1
|
Xuan Y, Hong X, Zhou X, Yan T, Qin P, Peng D, Wang B. The vaginal metabolomics profile with features of polycystic ovary syndrome: a pilot investigation in China. PeerJ 2024; 12:e18194. [PMID: 39399434 PMCID: PMC11468964 DOI: 10.7717/peerj.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common metabolic disorder and reproductive endocrine disease, posing an elevated risk to women of reproductive age. Although metabolism differences in serum, amniotic fluid and urine have been documented in PCOS, there remains a paucity of evidence for vaginal fluid. This study aimed to identify the metabolic characteristics and potential biomarkers of PCOS in Chinese women of reproductive age. Methods We involved ten newly diagnosed PCOS women who attended gynecology at Zhongda Hospital and matched them with ten healthy controls who conducted health check-up programs at Gulou Maternal and Child Health Center in Nanjing, China from January 1st, 2019 to July 31st, 2020. Non-targeted metabolomics based on ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to differentially screen vaginal metabolites between PCOS group and healthy controls. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA) and enrichment analysis were used to observe differences, search for potential biomarkers and enrich related pathways. Results Among the 20 participants, a total of 195 different metabolites were detected between PCOS group and healthy control group. PCOS and control groups were effectively separated by vaginal fluid. Lipids and lipid-like molecules constituted the majority of differential metabolites. Notably, dopamine exhibited an increased trend in PCOS group and emerged as the most significant differential metabolite, suggesting its potential as a biomarker for identifying PCOS. The application of UHPLC-MS/MS based vaginal metabolomics methods showed significant differences between PCOS and non-PCOS healthy control groups, especially linoleic acid metabolism disorder. Most differential metabolites were enriched in pathways associated with linoleic acid metabolism, phenylalanine metabolism, tyrosine metabolism, nicotinate and nicotinamide metabolism or arachidonic acid metabolism. Conclusions In this pilot investigation, significant metabolomics differences could be obtained between PCOS and healthy control groups. For PCOS women of reproductive age, vaginal metabolism is a more economical, convenient and harmless alternative to provide careful personalized health diagnosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yan Xuan
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Tao Yan
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| | - Pengfei Qin
- Nanjing Women and Children’s Healthcare Hospital, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bei Wang
- Department of Epidemiology and Health Statistics, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Glaesser D, Iwig M. Increased molar ratio of free fatty acids to albumin in blood as cause and early biomarker for the development of cataracts and Alzheimer's disease. Exp Eye Res 2024; 243:109888. [PMID: 38583754 DOI: 10.1016/j.exer.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 μmol/l in the blood to 1-3 μmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.
Collapse
Affiliation(s)
- Dietmar Glaesser
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany.
| | - Martin Iwig
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany
| |
Collapse
|
3
|
Markey O, Garcimartín A, Vasilopoulou D, Kliem KE, Fagan CC, Humphries DJ, Todd S, Givens DI, Lovegrove JA, Jackson KG. Impact of dairy fat manipulation on endothelial function and lipid regulation in human aortic endothelial cells exposed to human plasma samples: an in vitro investigation from the RESET study. Eur J Nutr 2024; 63:539-548. [PMID: 38093120 PMCID: PMC10899290 DOI: 10.1007/s00394-023-03284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE Longer-term intake of fatty acid (FA)-modified dairy products (SFA-reduced, MUFA-enriched) was reported to attenuate postprandial endothelial function in humans, relative to conventional (control) dairy. Thus, we performed an in vitro study in human aortic endothelial cells (HAEC) to investigate mechanisms underlying the effects observed in vivo. METHODS This sub-study was conducted within the framework of the RESET study, a 12-week randomised controlled crossover trial with FA-modified and control dairy diets. HAEC were incubated for 24 h with post-intervention plasma samples from eleven adults (age: 57.5 ± 6.0 years; BMI: 25.7 ± 2.7 kg/m2) at moderate cardiovascular disease risk following representative sequential mixed meals. Markers of endothelial function and lipid regulation were assessed. RESULTS Relative to control, HAEC incubation with plasma following the FA-modified treatment increased postprandial NOx production (P-interaction = 0.019), yet up-regulated relative E-selectin mRNA gene expression (P-interaction = 0.011). There was no impact on other genes measured. CONCLUSION Incubation of HAEC with human plasma collected after longer-term dairy fat manipulation had a beneficial impact on postprandial NOx production. Further ex vivo research is needed to understand the impact of partial replacement of SFA with unsaturated fatty acids in dairy foods on pathways involved in endothelial function.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Alba Garcimartín
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
| | - Kirsty E Kliem
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - David J Humphries
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK.
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK.
| |
Collapse
|
4
|
Che X, Hong X, Gross S, Pearson C, Bartell T, Wang X, Wang G. Maternal Mediterranean-Style Diet Adherence during Pregnancy and Metabolomic Signature in Postpartum Plasma: Findings from the Boston Birth Cohort. J Nutr 2024; 154:846-855. [PMID: 38278216 PMCID: PMC10942856 DOI: 10.1016/j.tjnut.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The health benefits of a Mediterranean-style diet (MSD) are well observed, but the underlying mechanisms are unclear. Metabolomic profiling offers a systematic approach for identifying which metabolic biomarkers and pathways might be affected by an MSD. OBJECTIVES This study aimed to identify postpartum plasma metabolites that are associated with MSD adherence during pregnancy and to further test whether these identified metabolites may vary by maternal characteristics. METHODS We analyzed data from 1410 mothers enrolled in the Boston Birth Cohort (BBC). A maternal food frequency questionnaire (FFQ) was administered and epidemiologic information was obtained via an in-person standard questionnaire interview within 24-72 h postpartum. Maternal clinical information was extracted from electronic medical records. A Mediterranean-style diet score (MSDS) was calculated using responses to the FFQ. Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-MS. Linear regression models were used to assess the associations of each metabolite with an MSDS, adjusting for covariates. RESULTS Among the 380 postpartum plasma metabolites analyzed, 24 were associated with MSDS during pregnancy (false discovery rate < 0.05). Of 24 MSDS-associated metabolites, 19 were lipids [for example, triacylglycerols, phosphatidylcholines (PCs), PC plasmalogen, phosphatidylserine, and phosphatidylethanolamine]; others were amino acids (methionine sulfoxide and threonine), tropane (nor-psi-tropine), vitamin (vitamin A), and nucleotide (adenosine). The association of adenosine and methionine sulfoxide with MSDS differed by race (P-interaction = 0.033) and maternal overweight or obesity status (P-interaction = 0.021), respectively. CONCLUSIONS In the BBC, we identified 24 postpartum plasma metabolites associated with MSDS during pregnancy. The associations of the 2 metabolites varied by maternal race and BMI. This study provides a new insight into dietary effects on health under the skin. More studies are needed to better understand the metabolic pathways underlying the short- and long-term health benefits of an MSD during pregnancy.
Collapse
Affiliation(s)
- Xiaoyu Che
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Susan Gross
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Tami Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|
5
|
Pye ES, Wallace SE, Marangoni DG, Foo ACY. Albumin Proteins as Delivery Vehicles for PFAS Contaminants into Respiratory Membranes. ACS OMEGA 2023; 8:44036-44043. [PMID: 38027323 PMCID: PMC10666230 DOI: 10.1021/acsomega.3c06239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a family of chemicals that have been used in a wide range of commercial products. While their use is declining, the prevalence of PFAS, combined with their chemical longevity, ensures that detectable levels will remain in the environment for years to come. As such, there is a pressing need to understand how PFAS contaminants interact with other elements of the human exposome and the consequences of these interactions for human health. Using serum albumin as a model system, we show that proteins can bind PFAS contaminants and facilitate their incorporation into model pulmonary surfactant systems and lipid bilayers. Protein-mediated PFAS delivery significantly altered the structure and function of both model membrane systems, potentially contributing to respiratory dysfunction and airway diseases in vivo. These results provide valuable insights into the synergistic interaction between PFAS contaminants and other elements of the human exposome and their potential consequences for human health.
Collapse
Affiliation(s)
- Evan S. Pye
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Shannon E. Wallace
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - D. Gerrard Marangoni
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Alexander C. Y. Foo
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| |
Collapse
|
6
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Birarra MK, Baye E, Tesfa W, Kifle ZD. Knowledge of cardiovascular disease risk factors, practice, and barriers of community pharmacists on cardiovascular disease prevention in North West Ethiopia. Metabol Open 2022; 16:100219. [DOI: 10.1016/j.metop.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
|
8
|
Association between Omega-3 Index and Hyperglycemia Depending on Body Mass Index among Adults in the United States. Nutrients 2022; 14:nu14204407. [PMID: 36297090 PMCID: PMC9611386 DOI: 10.3390/nu14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
There is inconsistency regarding the association between long-chain n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) and the risk of type 2 diabetes. The present study aimed to investigate the association between the Omega-3 Index (erythrocyte EPA + DHA) and glycemic status as a function of body mass index (BMI). Cross-sectional data from routine clinical laboratory testing with a total of 100,572 people aged over 18 years and BMI ≥ 18.5 kg/m2 were included. Of the patients, 10% were hyperglycemic (fasting plasma glucose levels ≥ 126 mg/dL) and 24.7% were of normal weight, 35.0% were overweight, and 40.3% were obese. Odds ratios (ORs) of being hyperglycemic were inversely associated with the Omega-3 Index, but weakened as BMI increased. Thus, ORs (95% CI) comparing quintile 5 with quintile 1 were 0.54 (0.44-0.66) in the normal weight group, 0.70 (0.61-0.79) in the overweight group, and 0.74 (0.67-0.81) in the obese group. Similar patterns were seen for EPA and DHA separately. The present study suggested that a low Omega-3 Index is associated with a greater risk of disordered glucose metabolism and this is independent of BMI.
Collapse
|
9
|
Nontargeted Metabolomic Profiling of Huo-Tan-Chu-Shi Decoction in the Treatment of Coronary Heart Disease with Phlegm-damp Syndrome. Cardiol Res Pract 2022; 2022:6532003. [PMID: 35991771 PMCID: PMC9391147 DOI: 10.1155/2022/6532003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Considered an effective supplementary therapy, traditional Chinese medicine (TCM) has been widely applied in the treatment of coronary heart disease (CHD). In this study, we aim to investigate the effects and mechanisms of Huo-Tan-Chu-Shi decoction (HTCSD, an in-hospital TCM prescription) in the treatment of CHD with the phlegm-damp syndrome in mice by non-targeted metabolomics with liquid chromatography-mass spectrometry (LC-MS)/MS. Methods A CHD with phlegm-damp syndrome model was established with ApoE−/− mice by subcutaneous injection with isoproterenol combined with high temperature, high humidity, and a high-fat diet, and divided into the HTCSD and Tanshi groups. C57BL/6 mice were set as the control group with an ordinary environment and diet. After administration, electrocardiogram (ECG), interventricular septum thickness (IVS) and left ventricular posterior wall thickness (LVPW), serum levels of creatine phosphokinase-Mb (CK-MB), cardiac troponin T (cTnT), lactic dehydrogenase (LDH) and oxidized low-density lipoprotein (oxLDL), and myocardial histopathological changes were recorded to assess myocardial damage. LC-MS/MS was applied to demonstrate the serum metabolic profile and explore potential mechanisms. Results The obvious depressions of the ST segment and T wave presented in the ECG of Tanshi mice, while the depressions in ECG of HTCSD mice were significantly reduced. Compared with the control group, IVS, LVPW, and serum levels of CK-MB, cTnT, LDH, and oxLDL increased greatly in the Tanshi group, while these indicators decreased remarkably in the HTCSD group compared with those of the Tanshi group. Histopathology showed severe structural disorder, necrosis, and fibrosis of myocardial cells in Tanshi mice, which were alleviated in HTCSD mice. Metabonomics analysis showed obvious metabolic alterations among the experimental mice and revealed that the relevant metabolic pathways mainly included phospholipid metabolism, necroptosis, and autophagy. Conclusions HTCSD has a certain therapeutic effect in mice with CHD with phlegm-damp syndrome via reducing myocardial ischemia, hypertrophy, and fibrosis. The underlying mechanisms involve the regulation of phospholipid metabolism, necroptosis, and autophagy.
Collapse
|
10
|
Henriksen HH, Marín de Mas I, Herand H, Krocker J, Wade CE, Johansson PI. Metabolic systems analysis identifies a novel mechanism contributing to shock in patients with endotheliopathy of trauma (EoT) involving thromboxane A2 and LTC 4. Matrix Biol Plus 2022; 15:100115. [PMID: 35813244 PMCID: PMC9260291 DOI: 10.1016/j.mbplus.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Endotheliopathy of trauma (EoT), as defined by circulating levels of syndecan-1 ≥ 40 ng/mL, has been reported to be associated with significantly increased transfusion requirements and a doubled 30-day mortality. Increased shedding of the glycocalyx points toward the endothelial cell membrane composition as important for the clinical outcome being the rationale for this study. Results The plasma metabolome of 95 severely injured trauma patients was investigated by mass spectrometry, and patients with EoT vs. non-EoT were compared by partial least square-discriminant analysis, identifying succinic acid as the top metabolite to differentiate EoT and non-EoT patients (VIP score = 3). EoT and non-EoT patients' metabolic flux profile was inferred by integrating the corresponding plasma metabolome data into a genome-scale metabolic network reconstruction analysis and performing a functional study of the metabolic capabilities of each group. Model predictions showed a decrease in cholesterol metabolism secondary to impaired mevalonate synthesis in EoT compared to non-EoT patients. Intracellular task analysis indicated decreased synthesis of thromboxanA2 and leukotrienes, as well as a lower carnitine palmitoyltransferase I activity in EoT compared to non-EoT patients. Sensitivity analysis also showed a significantly high dependence of eicosanoid-associated metabolic tasks on alpha-linolenic acid as unique to EoT patients. Conclusions Model-driven analysis of the endothelial cells' metabolism identified potential novel targets as impaired thromboxane A2 and leukotriene synthesis in EoT patients when compared to non-EoT patients. Reduced thromboxane A2 and leukotriene availability in the microvasculature impairs vasoconstriction ability and may thus contribute to shock in EoT patients. These findings are supported by extensive scientific literature; however, further investigations are required on these findings.
Collapse
Key Words
- AA, Arachidonic acid
- CPT1, Carnitine palmitoyltransferase I
- EC, Endothelial cell
- EC-GEM, Genome-scale metabolic model of the microvascular endothelial cell
- ELISA, Enzyme-linked immunosorbent assay
- Eicosanoid
- Endotheliopathy
- EoT, Endotheliopathy of trauma
- FBA, Flux balance analysis
- GEMs, Genome-scale metabolic models
- Genome-scale metabolic model
- HMG-CoA, Hydroxymethylglutaryl-CoA
- ISS, Injury Severity Score
- LTC4, Leukotriene C4
- Metabolomics
- PCA, Principal Component Analysis
- PLS-DA, Partial least square-discriminant analysis
- Systems biology
- Trauma
Collapse
Affiliation(s)
- Hanne H. Henriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Igor Marín de Mas
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Helena Herand
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Joseph Krocker
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Pär I. Johansson
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
11
|
Caldas APS, Rocha DMUP, Dionísio AP, Hermsdorff HHM, Bressan J. Brazil and cashew nuts intake improve body composition and endothelial health in women at cardiometabolic risk (Brazilian Nuts Study): a randomized controlled trial. Br J Nutr 2022; 128:1-38. [PMID: 35193718 DOI: 10.1017/s000711452100475x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several mechanisms have been proposed for the beneficial effect of nuts on health. However, Brazil and cashew nuts remain the least studied. We aim to evaluate the effect of these nuts within an energy-restricted diet on body weight, body composition, cardiometabolic markers, and endothelial function in cardiometabolic risk women. Brazilian nuts study is a randomized controlled parallel 8-week dietary intervention trial. Forty women were randomly allocated to 1) Control group: Energy-restricted diet without nuts, n= 19 or, 2) Brazil and cashew nuts group (BN-Group): Energy-restricted diet containing daily 45 g of nuts (15 g of Brazil nuts + 30g of cashew nuts), n= 21. At the beginning and final intervention, anthropometry, body composition, and blood pressure were measured. Fasting blood sampling was obtained to evaluate lipid profile, glucose homeostasis, and endothelial function markers. After 8-week, plasma selenium concentration increased in BN-group (∆ = + 31.5 ± 7.8 μg/L; p= 0.001). Brazil and cashew nuts intake reduced total body fat (-1.3 ± 0.4 %) parallel to improvement of lean mass percentage in BN-group compared to the control. Besides, the soluble adhesion molecule VCAM-1 decreased (24.03 ± 15.7 pg/mL vs. -22.2 ± 10.3 pg/mL; p= 0.019) after Brazil and cashew nuts intake compared to the control. However, lipid and glucose profile markers, apolipoproteins, and blood pressure remained unchanged after the intervention. Thus, the addition of Brazil and cashew nuts to an energy-restricted diet can be a healthy strategy to improve body composition, selenium status, and endothelial inflammation in cardiometabolic risk women.
Collapse
Affiliation(s)
- Ana Paula Silva Caldas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Ana Paula Dionísio
- Embrapa Agroindústria Tropical, Sara Mesquita Street, 2270, 60511-110, Fortaleza, Ceará, Brazil
| | | | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
12
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
14
|
Yuan ZH, Liu T, Wang H, Xue LX, Wang JJ. Fatty Acids Metabolism: The Bridge Between Ferroptosis and Ionizing Radiation. Front Cell Dev Biol 2021; 9:675617. [PMID: 34249928 PMCID: PMC8264768 DOI: 10.3389/fcell.2021.675617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of tumor cells to ionizing radiation (IR) alters the microenvironment, particularly the fatty acid (FA) profile and activity. Moreover, abnormal FA metabolism, either catabolism or anabolism, is essential for synthesizing biological membranes and delivering molecular signals to induce ferroptotic cell death. The current review focuses on the bistable regulation characteristics of FA metabolism and explains how FA catabolism and anabolism pathway crosstalk harmonize different ionizing radiation-regulated ferroptosis responses, resulting in pivotal cell fate decisions. In summary, targeting key molecules involved in lipid metabolism and ferroptosis may amplify the tumor response to IR.
Collapse
Affiliation(s)
- Zhu-hui Yuan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Li-xiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Biobank, Peking University Third Hospital, Beijing, China
| | - Jun-jie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Characterization of Glutathione Peroxidase 4 in Rat Oocytes, Preimplantation Embryos, and Selected Maternal Tissues during Early Development and Implantation. Int J Mol Sci 2021; 22:ijms22105174. [PMID: 34068371 PMCID: PMC8153280 DOI: 10.3390/ijms22105174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to describe glutathione peroxidase 4 (GPx4) in rat oocytes, preimplantation embryos, and female genital organs. After copulation, Sprague Dawley female rats were euthanized with anesthetic on the first (D1), third (D3), and fifth days of pregnancy (D5). Ovaries, oviducts, and uterine horns were removed, and oocytes and preimplantation embryos were obtained. Immunohistochemical, immunofluorescent, and Western blot methods were employed. Using immunofluorescence, we detected GPx4 in both the oocytes and preimplantation embryos. Whereas in the oocytes, GPx4 was homogeneously diffused, in the blastomeres, granules were formed, and in the blastocysts, even clusters were present mainly around the cell nuclei. Employing immunohistochemistry, we detected GPx4 inside the ovary in the corpus luteum, stroma, follicles, and blood vessels. In the oviduct, the enzyme was present in the epithelium, stroma, blood vessels, and smooth muscles. In the uterus, GPx4 was found in the endometrium, myometrium, blood vessels, and stroma. Moreover, we observed GPx4 positive granules in the uterine gland epithelium on D1 and D3 and cytoplasm of fibroblasts forming in the decidua on D5. Western blot showed the highest GPx4 levels in the uterus and the lowest levels in the ovary. Our results show that the GPx4 is necessary as early as in the preimplantation development of a new individual because we detected it in an unfertilized oocyte in a blastocyst and not only after implantation, as was previously thought.
Collapse
|
16
|
Alarcon G, Medina A, Martin Alzogaray F, Sierra L, Roco J, Van Nieuwenhove C, Medina M, Jerez S. Partial replacement of corn oil with chia oil into a high fat diet produces either beneficial and deleterious effects on metabolic and vascular alterations in rabbits. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lake JA, Abasht B. Glucolipotoxicity: A Proposed Etiology for Wooden Breast and Related Myopathies in Commercial Broiler Chickens. Front Physiol 2020; 11:169. [PMID: 32231585 PMCID: PMC7083144 DOI: 10.3389/fphys.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
Wooden breast is one of several myopathies of fast-growing commercial broilers that has emerged as a consequence of intensive selection practices in the poultry breeding industry. Despite the substantial economic burden presented to broiler producers worldwide by wooden breast and related muscle disorders such as white striping, the genetic and etiological underpinnings of these diseases are still poorly understood. Here we propose a new hypothesis on the primary causes of wooden breast that implicates dysregulation of lipid and glucose metabolism. Our hypothesis addresses recent findings that have suggested etiologic similarities between wooden breast and type 2 diabetes despite their phenotypic disparities. Unlike in mammals, dysregulation of lipid and glucose metabolism is not accompanied by an increase in plasma glucose levels but generates a unique skeletal muscle phenotype, i.e., wooden breast, in chickens. We hypothesize that these phenotypic disparities result from a major difference in skeletal muscle glucose transport between birds and mammals, and that the wooden breast phenotype most closely resembles complications of diabetes in smooth and cardiac muscle of mammals. Additional basic research on wooden breast and related muscle disorders in commercial broiler chickens is necessary and can be informative for poultry breeding and production as well as for human health and disease. To inform future studies, this paper reviews the current biological knowledge of wooden breast, outlines the major steps in its proposed pathogenesis, and examines how selection for production traits may have contributed to its prevalence.
Collapse
Affiliation(s)
- Juniper A. Lake
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Behnam Abasht
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
18
|
Resanović I, Gluvić Z, Zarić B, Sudar-Milovanović E, Vučić V, Arsić A, Nedić O, Šunderić M, Gligorijević N, Milačić D, Isenović ER. Effect of Hyperbaric Oxygen Therapy on Fatty Acid Composition and Insulin-like Growth Factor Binding Protein 1 in Adult Type 1 Diabetes Mellitus Patients: A Pilot Study. Can J Diabetes 2020; 44:22-29. [PMID: 31311728 DOI: 10.1016/j.jcjd.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Metabolic changes in type 1 diabetes mellitus (T1DM) impair vasodilation, and this leads to tissue hypoxia and microvascular pathology. Hyperbaric oxygen therapy (HBOT) can significantly improve the outcome of ischemic conditions in T1DM patients and reduce vascular complications. The aim of our study was to assess the effects of HBOT on plasma fatty acid (FA) composition, and expression of insulin-like growth factor binding protein 1 (IGFBP-1) in T1DM patients. METHODS Our study included 24 adult T1DM patients diagnosed with peripheral vascular complications. The patients were exposed to 10 sessions of 100% oxygen inhalation at 2.4 atmosphere absolute for 1 hour. Blood samples were collected at admission and after HBOT for measurement of metabolic parameters, FA composition and IGFBP-1. Measurement of plasma FA composition was determined by gas chromatography. Expression of IGFBP-1 in the serum was estimated by Western blot analysis. RESULTS HBOT decreased blood levels of total cholesterol (p<0.05), triglycerides (p<0.05) and low-density lipoprotein (p<0.05). HBOT increased plasma levels of individual FAs: palmitic acid (p<0.05), palmitoleic acid (p<0.05), docosapentaenoic acid (p<0.05) and docosahexaenoic acid (p<0.01), and decreased levels of stearic acid (p<0.05), alpha linolenic acid (p<0.05) and linoleic acid (p<0.01). Expression of IGFBP-1 (p<0.01) was increased, whereas the level of insulin (p<0.001) was decreased in the serum after HBOT. CONCLUSIONS Our results indicate that HBOT exerts beneficial effects in T1DM patients by improving the lipid profile and altering FA composition.
Collapse
Affiliation(s)
- Ivana Resanović
- Institute of Nuclear Sciences Vinča, Laboratory of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia.
| | - Zoran Gluvić
- Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Institute of Nuclear Sciences Vinča, Laboratory of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanović
- Institute of Nuclear Sciences Vinča, Laboratory of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Arsić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Šunderić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Davorka Milačić
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Esma R Isenović
- Institute of Nuclear Sciences Vinča, Laboratory of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia; Faculty of Stomatology, Pančevo, University Business Academy, Novi Sad, Serbia.
| |
Collapse
|
19
|
Dikalov SI, Dikalova AE. Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxid Redox Signal 2019; 31:710-721. [PMID: 30618267 PMCID: PMC6708267 DOI: 10.1089/ars.2018.7632] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Vascular dysfunction plays a key role in the development of arteriosclerosis, heart disease, and hypertension, which causes one-third of deaths worldwide. Vascular oxidative stress and metabolic disorders contribute to vascular dysfunction, leading to impaired vasorelaxation, vascular hypertrophy, fibrosis, and aortic stiffening. Mitochondria are critical in the regulation of metabolic and antioxidant functions; therefore, mitochondria-targeted treatments could be beneficial. Recent Advances: Vascular dysfunction is crucial in hypertension pathophysiology and exhibits bidirectional relationship. Metabolic disorders and oxidative stress contribute to the pathogenesis of vascular dysfunction and hypertension, which are associated with mitochondrial impairment and hyperacetylation. Mitochondrial deacetylase Sirtuin 3 (Sirt3) is critical in the regulation of metabolic and antioxidant functions. Clinical studies show that cardiovascular disease risk factors reduce Sirt3 level and Sirt3 declines with age, paralleling the increased incidence of cardiovascular disease and hypertension. An imbalance between mitochondrial acetylation and reduced Sirt3 activity contributes to mitochondrial dysfunction and oxidative stress. We propose that mitochondrial hyperacetylation drives a vicious cycle between metabolic disorders and mitochondrial oxidative stress, promoting vascular dysfunction and hypertension. Critical Issues: The mechanisms of mitochondrial dysfunction are still obscure in human hypertension. Mitochondrial hyperacetylation and oxidative stress contribute to mitochondrial dysfunction; however, regulation of mitochondrial acetylation, the role of GCN5L1 (acetyl-CoA-binding protein promoting acetyltransferase protein acetylation) acetyltransferase, Sirt3 deacetylase, and acetylation of specific proteins require further investigations. Future Directions: There is an urgent need to define molecular mechanisms and the pathophysiological role of mitochondrial hyperacetylation, identify novel pharmacological targets, and develop therapeutic approaches to reduce this phenomenon.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Dikalova
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
20
|
Oleic acid ameliorates palmitic acid-induced ER stress and inflammation markers in naive and cerulein-treated exocrine pancreas cells. Biosci Rep 2019; 39:BSR20190054. [PMID: 30992393 PMCID: PMC6522823 DOI: 10.1042/bsr20190054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dietary fat overload (typical to obesity) increases the risk of pancreatic pathologies through mechanisms yet to be defined. We previously showed that saturated dietary fat induces pancreatic acinar lipotoxicity and cellular stress. The endoplasmic reticulum (ER) of exocrine pancreas cells is highly developed and thus predisposed to stress. We studied the combination of saturated and unsaturated FAs in metabolic and pancreatitis like cerulein (CER)-induced stress states on cellular ER stress. Exocrine pancreas AR42J and rat primary exocrine acinar cells underwent acute (24 h) challenge with different FAs (saturated, monounsaturated) at different concentrations (250 and 500 µM) and in combination with acute CER-induced stress, and were analyzed for fat accumulation, ER stress unfolded protein response (UPR) and immune and enzyme markers. Acute exposure of AR42J and pancreatic acinar cells to different FAs and their combinations increased triglyceride accumulation. Palmitic acid significantly dose-dependently enhanced the UPR, immune factors and pancreatic lipase (PL) levels, as demonstrated by XBP1 splicing and elevation in UPR transcripts and protein levels (Xbp1,Atf6, Atf4, Chop, Tnfα, Tgfβ and Il-6). Exposure to high palmitic levels in a CER-induced stress state synergistically increased ER stress and inflammation marker levels. Exposure to oleic acid did not induce ER stress and PL levels and significantly decreased immune factors in an acute CER-induced stress state. Combination of oleic and palmitic acids significantly reduced the palmitic-induced ER stress, but did not affect the immune factor response. We show that combination of monounsaturated and saturated FAs protects from exocrine pancreatic cellular ER stress in both metabolic and CER-induced stress.
Collapse
|
21
|
Plasma lipidomic profiling in murine mutants of Hermansky-Pudlak syndrome reveals differential changes in pro- and anti-atherosclerotic lipids. Biosci Rep 2019; 39:BSR20182339. [PMID: 30710063 PMCID: PMC6379572 DOI: 10.1042/bsr20182339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of lipid-rich plaques in the arterial wall. Its pathogenesis is very complicated and has not yet been fully elucidated. It is known that dyslipidemia is a major factor in atherosclerosis. Several different Hermansky-Pudlak syndrome (HPS) mutant mice have been shown either anti-atherosclerotic or atherogenic phenotypes, which may be mainly attributed to corresponding lipid perturbation. To explore the effects of different HPS proteins on lipid metabolism and plasma lipid composition, we analyzed the plasma lipid profiles of three HPS mutant mice, pa (Hps9 -/-), ru (Hps6 -/-), ep (Hps1 -/-), and wild-type (WT) mice. In pa and ru mice, some pro-atherosclerotic lipids, e.g. ceramide (Cer) and diacylglycerol (DAG), were down-regulated whereas triacylglycerol (TAG) containing docosahexaenoic acid (DHA) (22:6) fatty acyl was up-regulated when compared with WT mice. Several pro-atherosclerotic lipids including phosphatidic acid (PA), lysophosphatidylserine (LPS), sphingomyelin (SM), and cholesterol (Cho) were up-regulated in ep mice compared with WT mice. The lipid droplets in hepatocytes showed corresponding changes in these mutants. Our data suggest that the pa mutant resembles the ru mutant in its anti-atherosclerotic effects, but the ep mutant has an atherogenic effect. Our findings may provide clues to explain why different HPS mutant mice exhibit distinct anti-atherosclerotic or atherogenic effects after being exposed to high-cholesterol diets.
Collapse
|
22
|
DiNicolantonio JJ, O'Keefe JH. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart 2018; 5:e000946. [PMID: 30564378 PMCID: PMC6269634 DOI: 10.1136/openhrt-2018-000946] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, Kansas, Missouri, USA
| |
Collapse
|
23
|
DiNicolantonio JJ, O'Keefe JH. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart 2018; 5:e000898. [PMID: 30364556 PMCID: PMC6196963 DOI: 10.1136/openhrt-2018-000898] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
24
|
Meng X, Gao X, Zhang Z, Zhou X, Wu L, Yang M, Wang K, Ren H, Sun B, Wang T. Protective effect and mechanism of rat recombinant S100 calcium-binding protein A4 on oxidative stress injury of rat vascular endothelial cells. Oncol Lett 2018; 16:3614-3622. [PMID: 30127969 PMCID: PMC6096077 DOI: 10.3892/ol.2018.9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to examine the protective effects and mechanisms of S100 calcium-binding protein A4 (S100A4) on endothelial cell apoptosis induced by oxidative stress injury. Endothelial cells were cultured and divided into control and oxidative stress injury groups, with the latter state induced by H2O2. Endothelial cells in every group were incubated with or without 50 or 100 µM S100A4. The cell viability and amounts of malondialdehyde, nitric oxide and lactate dehydrogenase in the culture medium were measured. The apoptotic index was detected by TUNEL staining. Western blot and immunoprecipitation analyses were used to detect the expression levels and the association between S100A4 and P53. H2O2 treatment led to oxidative stress injury in the cultured vascular endothelial cells, a decrease in the cell viability and an increase in the rate of apoptosis of vascular endothelial cells compared with the negative control group. Exogenous S100A4 serves a significant function against oxidative stress injury (P<0.05), increasing the viability and attenuating the apoptotic rate of endothelial cells. Western blotting results suggested that the protein levels of S100A4 and P53 increased subsequent to oxidative stress injury and that exogenous S100A4 increased the expression of P53 in the cytoplasm and decreased the expression of P53 in nucleus. The immunoprecipitation assay results revealed a protein-protein interaction between S100A4 and P53. These results suggested that rat recombinant S100A4 serves an anti-apoptotic function in oxidative stress injury. This effect of S100A4 is mediated, at least in part, via the inhibition of the translocation of P53 to the nucleus.
Collapse
Affiliation(s)
- Xiangyan Meng
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China.,Department of Physiology and Pathophysiology, Logistics College of Chinese People's Armed Police Force, Tianjin 300162, P.R. China
| | - Xiujie Gao
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Zhiqing Zhang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Xuesi Zhou
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Lei Wu
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Miaomiao Yang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China.,Department of Health and Exercise Sciences, Tian Jin University of Sport, Tianjin 300381, P.R. China
| | - Kun Wang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hanlin Ren
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Department of Physiology, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Tianhui Wang
- Performance Medicine Laboratory, Department of Performance Medicine, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| |
Collapse
|
25
|
Su H, Liu R, Chang M, Huang J, Wang X. Dietary linoleic acid intake and blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2018; 8:3091-3103. [PMID: 28752873 DOI: 10.1039/c7fo00433h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of the present study was to investigate the effect of increasing dietary linoleic acid (LA) intake on the blood concentrations of inflammatory markers including cytokines, acute phase reactants and adhesion molecules in adults. METHODS We comprehensively searched PubMed, Embase and Cochrane Library for eligible studies. Overall, 30 randomized controlled studies involving 1377 subjects were included for meta-analysis. RESULTS No significant effect of higher LA intake was observed for cytokines: tumor necrosis factor (SMD: -0.01; 95% CI: -0.19 to 0.17), interleukin-6 (SMD: 0.11, 95% CI: -0.07 to 0.29), adiponectin (SMD: 0.17, 95% CI: -0.17 to 0.50) and monocyte chemoattractant protein 1 (SMD: 0.14, 95% CI: -0.33 to 0.60). Pooled effect size from 16 studies showed that the C-reactive protein (CRP) concentration was not significantly affected by increasing LA intake (SMD = 0.09, 95% CI: -0.05 to 0.24). However, subgroup and meta-regression analysis suggested that in subjects with a more profound increase of dietary LA intake, LA might increase the blood CRP level. Other acute phase reactants including fibrinogen and plasminogen activator inhibitor-1 and adhesion molecules were not significantly changed when LA was increased in diet. No significant heterogeneity or publication bias was observed, although only a limited number of eligible studies were included for some markers. CONCLUSION Our meta-analysis suggested that increasing dietary LA intake does not have a significant effect on the blood concentrations of inflammatory markers. However, the extent of change in dietary LA intake might affect the effect of LA supplementation on CRP.
Collapse
Affiliation(s)
- Hang Su
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P. R. China.
| | | | | | | | | |
Collapse
|
26
|
Gertow J, Ng CZ, Mamede Branca RM, Werngren O, Du L, Kjellqvist S, Hemmingsson P, Bruchfeld A, MacLaughlin H, Eriksson P, Axelsson J, Fisher RM. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease. Kidney Int Rep 2017; 2:1208-1218. [PMID: 29270529 PMCID: PMC5733748 DOI: 10.1016/j.ekir.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction Loss of renal function is associated with high mortality from cardiovascular disease (CVD). Patients with chronic kidney disease (CKD) have altered circulating adipokine and nonesterified fatty acid concentrations and insulin resistance, which are features of disturbed adipose tissue metabolism. Because dysfunctional adipose tissue contributes to the development of CVD, we hypothesize that adipose tissue dysfunctionality in patients with CKD could explain, at least in part, their high rates of CVD. Therefore we characterized adipose tissue from patients with CKD, in comparison to healthy controls, to search for signs of dysfunctionality. Methods Biopsy samples of subcutaneous adipose tissue from 16 CKD patients and 11 healthy controls were analyzed for inflammation, fibrosis, and adipocyte size. Protein composition was assessed using 2-dimensional gel proteomics combined with multivariate analysis. Results Adipose tissue of CKD patients contained significantly more CD68-positive cells, but collagen content did not differ. Adipocyte size was significantly smaller in CKD patients. Proteomic analysis of adipose tissue revealed significant differences in the expression of certain proteins between the groups. Proteins whose expression differed the most were α-1-microglobulin/bikunin precursor (AMBP, higher in CKD) and vimentin (lower in CKD). Vimentin is a lipid droplet−associated protein, and changes in its expression may impair fatty acid storage/mobilization in adipose tissue, whereas high levels of AMBP may reflect oxidative stress. Discussion These findings demonstrate that adipose tissue of CKD patients shows signs of inflammation and disturbed functionality, thus potentially contributing to the unfavorable metabolic profile and increased risk of CVD in these patients.
Collapse
Affiliation(s)
- Joanna Gertow
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chang Zhi Ng
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rui Miguel Mamede Branca
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science For Life Laboratory and Karolinska Institutet, Stockholm, Sweden
| | - Olivera Werngren
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lei Du
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sanela Kjellqvist
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Peter Hemmingsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Helen MacLaughlin
- Division of Diabetes and Nutritional Sciences, King’s College London and King’s College Hospital, London, United Kingdom
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Axelsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel M. Fisher
- Cardiovascular Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Correspondence: Rachel M. Fisher, Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital (L8:03), 171 76 Stockholm, Sweden.Cardiovascular Medicine UnitDepartment of Medicine SolnaKarolinska InstitutetCenter for Molecular MedicineKarolinska University Hospital (L8:03)171 76 StockholmSweden
| |
Collapse
|
27
|
Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci 2017; 24:50. [PMID: 28750629 PMCID: PMC5530532 DOI: 10.1186/s12929-017-0357-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Plasma free fatty acids levels are increased in subjects with obesity and type 2 diabetes, playing detrimental roles in the pathogenesis of atherosclerosis and cardiovascular diseases. Increasing evidence showing that dysfunction of the vascular endothelium, the inner lining of the blood vessels, is the key player in the pathogenesis of atherosclerosis. In this review, we aimed to summarize the roles and the underlying mechanisms using the evidence collected from clinical and experimental studies about free fatty acid-mediated endothelial dysfunction. Because of the multifaceted roles of plasma free fatty acids in mediating endothelial dysfunction, elevated free fatty acid level is now considered as an important link in the onset of endothelial dysfunction due to metabolic syndromes such as diabetes and obesity. Free fatty acid-mediated endothelial dysfunction involves several mechanisms including impaired insulin signaling and nitric oxide production, oxidative stress, inflammation and the activation of the renin-angiotensin system and apoptosis in the endothelial cells. Therefore, targeting the signaling pathways involved in free fatty acid-induced endothelial dysfunction could serve as a preventive approach to protect against the occurrence of endothelial dysfunction and the subsequent complications such as atherosclerosis.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - Lei Gao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - Parco M. Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| | - Christopher W. K. Lai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, HKSAR, China
| |
Collapse
|
28
|
Paytakhti Oskouei M, Pezeshkian M, Safaie N, Darabi M, Fattahi A, Bijanpour H, Shaaker M, Jodati AR, Nouri M. Fatty acids composition of aorta and saphenous vein tissues in patients with coronary artery diseases. J Cardiovasc Thorac Res 2017; 9:78-84. [PMID: 28740626 PMCID: PMC5516055 DOI: 10.15171/jcvtr.2017.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/29/2017] [Indexed: 01/20/2023] Open
Abstract
Introduction: Considering importance of fatty acids in developing coronary artery disease (CAD) and lack of information about saphenous vein which is commonly used as coronary arterial bypass, in this study we investigated differences in fatty acids composition between saphenous vein and aorta tissues in patients with CAD.
Methods: Biopsy samples of aortic tissues and saphenous veins as well as blood samples were obtained form 42 patients with CAD. Fatty acids composition of the tissues was determined using gas chromatography and also serum lipid profile was evaluated by commercial kits.
Results: Levels of palmitic acid (16:0) were significantly higher in aorta in compared with saphenous (P < 0.001). Also levels of most unsaturated fatty acids (16:1, 18:1n-9, 18:1t, 18:2t, 18:3 n‐9 and 22:3n-3) were statistically higher in saphenous tissue than aorta tissue (P < 0.05). Mean levels of linoleic acid (18:2 n-6) was higher in aorta tissue in comparison with saphenous tissue (P = 0.01). We observed positive correlations between serum levels of LDL-C with elaidic acid and linoleic acid levels in saphenous. Evaluation of aorta tissue fatty acids revealed that palmitoleic acid (16:1) had positive and arachidonic and linoleic acids had negative correlations with serum HDL-C levels.
Conclusion: Our results revealed difference between fatty acids composition of aorta and saphenous vein tissues and existence of correlations between the fatty acids levels with serum lipid profile. The saphenous vein had higher poly-unsaturated fatty acids in compared to aorta tissue and thus this vein is not at risk of atherosclerosis and can be used as coronary arterial bypass.
Collapse
Affiliation(s)
- Mirhamid Paytakhti Oskouei
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Clinical Biochemistry, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Clinical Biochemistry, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossain Bijanpour
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsod Shaaker
- Department of Clinical Biochemistry, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Biological implications of selenium in adolescent rats exposed to binge drinking: Oxidative, immunologic and apoptotic balance. Toxicol Appl Pharmacol 2017; 329:165-172. [PMID: 28579252 DOI: 10.1016/j.taap.2017.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
Abstract
Alcohol intermittent binge drinking (BD) during adolescence decreases the levels of selenium (Se), a trace element that plays a key biological role against oxidative damage in hepatocytes through different selenoproteins such as the antioxidant enzymes glutathione peroxidases (GPx1 and Gpx4) and selenoprotein P (SelP). In this context, it has been found that GPx4 has an essential antioxidant role in mitochondria modulating the apoptosis and NF-kB activation (a factor intimately related to apoptosis and immune function). To further investigate the effectiveness of selenium supplementation in oxidative balance, inflammation and apoptosis, the present study examined the protective effects of 0.4ppm of dietary selenite administrated to adolescent rats exposed to BD. BD consumption depleted Se deposits in all the tissues studied. In liver, GPx1 activity and expression were decreased leading to protein and lipid hepatic oxidation. Moreover GPx4 and NF-kB expression were also decreased in liver, coinciding with an increase in caspase-3 expression. This hepatic profile caused general liver damage as shown the increased serum transaminases ratio AST/ALT. Proinflammatory serum citokines and chemocines were decreased. Se supplementation therapy used restored all these values, even AST levels. These findings suggest for first time that Se supplementation is a good strategy against BD liver damage during adolescence, since it increases GPx1 and GPx4 expression and avoids NF-kB downregulation and caspase-3 upregulation, leading to a better oxidative, inflammatory and apoptotic liver profile. The therapy proposed could be considered to have a great biological efficacy and to be suitable for BD exposed teenagers in order to avoid future hepatic complications.
Collapse
|
30
|
Cao D, Luo J, Zang W, Chen D, Xu H, Shi H, Jing X. Gamma-Linolenic Acid Suppresses NF-κΒ Signaling via CD36 in the Lipopolysaccharide-Induced Inflammatory Response in Primary Goat Mammary Gland Epithelial Cells. Inflammation 2017; 39:1225-37. [PMID: 27121266 DOI: 10.1007/s10753-016-0358-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gamma-linolenic acid (GLA) and linoleic acid (LA), which are both n-6 unsaturated fatty acids, play vital roles in lipopolysaccharide (LPS)-induced inflammation. The multi-functional protein scavenger receptor CD36 has also been shown to participate in inflammation. However, the molecular mechanisms underlying the interactions between CD36 and GLA or LA in LPS-induced inflammation remain unclear. We used small interfering RNA and adenoviral systems to manipulate CD36 expression in primary goat mammary gland epithelial cells (pGMECs), and the results showed that nuclear factor kappa B (NF-κB) levels were significantly decreased by CD36 receptor signaling following treatment with GLA but not LA. GLA inhibited NF-κB activation in LPS-induced pGMECs. However, silencing CD36 or deleting its fatty acid-binding domain blocked the anti-inflammatory effects of GLA, resulting in an increase in NF-κB activation and disrupting its localization during LPS-induced inflammation. The activity of the cytokines IL-1β, IL-6, and TNF-α, which act downstream of NF-κB, was also modulated when CD34 expression was manipulated by the addition of GLA in LPS-induced pGMECs. Our data suggest that GLA, but not LA, may interact with the CD36 fatty acid-binding domain to regulate the activation and localization of NF-κB in LPS-induced pGMECs.
Collapse
Affiliation(s)
- Duoyao Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - WenJuan Zang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dekun Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huifen Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqi Jing
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
31
|
The Effect of Chinese Herbal Medicine Gualouxiebaibanxia Decoction for the Treatment of Angina Pectoris: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8565907. [PMID: 27777598 PMCID: PMC5061958 DOI: 10.1155/2016/8565907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
We systematically assess the current clinical evidence of Gualouxiebaibanxia (GLXBBX) decoction for the treatment of angina pectoris (AP). We included RCTs testing GLXBBX against conventional drugs and GLXBBX combined with conventional drugs versus conventional drugs. 19 RCTs involving 1730 patients were finally identified, and the methodological quality was evaluated as generally low. The results of the meta-analysis showed that GLXBBX alone had significant effect on improving angina symptoms (RR: 1.24, 95% CI 1.14 to 1.35; P < 0.00001), ECG (RR: 1.28 [1.13,1.44]; P < 0.0001), and HDL-C (MD: 0.56 [0.54,0.58]; P < 0.00001) compared with anti-arrhythmic drugs. A significant improvement in angina symptoms (RR: 1.17 [1.12,1.22]; P < 0.00001) and ECG (RR = 1.22; 95% CI = [1.14,1.30]; P < 0.00001) was observed for GLXBBX plus conventional drugs when compared with conventional drugs. Eight trials reported adverse events without serious adverse effects. GLXBBX appears to have beneficial effects on improvement of ECG and reduction of angina symptoms in participants with AP. However, the evidence remains weak due to the poor methodological quality of the included studies. More rigorous trials are needed to confirm the results.
Collapse
|
32
|
Effects of Immunosuppressive Drugs on Serum Fatty Acids of Phospholipids Fraction in Renal Transplant Recipients. Transplant Proc 2016; 48:1616-22. [PMID: 27496457 DOI: 10.1016/j.transproceed.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunosuppressive medications often cause posttransplant hyperlipidemia. The effects of cyclosporine (CsA) and tacrolimus (Tac) on lipid profile is well-known; however, there are very few studies related to the effect of these immunosuppressants on fatty acids (FA) of phosholipids fraction (PL) in renal transplant recipients (RTR). We sought to analyze the FA profile in PL fraction of RTR treated with Tac or CsA. METHODS The study included 65 renal transplant patients on CsA (n = 24, group I) or Tac (n = 41, group II), and 14 healthy controls. Individual serum FA concentrations were measured by gas chromatography. Chemstation software was used to analyze the data. RESULTS No differences between studied groups and controls were noted for monounsaturated FA, polyunsaturated n-3 FA (PUFA n-3), PUFA n-6, or the ratio of PUFA n-6 to PUFA n-3. The following mean values of FA were significantly higher in the CsA-RTR and Tac-RTR as compared with controls: total FA (P < .01 in both cases), saturated FA (SFA; P < .02 in both cases), C12 (P < .003 in both cases), C18 (P < .003 in both cases), and C18:2 (P < .01 for CsA RTR; P < .02 for Tac RTR). No differences between the measurements in patients on CsA and in patients on Tac were noticed. Significant correlation between SFA and eGFR was observed only in the CsA RTR group (P < .05). A negative relationship between PUFA n-6 and the estimated glomerular filtration rate was seen, but the correlation was not significant. CONCLUSIONS Immunosuppressive drugs may affect FA metabolism, but the FA profile does not depend on the type of immunosuppressive drug administered.
Collapse
|
33
|
Ahn JK, Kim S, Hwang J, Kim J, Kim KH, Cha HS. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint Bone Spine 2016; 83:707-713. [PMID: 27133762 DOI: 10.1016/j.jbspin.2015.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and hyperplasia. Fibroblast-like synoviocytes (FLS) in RA exhibit a tumor cell-like aggressive phenotype. Thus, gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) was employed to identify the characteristic metabolic profiling of RA FLS. METHODS Metabolite profiling of RA FLS and osteoarthritis (OA) FLS was performed using GC/TOF-MS in conjunction with statistical analyses. We performed metabolite set enrichment analysis to establish which pathways are affected. RESULTS A total of 129 metabolites were identified. A principal component analysis and hierarchical clustering analysis demonstrated clear differentiation of the metabolic profiling between RA FLS and OA FLS. The levels of 35 metabolites that belonged to the amines, fatty acids, phosphates, and organic acids class were significantly increased in RA FLS compared to those in OA FLS. Also, the levels of 26 metabolites that belonged to the amino acids, sugars, and sugar alcohols class were significantly decreased in RA FLS compared to those in OA FLS. The sugar metabolism (glycolysis and pentose phosphate pathway) and amino acid metabolism (tyrosine and catecholamine biosynthesis, and protein biosynthesis) were severely disturbed in RA FLS compared to those in OA FLS. CONCLUSIONS Our metabolic results suggested that the alteration of sugar metabolism, lipolysis, and amino acid metabolism in RA FLS is related to synovial hyperplasia and inflammation. This is the first metabolomic study to determine metabolic changes characteristic of RA FLS, which will provide valuable information to gain in-depth insights into the pathogenesis of RA.
Collapse
Affiliation(s)
- Joong Kyong Ahn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Hwang
- Department of Internal Medicine, National Police Hospital, Seoul 05715, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hoon-Suk Cha
- Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea.
| |
Collapse
|
34
|
Arita R, Mori N, Shirakawa R, Asai K, Imanaka T, Fukano Y, Nakamura M. Linoleic acid content of human meibum is associated with telangiectasia and plugging of gland orifices in meibomian gland dysfunction. Exp Eye Res 2016; 145:359-362. [DOI: 10.1016/j.exer.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/07/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
35
|
Mateu A, De Dios I, Manso MA, Ramudo L. Unsaturated but not saturated fatty acids induce transcriptional regulation of CCL2 in pancreatic acini. A potential role in acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2671-7. [PMID: 26415685 DOI: 10.1016/j.bbadis.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/27/2023]
Affiliation(s)
- A Mateu
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - I De Dios
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - M A Manso
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - L Ramudo
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
36
|
Park JY, Lee SH, Shin MJ, Hwang GS. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction. PLoS One 2015; 10:e0135228. [PMID: 26258408 PMCID: PMC4530944 DOI: 10.1371/journal.pone.0135228] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.
Collapse
Affiliation(s)
- Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Marchix J, Choque B, Kouba M, Fautrel A, Catheline D, Legrand P. Excessive dietary linoleic acid induces proinflammatory markers in rats. J Nutr Biochem 2015; 26:1434-41. [PMID: 26337666 DOI: 10.1016/j.jnutbio.2015.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022]
Abstract
Following the historical dietary recommendations, the substitution of polyunsaturated fatty acids (PUFAs) for saturated fatty acids (SFAs) resulted in a dramatic increase of linoleic acid (LA) in the Western diet. While proatherogenic properties of SFAs have been described, the involvement of LA on the inflammatory process remains controversial. Herein, we evaluated the effects of an excessive LA intake on the cytokine-induced expression of endothelial adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1), through the nuclear factor (NF)-κB pathway, in comparison with a control diet and regarding a "positive" SFA diet. Wistar rats were fed experimental diets - a control diet or diets enriched with LA or SFA - for 11 weeks. Plasma lipid parameters and proinflammatory cytokine production such as interleukin-1β and tumor necrosis factor (TNF)-α were analyzed. Expression of endothelial adhesion molecules and NF-κB was determined by immunohistochemical analysis. No difference was observed in body weight. The enriched diets did not affect triglyceride and total cholesterol levels in plasma. Our results demonstrated that excessive dietary LA intake increased TNF-α levels (P<.05) in plasma. Rats fed the LA-enriched diet showed a significantly higher expression of VCAM-1, ICAM-1 and NF-κB in aortas. In addition, our results demonstrated that an excess of LA is more efficient to activate endothelial molecular process than an excess of SFA. The present study provides further support for the proinflammatory properties of LA and suggests an LA-derivatives pathway involved in the inflammatory process.
Collapse
Affiliation(s)
- Justine Marchix
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 2012, Agrocampus Ouest, Rennes, France
| | - Benjamin Choque
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 2012, Agrocampus Ouest, Rennes, France
| | - Maryline Kouba
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 2012, Agrocampus Ouest, Rennes, France
| | - Alain Fautrel
- INSERM U620, IFR 120 Core histopathology platform, University of Rennes 1, Rennes, France
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 2012, Agrocampus Ouest, Rennes, France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, INRA USC 2012, Agrocampus Ouest, Rennes, France.
| |
Collapse
|
38
|
Idrovo JP, Yang WL, Jacob A, Corbo L, Nicastro J, Coppa GF, Wang P. Inhibition of lipogenesis reduces inflammation and organ injury in sepsis. J Surg Res 2015. [PMID: 26216747 DOI: 10.1016/j.jss.2015.06.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Sepsis is a life-threatening acute inflammatory condition associated with metabolic complications. Accumulation of free fatty acids (FFAs) induces inflammation and causes lipotoxic effects in the liver. Because fatty acid metabolism plays a role in the inflammatory response, we hypothesized that the administration of C75, a fatty acid synthase inhibitor, could alleviate the injury caused by sepsis. METHODS Male mice were subjected to sepsis by cecal ligation and puncture (CLP). At 4 h after CLP, different doses of C75 (1- or 5-mg/kg body weight) or vehicle (20% dimethyl sulfoxide in saline) were injected intraperitoneally. Blood and liver tissues were collected at 24 h after CLP. RESULTS C75 treatment with 1- and 5-mg/kg body weight significantly lowered FFA levels in the liver after CLP by 28% and 53%, respectively. Administration of C75 dose dependently reduced serum indexes of organ injury (aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase) and serum levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). In the liver, C75 treatment reduced inflammation (TNF-α and IL-6) and oxidative stress (inducible nitric oxide synthase and cyclooxygenase 2) in a dose-dependent manner. The 5-mg dose improved the 10-d survival rate to 85% from that of 55% in the vehicle. In the presence of C75, TNF-α release in RAW 246.7 cells with 4-h lipopolysaccharide stimulation was also significantly reduced. CONCLUSIONS C75 effectively lowered FFA accumulation in the liver, which was associated with inhibition of inflammation and organ injury as well as improvement in survival rate after CLP. Thus, inhibition of FFA by C75 could ameliorate the hepatic dysfunction seen in sepsis.
Collapse
Affiliation(s)
- Juan Pablo Idrovo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Asha Jacob
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Lana Corbo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York.
| |
Collapse
|
39
|
Montero D, Benitez-Dorta V, Caballero MJ, Ponce M, Torrecillas S, Izquierdo M, Zamorano MJ, Manchado M. Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine. FISH & SHELLFISH IMMUNOLOGY 2015; 44:100-108. [PMID: 25655325 DOI: 10.1016/j.fsi.2015.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The decreased availability of fish oil, traditionally used as oil source in marine aquafeeds, has lead to the search for alternatives oils. Vegetable oils (VO) are being extensively used as lipid sources in marine fish diets, inducing an imbalance on certain dietary fatty acids. Alteration on the dietary ratio of w-6/w-3 has been described to have detrimental effects on fish immunity. Senegalese sole has high susceptibility to stress and diseases, and little is known on the effects of dietary VO on its immunity. In this study, Senegalese sole juveniles were fed diets (56% crude protein, 12% crude lipid) containing linseed (100LO), soybean (100SO) or fish (100FO) oils as unique oil source. Growth, cortisol and intestinal fatty acid composition were determined after 90 days. Moreover, at the final of the experiment a stress test (5 min of net chasing) was carried out. To evaluate the effect of diets and stress on intestine immunology, expression profiles of a set of 53 immune-related genes using RT-qPCR was also performed. The use of VO did not induced changes in fish growth, but affected fatty acid profile of intestine and expression of immune-related genes. The use of SO (rich in n-6 fatty acids) induced an over-expression of those genes related to complement pathway, recognizing pathogen associated to molecular patterns, defensive response against bacteria, defensive response against viruses, antigen differentiation, cytokines and their receptors. This general over-expression could indicate an activation of inflammatory processes in fish gut. When a stress was applied, a decrease of mRNA levels of different immune-related genes with respect to the unstressed control could be observed in fish fed 100FO. However, fish fed 100LO, with a higher ALA/LA ratio, seemed to ameliorate the effects of combined effects of FO substitution plus stressful situation whereas fish fed 100SO did not show this type of response.
Collapse
Affiliation(s)
- Daniel Montero
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain.
| | - Vanessa Benitez-Dorta
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - María José Caballero
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Marian Ponce
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón S/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Silvia Torrecillas
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Marisol Izquierdo
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - María Jesús Zamorano
- University of Las Palmas de Gran Canaria, Grupo de Investigación en Acuicultura (GIA), Transmontaña S/n, 35412 Las Palmas, Canary Islands, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón S/n, 11500 El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
40
|
Wong CK, Botta A, Pither J, Dai C, Gibson WT, Ghosh S. A high-fat diet rich in corn oil reduces spontaneous locomotor activity and induces insulin resistance in mice. J Nutr Biochem 2015; 26:319-26. [DOI: 10.1016/j.jnutbio.2014.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
|
41
|
Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015; 59:1249-63. [DOI: 10.1002/mnfr.201400569] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Marine S. Da Silva
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| |
Collapse
|
42
|
Harvey KA, Xu Z, Pavlina TM, Zaloga GP, Siddiqui RA. Modulation of endothelial cell integrity and inflammatory activation by commercial lipid emulsions. Lipids Health Dis 2015; 14:9. [PMID: 25888960 PMCID: PMC4339234 DOI: 10.1186/s12944-015-0005-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
Background Thrombosis and immune dysfunction are two important complications that result from the administration of parenteral nutrition. Endothelial cells within the vasculature are crucial components necessary for maintenance of normal coagulation and immune function. Methods We compared the effects of three commercial lipid emulsions (LEs; Intralipid®, ClinOleic® [or Clinolipid®], and Omegaven®) differing in the levels of omega-6 polyunsaturated fatty acids, omega-3 polyunsaturated fatty acids, omega-9 monounsaturated fatty acids, and saturated fatty acids upon endothelial cell fatty acid composition using Gas chromatography, endothelial cell integrity by assessing measurement of apoptosis and necrosis using flow cytometry, endothelial cell inflammatory activation by assessing the induction of ICAM-1 by lipopolysaccharide [LPS]), and transcription factor activation (phosphorylation of NF-κB) using western blot analysis. Results Gas chromatographic analysis confirmed cellular uptake of the fatty acids within the LEs; furthermore, these fatty acid changes reflected the composition of the oils and egg phosphatides used in the manufacturing of these emulsions. However, the kinetics of fatty acid uptake and processing differed between LEs. Fish oil LE negatively impacted cell viability by doubling the percentage of apoptotic and necrotic cell populations quantified by flow cytometry using Annexin V/Fluorescein and propidium iodide. The soybean oil LE did not alter cell viability, while the olive oil-predominate emulsion improved cell viability. All LEs were capable of suppressing LPS-induced ICAM-1 expression; however, the fish oil LE was more potent than the other emulsions. Fish oil LE supplementation of cells also suppressed LPS-induced phosphorylation of NF-κB, while the soybean oil and olive predominant LE had no effect upon NF-κB phosphorylation. Conclusions Lipid emulsions are readily incorporated and stored in the form of triacylglycerols. Soybean oil-based, olive oil-predominant and fish-oil based LEs differentially affected endothelial cell integrity. Importantly, these three LEs were capable of suppressing endothelial cell inflammatory response despite their fatty acid content.
Collapse
Affiliation(s)
- Kevin A Harvey
- Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, 1800 N. Capitol Ave, E504D, Indianapolis, IN, 46202, USA.
| | - Zhidong Xu
- Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, 1800 N. Capitol Ave, E504D, Indianapolis, IN, 46202, USA.
| | | | - Gary P Zaloga
- Baxter Healthcare Corporation, Deerfield, IL, 60015, USA.
| | - Rafat A Siddiqui
- Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, 1800 N. Capitol Ave, E504D, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
43
|
Family history of cardiovascular disease, perceived cardiovascular disease risk, and health-related behavior: a review of the literature. J Cardiovasc Nurs 2014; 29:108-29. [PMID: 23321782 DOI: 10.1097/jcn.0b013e31827db5eb] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND More than 82 million Americans have 1 or more forms of cardiovascular disease (CVD), accounting for 32.8% of all deaths in the United States. Although the evidence for the familial aggregation of CVD is strong, the relationship between family history (FH) of CVD, perceived risk for CVD, and health-related behavior is poorly understood. OBJECTIVE The objective of this article was to review and summarize the published research on the relationship between an FH of CVD, an individual's perceived risk, and health-related behavior to make recommendations for clinical practice and future research. METHODS A literature search was conducted using PubMed, CINAHL Plus, and PsycINFO to identify articles that examined the relationship between an FH of CVD, perceived CVD risk, and health-promoting behaviors. A total of 263 unique articles were reviewed. A total of 238 were excluded, resulting in a total of 25 articles included in the review. RESULTS There was a positive relationship between a reported FH of CVD and perceived risk. However, the relationship between an FH of CVD and health-related behavior change and perceived risk and behavior change was inconsistent. CONCLUSIONS A person's awareness of his or her FH of CVD or his or her own risk for CVD is not a sufficient predictor of changes in his or her health-related behavior. Future studies are needed to better explain the processes by which perceived CVD risk or FH of CVD can be used to affect health-related behavior changes. It appears that both FH and perceived personal risk for CVD are necessary but not sufficient conditions to change health-related behavior in high-risk populations. Future studies should also test interventions that help individuals with an FH of CVD attribute increased personal risk to themselves for developing CVD, while providing lifestyle management options to minimize their risk.
Collapse
|
44
|
Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab 2014; 99:E2269-76. [PMID: 24694334 PMCID: PMC4223443 DOI: 10.1210/jc.2013-3942] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Both polycystic ovary syndrome (PCOS) and obesity are associated with specific reproductive health complications, including lower oocyte quality and clinical pregnancy rates in assisted conception cycles, which may be a result of metabolism-induced changes in the oocyte through the microenvironment of follicular fluid. Free fatty acids (FFAs) are important biomedical indicators of abnormal lipid metabolism and have pronounced effects on cells, leading to changes in metabolism, cell growth, and differentiation. OBJECTIVE Our objective was to determine the effect of FFA metabolism in plasma and follicular fluid on oocyte quality in the women with PCOS undergoing in vitro fertilization. DESIGN AND SETTING Ninety-three women undergoing in vitro fertilization treatment, including 55 with PCOS and 38 age-matched controls, were recruited. PCOS patients were divided into obese and nonobese subgroups on the basis of their body mass index. MAIN OUTCOME MEASURES Embryo quality was morphologically assessed, and serum sex hormone and insulin levels were measured. FFAs in plasma and follicular fluid were measured using gas chromatography-mass spectrometry. RESULTS PCOS was found to be associated with significantly higher LH/FSH, total T, free androgen index (FAI), and lower SHBG levels, independent of obesity(P < .05). Obese women with PCOS had a significantly higher total T level, FAI, fasting insulin, insulin resistance index as determined by homeostasis model assessment for insulin resistance, and lower SHBG levels than the nonobese women with PCOS (P < .05). The embryo fragmentation score was significantly positively correlated with the oleic acid concentration in all PCOS patients (r = 0.22, P = .04, for nonobese patients and r = 0.25, P = .03, for obese patients). CONCLUSIONS Our findings clearly demonstrated that PCOS is associated with significantly higher FAI and insulin resistance levels and decreased plasma SHBG levels, independent of body mass index. Obese PCOS patients had higher palmitoleic acid and oleic acid levels in both the plasma and follicular fluid than did the control subject and nonobese PCOS patients. Our results indicated that developmental competence is associated with oleic and stearic acid concentrations, which may contribute to the poor pregnancy outcomes in patients with PCOS.
Collapse
Affiliation(s)
- Zhihong Niu
- IVF Unit, Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
45
|
Mateu A, Ramudo L, Manso M, Closa D, De Dios I. Acinar inflammatory response to lipid derivatives generated in necrotic fat during acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1879-86. [DOI: 10.1016/j.bbadis.2014.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
46
|
Alhazmi A, Stojanovski E, McEvoy M, Garg ML. Macronutrient intake and type 2 diabetes risk in middle-aged Australian women. Results from the Australian Longitudinal Study on Women's Health. Public Health Nutr 2014; 17:1587-94. [PMID: 23866795 PMCID: PMC10282411 DOI: 10.1017/s1368980013001870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the association between macronutrient intake and type 2 diabetes risk in middle-aged Australian women. DESIGN A prospective cohort study, with 6 years (2002-2007) of follow up. Dietary intake was assessed with a validated FFQ. Relative risks with 95 % confidence intervals were used to examine risk associations. SETTING Australian Longitudinal Study on Women's Health, Australia. SUBJECTS Australian women (n 8370) from the Australian Longitudinal Study on Women's Health aged 45-50 years and free of type 2 diabetes at baseline. RESULTS After 6 years of follow-up, 311 women developed type 2 diabetes. After adjusting for sociodemographic, lifestyle and other dietary risk factors, MUFA, total n-3 PUFA, α-linolenic acid and total n-6 PUFA intakes were positively associated with the incidence of type 2 diabetes. The relative risks for type 2 diabetes for the highest compared with the lowest quintiles were 1·64 (95 % CI 1·06, 2·54), P = 0·04 for MUFA; 1·55 (95 % CI 1·03, 2·32), P = 0·01 for n-3 PUFA; 1·84 (95 % CI 1·25, 2·71), P < 0·01 for α-linolenic acid; and 1·60 (95 % CI 1·03, 2·48), P = 0·04 for n-6 PUFA. Other dietary macronutrients were not significantly associated with diabetes risk. CONCLUSIONS The data indicate that consumption of MUFA, n-3 PUFA and n-6 PUFA may influence the risk of developing type 2 diabetes in women.
Collapse
Affiliation(s)
- Amani Alhazmi
- Nutrition and Dietetics, School of Health Sciences, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Ministry of Higher Education, Riyadh, Saudi Arabia
| | - Elizabeth Stojanovski
- Schools of Mathematical and Physical Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark McEvoy
- Centre for Clinical Epidemiology & Biostatistics, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, 305C Medical Sciences Building, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
47
|
Kazemian E, Dorosty-Motlagh AR, Sotoudeh G, Eshraghian MR, Ansary S, Omidian M. Nutritional status of women with gestational hypertension compared with normal pregnant women. Hypertens Pregnancy 2014; 32:146-56. [PMID: 23725080 DOI: 10.3109/10641955.2013.784782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Some evidence indicated the role of nutrition in the development of hypertensive disorders of pregnancy. METHODS This case-control study was conducted on 113 women with gestational hypertension and 150 healthy pregnant women referred to Shahid Akbarabadi Hospital in Tehran. A demographic questionnaire was filled out for all participants. A validated semi-quantitative food frequency questionnaire was used to assess the dietary intakes of the study subjects. All nutrients were adjusted for total energy intake. Logistic regression was used to find the association of energy and nutrient intakes with gestational hypertension. RESULTS We found that higher intakes of energy (OR, 1.33; 95% CI: 1.17-1.52), monounsaturated fatty acids (OR, 1.34; 95% CI: 1.03-1.74) and polyunsaturated fatty acids (OR, 1.26; 95% CI: 1.00-1.54) were positively associated with the risk of gestational hypertension after adjustment for confounders. We also observed decreased odds of gestational hypertension with increased intakes of vitamin C (OR, 0.87; 95% CI: 0.81-0.94), potassium (OR, 0.45; 95% CI: 0.28-0.71) and magnesium (OR, 0.68; 95% CI: 0.51-0.89). CONCLUSION This study demonstrates higher intakes of energy, monounsaturated fatty acids and polyunsaturated fatty acids as well as lower intakes of vitamin C, potassium and magnesium are positively correlated with the risk of developing gestational hypertension.
Collapse
Affiliation(s)
- Elham Kazemian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Gillams RJ, Nylander T, Plivelic TS, Dymond MK, Attard GS. Formation of inverse topology lyotropic phases in dioleoylphosphatidylcholine/oleic acid and dioleoylphosphatidylethanolamine/oleic acid binary mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3337-3344. [PMID: 24605989 DOI: 10.1021/la404275u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The addition of saturated fatty acids (FA) to phosphatidylcholine lipids (PC) that have saturated acyl chains has been shown to promote the formation of lyotropic liquid-crystalline phases with negative mean curvature. PC/FA mixtures may exhibit inverse bicontinuous cubic phases (Im3m, Pn3m) or inverse topology hexagonal phases (HII), depending on the length of the acyl chains/fatty acid. Here we report a detailed study of the phase behavior of binary mixtures of dioleoylphosphatidylcholine (DOPC)/oleic acid (OA) and dioleoylphosphatidylethanolamine (DOPE)/oleic acid at limiting hydration, constructed using small-angle X-ray diffraction (SAXD) data. The phase diagrams of both systems show a succession of phases with increasing negative mean curvature with increasing OA content. At high OA concentrations, we have observed the occurrence of an inverse micellar Fd3m phase in both systems. Hitherto, this phase had not been reported for phosphatidylethanolamine/fatty acid mixtures, and as such it highlights an additional route through which fatty acids may increase the propensity of bilayer lipid membranes to curve. We also propose a method that uses the temperature dependence of the lattice parameters of the HII phases to estimate the spontaneous radii of curvature (R0) of the binary mixtures and of the component lipids. Using this method, we calculated the R0 values of the complexes comprising one phospholipid molecule and two fatty acid molecules, which have been postulated to drive the formation of inverse phases in PL/FA mixtures. These are -1.8 nm (±0.4 nm) for DOPC(OA)2 and -1.1 nm (±0.1 nm) for DOPE(OA)2. R0 values estimated in this way allow the quantification of the contribution that different lipid species make to membrane curvature elastic properties and hence of their effect on the function of membrane-bound proteins.
Collapse
Affiliation(s)
- Richard J Gillams
- Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | | | | | | | | |
Collapse
|
49
|
Livingstone KM, Givens DI, Jackson KG, Lovegrove JA. Comparative effect of dairy fatty acids on cell adhesion molecules, nitric oxide and relative gene expression in healthy and diabetic human aortic endothelial cells. Atherosclerosis 2014; 234:65-72. [PMID: 24632039 DOI: 10.1016/j.atherosclerosis.2014.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells. METHODS Cells were incubated for 24 h with FA mixtures (400 μM) and individual FA: oleic acid (OA; 150 μM); palmitic acid (PA; 150 μM); stearic acid (SA: 40 μM); trans-palmitelaidic acid (trans-PA; 20 μM); trans-vaccenic acid (trans-VA; 20 μM); α-linolenic acid (ALA; 20 μM) and linoleic acid (LA; 20 μM). Cellular adhesion molecules (sICAM-1, sVCAM-1 and sE-selectin) and nitric oxide (NO) were measured using ELISA and a chemiluminescent-based assay, respectively. Relative gene expression of these markers, including the insulin receptor, was performed using real-time PCR as well as FA compositions of cell pellets by gas chromatography. RESULTS FA mixtures affected sE-selectin concentrations (P = 0.008), with concentrations lower following the high SFA compared to the low SFA mixture (P = 0.004), while NO concentrations were higher in diabetic compared to healthy cells (P = 0.029). Individual FA affected NO (P = 0.007) and sE-selectin (P = 0.040) concentrations with an increase following PA incubation relative to all other FA treatments (P < 0.05). PA increased sE-selectin compared with other FA treatments (P < 0.05). sE-selectin concentrations were also higher in healthy compared to diabetic cells (P = 0.023). Expression of ICAM-1 and insulin receptor was up-regulated in healthy compared to diabetic cells (P = 0.014 and P = 0.006 respectively). CONCLUSIONS Healthy and type II diabetic cells respond differently to incubation with FA treatments. Overall, physiological concentrations of dairy FA, but not dairy FA mixtures, substantially affected markers of endothelial function.
Collapse
Affiliation(s)
- K M Livingstone
- Food Production and Quality Research Division, Faculty of Life Sciences, The University of Reading, Reading RG6 6AR, UK; Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AR, UK.
| | - D I Givens
- Food Production and Quality Research Division, Faculty of Life Sciences, The University of Reading, Reading RG6 6AR, UK.
| | - K G Jackson
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AR, UK; Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AR, UK.
| | - J A Lovegrove
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AR, UK; Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AR, UK.
| |
Collapse
|
50
|
Murri M, Insenser M, Escobar-Morreale HF. Metabolomics in polycystic ovary syndrome. Clin Chim Acta 2014; 429:181-8. [DOI: 10.1016/j.cca.2013.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
|