60% (low (L) diet; depletion) or 100% (control (C) diet; repletion) of their Ca and digestible P requirements according to six feeding sequences (CCCC, CCCL, CLCC, CCLC, LCLC and LLLL; subsequent letters indicate the diet received in phases 1, 2, 3 and 4, respectively). Pigs bone mineral content in whole-body (BMCb) and lumbar vertebrae L2 to L4 (BMCv) was measured in every feeding phase by dual-energy X-ray absorptiometry. Growth performance was slightly (<10%) affected by depletion, however, dietary treatments did not affect overall growth. Compared with control pigs, depletion reduced BMCb (34%, 38%, 33% and 22%) and BMCv (46%, 54%, 38% and 26%) in phases 1 to 4, respectively. Depletion increased however digestible P retention efficiency from the second to the fourth phases allowing LLLL pigs to present no differences in BMCb and BMCv gain compared with CCCC pigs in phase 4. Growth performance in repleted compared with control pigs was lower in phase 2, was no different in phase 3 and was lower in CLCC pigs in phase 4. Repletion increased body P and Ca retention efficiency when compared with control pigs (respectively, 8% and 10% for LC v. CC, P<0.01; 8% and 10% for CLC v. CCC, P<0.10; 18% and 25% for CLCC, CCLC, LCLC v. CCCC, P<0.001). Moreover, BMCv gain was higher in CLC pigs (P<0.001) and gains of body P, Ca, BMCb and BMCv in phase 4 were also higher in repleted than in CCCC pigs (respectively, 14%, 20%, 20% and 52%; P⩽0.02). Repletion reduced body P, Ca, BMCb and BMCv masses in phase 2 but no differences were found in phase 4 compared with control pigs. Lumbar vertebrae L2 to L4 bone mineral content was more sensitive to depletion and repletion sequences than BMCb especially in the first phase probably due to a higher proportion of metabolically active trabecular bone in vertebrae than in the whole skeleton. Dietary Ca was, however, oversupply in L compared with C diets (3.1 v. 2.5 Ca:digestible P ratio, respectively) suggesting that P has probably driven the regulations. Phosphorus and Ca depletion and repletion increases dietary P utilization efficiency and can help to reduce dietary P supply, but the underlying mechanisms need elucidation before its practical application.
Collapse
|
3
|
Létourneau-Montminy MP, Lovatto PA, Pomar C. Apparent total tract digestibility of dietary calcium and phosphorus and their efficiency in bone mineral retention are affected by body mineral status in growing pigs. J Anim Sci 2014; 92:3914-24. [PMID: 25057034 DOI: 10.2527/jas.2013-7320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improving dietary P utilization without modifying pig performance is crucial for production sustainability. A feeding program comprising three 28-d phases (20 to 40, 40 to 70, and 70 to 100 kg) was used to feed 72 pigs with an initial BW of 20 kg. The ability of the pigs to modify the digestive and metabolic utilization of P when fed either a control (CON) diet or a low-P (LOW) diet providing 40% less digestible P with a constant Ca:digestible P was studied using different sequences of dietary P and Ca restriction (i.e., depletion [LOW]) and recovery (i.e., repletion [CON]), namely CON-CON-CON, CON-CON-LOW, CON-LOW-LOW, LOW-CON-CON, LOW-LOW-CON, and LOW-LOW-LOW. Bone mineral content (BMC) was measured in the lumbar region (L2-L4) by dual-energy X-ray absorptiometry at the beginning and end of each feeding phase. Total feces and urine were collected during phases 2 and 3. At the end of phase 1, BMC was lower in the LOW pigs than in the C pigs (29%; P < 0.001). During phase 2, the BMC gain was greater in the LOW-CON pigs than in the CON-CON pigs (16%; P < 0.001). During phase 3, the LOW-LOW-CON pigs absorbed 26% more Ca (P < 0.001) and retained 56% more BMC (P < 0.001) than the CON-CON-CON pigs did. Digestive and metabolic adaptations allowed the LOW-LOW-CON and LOW-CON-CON pigs to reach BMC similar to that of the CON-CON-CON pigs. These metabolic adaptations are promising, but practical applications of these results requires a better understanding of the underlying mechanisms to fine-tune the degree of depletion, pig age, and the duration of P and Ca depletion and repletion periods.
Collapse
Affiliation(s)
- M P Létourneau-Montminy
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, QC, J1M 1Z3, Canada
| | - P A Lovatto
- Departamento de Zootecnia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - C Pomar
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, Sherbrooke, QC, J1M 1Z3, Canada
| |
Collapse
|
4
|
Mahajan A, Alexander LS, Seabolt BS, Catrambone DE, McClung JP, Odle J, Pfeiler TW, Loboa EG, Stahl CH. Dietary calcium restriction affects mesenchymal stem cell activity and bone development in neonatal pigs. J Nutr 2011; 141:373-9. [PMID: 21248192 DOI: 10.3945/jn.110.131193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of dietary calcium (Ca) deficiency on skeletal integrity are well characterized in growing and mature mammals; however, less is known about Ca nutrition during the neonatal period. In this study, we examined the effects of neonatal Ca nutrition on bone integrity, endocrine hormones, and mesenchymal stem cell (MSC) activity. Neonatal pigs (24 ± 6 h of age) received either a Ca-adequate (1.2 g/100 g) or an ~40% Ca-deficient diet for 18 d. Ca deficiency reduced (P < 0.05) bone flexural strength and bone mineral density without major differences in plasma indicators of Ca status. There were no meaningful differences in plasma Ca, phosphate (PO(4)), parathyroid hormone, or 1,25-dihydroxycholecalciferol due to Ca nutrition throughout the study. Calcium deficiency also reduced (P < 0.05) the in vivo proliferation of MSC by ~50%. In vitro studies utilizing homologous sera demonstrated that MSC activity was affected (P < 0.05) by both the Ca status of the pig and the sera as well as by their interaction. The results indicate that neonatal Ca nutrition is crucial for bone integrity and suggest that early-life Ca restriction may have long-term effects on bone integrity via programming of MSC.
Collapse
Affiliation(s)
- Avanika Mahajan
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Claassen H, Cellarius C, Scholz-Ahrens KE, Schrezenmeir J, Glüer CC, Schünke M, Kurz B. Extracellular matrix changes in knee joint cartilage following bone-active drug treatment. Cell Tissue Res 2006; 324:279-89. [PMID: 16609917 DOI: 10.1007/s00441-005-0131-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/18/2005] [Indexed: 11/26/2022]
Abstract
Certain drugs or treatments that are known to affect bone quality or integrity might have side effects on the extracellular matrix of articular cartilage. We investigated the effects of vitamin D and calcium deficiency, estrogen deficiency, and hypercortisolism alone or in combination with bisphosphonates or sodium fluoride in an animal model, viz., the Göttingen miniature pig (n=29). The articular cartilage from knee joints was analyzed for its content of glycosaminoglycans (GAGs, as macromolecules responsible for the elasticity of articular cartilage) by a spectrometric method with dimethylene blue chloride. In cryo- or paraffin sections, alkaline phosphatase (AP, as an enzyme indicating mineralization or reorganization of articular cartilage matrix) was localized by enzyme histochemistry, and positive cells were counted, whereas differently sulfated GAGs were stained histochemically. A significant decrease in GAG content was measured in ovariectomized and long-term glucocorticoid-treated animals compared with untreated animals. In the glucocorticoid/sodium fluoride group, GAGs were significantly diminished, and significantly fewer AP-positive chondrocytes were counted compared with the control. GAG content was slightly higher, and significantly more AP-positive chondrocytes were counted in short-term glucocorticoid-treated animals then in the control group. GAGs, as part of proteoglycans, are responsible for the water-storage capacity that gives articular cartilage its unique property of elasticity. Thus, ovariectomy and long-term glucocorticoid therapy, especially when combined with sodium fluoride, have detrimental effects on this tissue.
Collapse
Affiliation(s)
- Horst Claassen
- Institut für Anatomie und Zellbiologie der Martin-Luther-Universität Halle-Wittenberg, Grosse Steinstrasse 52, 06097, Halle, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Claassen H, Hornberger F, Scholz-Ahrens K, Schünke M, Schrezenmeir J, Kurz B. The effect of estrogens and dietary calcium deficiency on the extracellular matrix of articular cartilage in Göttingen miniature pigs. Ann Anat 2002; 184:141-8. [PMID: 11936193 DOI: 10.1016/s0940-9602(02)80007-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinical observations have suggested that estrogens are involved in the pathogenesis of postmenopausal osteoarthritis (OA). However, positive and negative associations between the incidence of OA and serum estrogen concentrations have been reported. In contrast to this, osteoporosis is regarded as a disease with a strong estrogen-dependent component. Moreover, there is an interaction between estrogen and calcium deficiency: calcium supplementation potentiates the effect of estrogen therapy. The present study was designed to investigate how estrogen deficiency affects the articular cartilage depending on calcium supply. The distribution of different types of glycosaminoglycans and collagens can be used as an indicator for extracellular matrix changes induced by estrogen deficiency. Different levels of dietary calcium were therefore fed to intact and ovariectomized Göttingen miniature pigs for one year before articular cartilage was harvested. The histochemical staining for heavy sulfated glycosaminoglycans in the extracellular matrix of ovariectomized miniature pigs, especially of those fed with a low calcium diet, was stronger in comparison to intact animals. In intact animals type II-collagen was immunodetected in all zones of unmineralized and mineralized articular cartilage, while immunostaining for this protein was negative to weak in the deep radiated fiber zone of ovariectomized minipigs. These results suggest that the synthesis of heavy sulfated glycosaminoglycans and immunohistochemically detectable type II-collagen is possibly influenced by estrogen deficiency. In conclusion, under estrogen deficiency, the extracellular matrix of articular cartilage underwent similar changes to those observed in physiologically aging cartilage where keratan sulfate is increased as a heavy sulfated glycosaminoglycan.
Collapse
|
7
|
Eklou-Kalonji E, Zerath E, Colin C, Lacroix C, Holy X, Denis I, Pointillart A. Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets. J Nutr 1999; 129:188-93. [PMID: 9915898 DOI: 10.1093/jn/129.1.188] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies on calcium nutrition in appropriate large animal models can be directly relevant to humans. We have examined the effect of dietary Ca deficiency on various bone and bone-related variables, including plasma markers, histomorphometry, mineral content and breaking strength in pigs. Three groups of eight 38-d-old female pigs were fed adequate (0.9%; control), low (0.4%; LCa) or very low (0.1%; VLCa) Ca diets for 32 d. Plasma Ca significantly decreased over time only in the VLCa-deficient pigs. The concentrations of the parathyroid hormones (PTH) and calcitriol increased as Ca deficiency developed, and the plasma PTH and calcitriol levels varied inversely with dietary Ca. The total bone ash contents, bending moments, trabecular bone volume and the mineral apposition rate all decreased as the calcium intake decreased. The osteoclast surface areas were greater than those of controls in both Ca-deficient groups, whereas the osteoblast surface areas were greater only in the VLCa group. The plasma osteoblast-related markers (alkaline phosphatase, carboxy-terminal propeptide of type I procollagen and osteocalcin) were either greater or unaffected in the Ca-deficient pigs. The results indicate that deficient bone mineralization combined with an increased bone resorption led to bone loss and fragility. The differences in the changes in bone cells (number and activity) between LCa and VLCa groups might be due to differences (time and extent) of circulating PTH and calcitriol. The defective mineralization in both Ca-depleted groups resulted mainly from the lack of Ca because their osteoblast activity was either maintained or stimulated. The results also underline the progressive sensitivity of pigs to Ca supply and the usefulness of this model.
Collapse
Affiliation(s)
- E Eklou-Kalonji
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, 78 352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Scholz-Ahrens KE, Delling G, Jungblut PW, Kallweit E, Barth CA. Effect of ovariectomy on bone histology and plasma parameters of bone metabolism in nulliparous and multiparous sows. ZEITSCHRIFT FUR ERNAHRUNGSWISSENSCHAFT 1996; 35:13-21. [PMID: 8776831 DOI: 10.1007/bf01612023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the suitability of the pig as animal model for postmenopausal osteoporosis, effects of ovariectomy (OVX) on bone metabolism and histology were studied in two groups of sows (9 months, nulliparous or 35 months, multiparous). A standard diet of about 1.5% calcium (Ca) was fed till sacrifice at either 12 or 20 months post OVX when mineral content and histology were studied in representative bone specimens of proximal tibia, iliac crest and lumbar vertebrae. At 4, 8, 12, and 18 months post OVX, total and bone-specific alkaline phosphatase (APt, APb) calcidiol, calcitriol and parathyroid hormone (PTH) were measured in plasma. In young sows OVX did not significantly affect plasma variables except for calcitriol, which was higher at 4 months post OVX. No significant differences between OVX or control animals were observed in the variables of bone chemical and histological analyses, neither 12 nor 20 months post OVX. In multiparous sows OVX significantly increased PTH plasma concentrations at 8 months post OVX and plasma calcitriol, APt and APb at 12 months post OVX. All effects were moderate and transient. OVX did not significantly affect the variables of bone chemical and histological analyses neither 12 nor 20 months post OVX. Although undoubtedly the clinical-chemical changes observed were not accompanied by any histomorphometric signs of osteopenia/osteoporosis, it must be left to future experiments as to whether this resulted from the ample calcium supply provided. This possibility is supported by recent observations showing that porcine osteopenia could be induced by OVX in animals maintained on only 0.75% dietary calcium but not on higher (0.9%) Ca regimens.
Collapse
Affiliation(s)
- K E Scholz-Ahrens
- Institut für Physiologie und Biochemie der Ernährung, Bundesanstalt für Milchforschung, Kiel
| | | | | | | | | |
Collapse
|