1
|
Cross V, Stanford J, Gómez-Martín M, Collins CE, Robertson S, Clarke ED. Do Personalized Nutrition Interventions Improve Dietary Intake and Risk Factors in Adults With Elevated Cardiovascular Disease Risk Factors? A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae149. [PMID: 39420556 DOI: 10.1093/nutrit/nuae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
CONTEXT Dietary modifications can improve cardiovascular disease (CVD) risk factors. Personalized nutrition (PN) refers to individualized nutrition care based on genetic, phenotypic, medical, behavioral, and/or lifestyle characteristics. PN may be beneficial in improving CVD risk factors, including diet. However, this has not been reviewed previously. OBJECTIVE The aim was to evaluate the effectiveness of PN interventions on CVD risk factors and diet in adults at elevated CVD risk. DATA SOURCES Six databases were searched for randomized controlled trials published between 2000 and 2023 that tested the impact of PN interventions on CVD risk factors in people at elevated risk. DATA EXTRACTION Risk of bias was assessed using the Academy of Nutrition and Dietetics Quality Criteria checklist. Data synthesis of eligible articles included participant characteristics, intervention details, and change in primary CVD risk factor outcomes, including blood pressure (BP), plasma lipids, and CVD risk score, and secondary risk factors, including anthropometric outcomes and diet quality. Random-effects meta-analyses were conducted to explore weighted mean differences (WMDs) in change or final mean values for studies with comparable data (studies with dietary counseling interventions) for outcomes including BP, blood lipids, and anthropometric measurements. DATA ANALYSIS Of 7676 identified articles, 16 articles representing 15 studies met the inclusion criteria. Studies included between 40 and 563 participants and reported outcomes for CVD risk factors, including hyperlipidemia (n = 5), elevated BP (n = 3), overweight/obesity (n = 1), and multiple risk factors (n = 6). Risk of bias was low. Results suggested potential benefit of PN on systolic BP (WMD: -1.91; 95% CI: -3.51, -0.31 mmHg) and diastolic BP (WMD: -1.49; 95% CI: -2.39, -0.58 mmHg) and dietary intake in individuals at high CVD risk. Results were inconsistent for plasma lipid and anthropometric outcomes. CONCLUSION Results were promising for PN interventions that used dietary counseling on CVD risk factors in at-risk individuals. However, further evidence for other personalization methods is required, including improving methodological quality and longer study duration in future PN interventions. SYSTEMATIC REVIEW REGISTRATION OpenScience Framework (https://doi.org/10.17605/OSF.IO/SHVWP).
Collapse
Affiliation(s)
- Victoria Cross
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jordan Stanford
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - María Gómez-Martín
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Clare E Collins
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Seaton Robertson
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erin D Clarke
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Shirani M, Talebi S, Sadeghi O, Hassanizadeh S, Askari G, Bagherniya M, Sahebkar A. Effects of marine-derived n-3 PUFA supplementation on soluble adhesion molecules: A systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol Res 2023; 197:106963. [PMID: 37863453 DOI: 10.1016/j.phrs.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Long-chain n-3 poly unsaturated fatty acids have anti-inflammatory effects but their effects on serum levels of adhesion molecules are inconsistent and contradictory. In this updated systematic review and meta-analysis, marine sources of omega-3 fatty acids were pooled up to determine the effects of omega-3 supplementation on adhesion molecules. PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases (from inception to April 2023) were searched and all RCTs investigating the effects of marine sources of omega-3, on blood concentrations of adhesion molecules were included and a meta-analysis undertaken. Forty-two RCTs were included involving 3555 participants aged from 18 to 75 years. Meta-analysis of 38 arms from 30 RCTs reporting serum concentrations of vascular cell adhesion molecule-1 (VCAM-1) showed a significant reduction after omega-3 supplementation (WMD: -1.26, 95% CI: -1.88 to -0.64 ng/mL, P < 0.001). Meta-analysis of 40 arms from 30 RCTs reporting serum concentrations of intercellular adhesion molecule-1 (ICAM-1) revealed a reduction following omega-3 supplementation, although it was not significant (WMD: -1.76, 95%CI: -3.68 to 0.16 ng/mL, P = 0.07). Meta-analysis of 27 arms from 21 trials showed no effect on E-selectin (WMD: 0.01, 95%CI: -0.02 to 0.04 ng/mL, P = 0.62). Pooling 15 arms from 11 RCTs showed a marginally significant reducing effect on P-selectin concentrations (WMD: -2.67, 95%CI: -5.53 to 0.19 ng/mL, P = 0.06). A considerable decrease in VCAM concentration was observed after omega-3 supplementation in this meta-analysis with a trend to decreases in both ICAM and P-selectin levels, with effects that may be significant depending on study design, and there was no effect on E-selectin.
Collapse
Affiliation(s)
- Mahsa Shirani
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shokoofeh Talebi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wang T, Zhang X, Zhou N, Shen Y, Li B, Chen BE, Li X. Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2023; 12:e029512. [PMID: 37264945 PMCID: PMC10381976 DOI: 10.1161/jaha.123.029512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Background Previous results provide supportive but not conclusive evidence for the use of omega-3 fatty acids to reduce blood lipids and prevent events of atherosclerotic cardiovascular disease, but the strength and shape of dose-response relationships remain elusive. Methods and Results This study included 90 randomized controlled trials, reported an overall sample size of 72 598 participants, and examined the association between omega-3 fatty acid (docosahexaenoic acid, eicosapentaenoic acid, or both) intake and blood lipid changes. Random-effects 1-stage cubic spline regression models were used to study the mean dose-response association between daily omega-3 fatty acid intake and changes in blood lipids. Nonlinear associations were found in general and in most subgroups, depicted as J-shaped dose-response curves for low-/high-density lipoprotein cholesterol. However, we found evidence of an approximately linear dose-response relationship for triglyceride and non-high-density lipoprotein cholesterol among the general population and more evidently in populations with hyperlipidemia and overweight/obesity who were given medium to high doses (>2 g/d). Conclusions This dose-response meta-analysis demonstrates that combined intake of omega-3 fatty acids near linearly lowers triglyceride and non-high-density lipoprotein cholesterol. Triglyceride-lowering effects might provide supportive evidence for omega-3 fatty acid intake to prevent cardiovascular events.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Xin Zhang
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Na Zhou
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Yuxuan Shen
- Department of Epidemiology and Biostatistics, School of Public HealthJilin UniversityChangchunChina
| | - Biao Li
- Department of Epidemiology and Biostatistics, School of Public HealthJilin UniversityChangchunChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen’s UniversityOntarioKingstonCanada
| | - Xinzhi Li
- School of Pharmacy, Faculty of MedicineMacau University of Science and TechnologyMacauChina
| |
Collapse
|
4
|
Gao Z, Zhang D, Yan X, Shi H, Xian X. Effects of ω-3 Polyunsaturated Fatty Acids on Coronary Atherosclerosis and Inflammation: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:904250. [PMID: 35795375 PMCID: PMC9251200 DOI: 10.3389/fcvm.2022.904250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeMultiple guidelines suggest the ω-3 polyunsaturated fatty acids (ω-3 PUFAs) help to prevent major vascular events of coronary heart disease (CHD), but the data on large trials of ω-3 fatty acids are controversial. We reviewed the available evidence to determine the effect of ω-3 PUFAs on coronary atherosclerosis.Materials and MethodsLiterature were from online databases. Randomized controlled trials (RCTs) or observational studies were acceptable. Quantitative data synthesis was conducted using R version 4.1.2. Each outcome was calculated using standardized mean difference (SMD) in a random-effect model. Sensitivity analysis was conducted for each outcome. A total of 21 RCTs and 1 observational study with 2,277 participants were included.ResultsMeta-analysis indicated a benefit of ω-3 PUFAs on coronary atherosclerosis, namely, (1) ω-3 PUFAs can reduce the atherosclerotic plaque volume (SMD −0.18; 95% CI −0.31 to −0.05); (2) ω-3 PUFAs can help reduce the loss of the diameter of the narrowest segments of coronary arteries in patients with CHD (SMD 0.29; 95% CI, 0.05–0.53); (3) ω-3 PUFAs do not have significant effect on volume of lipid plaque in coronary arteries (SMD −1.18; 95% CI −2.95 to 0.58), volume of fiber plaque (SMD 0.26; 95% CI −0.81 to 1.33), and calcified plaque (SMD 0.17; 95% CI −0.55 to 0.89); and (4) ω-3 PUFAs had no significant effect on endothelial inflammatory factors in peripheral blood.ConclusionsWe confirmed that ω-3 PUFAs benefit patients with CHD by reducing the progression of coronary atherosclerosis. We indicated that the benefits were not caused by reducing endothelial inflammations of coronary arteries.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021285139, identifier: CRD42021285139.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Internal Medicine, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dewen Zhang
- Department of Pathophysiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaocan Yan
- Department of Internal Medicine, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hekai Shi
- Department of Internal Medicine, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Pathophysiology, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaohui Xian
| |
Collapse
|
5
|
Ajabnoor SM, Thorpe G, Abdelhamid A, Hooper L. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 60:2293-2316. [PMID: 33084958 DOI: 10.1007/s00394-020-02413-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Effects of long-chain omega-3 (LCn3) and omega-6 fatty acids on prevention and treatment of inflammatory bowel diseases (IBD, including Crohn's Disease, CD and ulcerative colitis, UC), and inflammation are unclear. We systematically reviewed long-term effects of omega-3, omega-6 and total polyunsaturated fats (PUFA) on IBD diagnosis, relapse, severity, pharmacotherapy, quality of life and key inflammatory markers. METHODS We searched Medline, Embase, Cochrane CENTRAL, and trials registries, including RCTs in adults with or without IBD comparing higher with lower omega-3, omega-6 and/or total PUFA intake for ≥ 24 weeks that assessed IBD-specific outcomes or inflammatory biomarkers. RESULTS We included 83 RCTs (41,751 participants), of which 13 recruited participants with IBD. Increasing LCn3 may reduce risk of IBD relapse (RR 0.85, 95% CI 0.72-1.01) and IBD worsening (RR 0.85, 95% CI 0.71-1.03), and reduce erythrocyte sedimentation rate (ESR, SMD - 0.23, 95% CI - 0.44 to - 0.01), but may increase IBD diagnosis risk (RR 1.10, 95% CI 0.63-1.92), and faecal calprotectin, a specific inflammatory marker for IBD (MD 16.1 μg/g, 95% CI - 37.6 to 69.8, all low-quality evidence). Outcomes for alpha-linolenic acid, omega-6 and total PUFA were sparse, but suggested little or no effect where data were available. CONCLUSION This is the most comprehensive meta-analysis of RCTs investigating long-term effects of omega-3, omega-6 and total PUFA on IBD and inflammatory markers. Our findings suggest that supplementation with PUFAs has little or no effect on prevention or treatment of IBD and provides little support for modification of long-term inflammatory status.
Collapse
Affiliation(s)
- Sarah M Ajabnoor
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah, 21589, Saudi Arabia.
| | - Gabrielle Thorpe
- School of Health Sciences, University of East Anglia, Norwich, UK
| | | | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Bergum H, Sandven I, Klemsdal TO. Long-term effects (> 24 months) of multiple lifestyle intervention on major cardiovascular risk factors among high-risk subjects: a meta-analysis. BMC Cardiovasc Disord 2021; 21:181. [PMID: 33858345 PMCID: PMC8048075 DOI: 10.1186/s12872-021-01989-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background The evidence of the long-term effects of multiple lifestyle intervention on cardiovascular risk is uncertain. We aimed to summarize the evidence from randomized clinical trials examining the efficacy of lifestyle intervention on major cardiovascular risk factors in subjects at high cardiovascular risk. Methods Eligible trials investigated the impact of lifestyle intervention versus usual care with minimum 24 months follow-up, reporting more than one major cardiovascular risk factor. A literature search updated April 15, 2020 identified 12 eligible studies. The results from individual trials were combined, using fixed and random effect models, using the standardized mean difference (SMD) to estimate effect sizes. Small-study effect was evaluated, and heterogeneity between studies examined, by subgroup and meta-regression analyses, considering patient- and study-level variables. Results Small-study effect was not identified. Lifestyle intervention reduced systolic blood pressure modestly with an estimated SMD of − 0.13, 95% confidence interval (CI): − 0.21 to − 0.04, with moderate heterogeneity (I2 = 59%), corresponding to a mean difference of approximately 2 mmHg (MD = − 1.86, 95% CI − 3.14 to − 0.57, p = 0.0046). This effect disappeared in the subgroup of trials judged at low risk of bias (SMD = 0.02, 95% CI − 0.08 to 0.11). For the outcome total cholesterol SMD was − 0.06, 95% CI − 0.13 to 0.00, with no heterogeneity (I2 = 0%), indicating no effect of the intervention. Conclusion Lifestyle intervention resulted in only a modest effect on systolic blood pressure and no effect on total cholesterol after 24 months. Further lifestyle trials should consider the challenge of maintaining larger long-term benefits to ensure impact on cardiovascular outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01989-5.
Collapse
Affiliation(s)
- Hilde Bergum
- Department of Rehabilitation and Lifestyle Medicine, LHL-Hospital Gardermoen, Postboks 103 Jessheimbyen, 2051, Jessheim, Norway.
| | - Irene Sandven
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital, Oslo, Norway
| | - Tor Ole Klemsdal
- Department of Preventive Cardiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Yang B, Ren XL, Li ZH, Shi MQ, Ding F, Su KP, Guo XJ, Li D. Lowering effects of fish oil supplementation on proinflammatory markers in hypertension: results from a randomized controlled trial. Food Funct 2020; 11:1779-1789. [PMID: 32044905 DOI: 10.1039/c9fo03085a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reduced inflammation is one of the potential mechanisms underlying the cardioprotective efficacy of fish oil enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Supplementation with fish oil has favorable effects on cardiometabolic profiles in Inner Mongolia patients with hypertension, but whether the cardiovascular benefits can be ascribed to reduced subclinical inflammation is unclear among this population. Seventy-seven middle-aged/elderly hypertensive volunteers were randomly assigned to receive either fish oil (FO, n = 38, 2 g day-1 EPA + DHA) or control corn oil (CO, n = 39) for 90 days. FA compositions in erythrocytes and C-reactive protein (CRP, mg L-1), interleukin-6 (IL-6, pg mL-1) and tumor necrosis factor-α (TNF-α, pg mL-1) concentrations in the plasma were measured before and after the 90-day supplementation, and the cardiometabolic risk was expressed as continuously distributed z-scores calculated by standardizing and then summing the individual cardiovascular risk factors. Significant reductions in the TNF-α (-1.87 ± 2.71 vs. -0.64 ± 2.62, p = 0.02) and CRP levels (-0.85 ± 2.49 vs. 0.56 ± 2.14, p = 0.01) were found in the FO group compared with the CO group, but not in the IL-6 levels (-0.66 ± 1.05 vs. -0.25 ± 0.94, p = 0.10). The decreases in the changes of TNF-α levels were positively correlated with the reductions in the cardiometabolic risk scores in the subjects supplemented with FO (r = 0.35, p = 0.02), but not in the control subjects supplemented with CO (r = 0.09, p = 0.54). FO supplementation increased the levels of EPA (p = 0.013), DHA (p = 0.040) and total n-3 FA (p = 0.035), and decreased the levels of 20:4n-6 (p = 0.041) and total n-6 FA (p = 0.011) and the ratio of n-6 to n-3 FA (p = 0.001), compared with the changes related to the CO group. The increases in the changes of erythrocyte total n-3 FA levels were inversely correlated with the concentrations of TNF-α (r = -0.34, p = 0.001) and CRP (r = -0.29, p = 0.020). The present findings suggest that fish oil supplementation may attenuate the proinflammatory reactions in hypertension, which might help promote the cardiometabolic benefits in this Inner Mongolia population.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine & School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Xiao-Li Ren
- Institute of Lipids Medicine & School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Zi-Hao Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Mei-Qi Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Fang Ding
- The Province Center for Cardio-Cerebral-Vascular Disease, Zhejiang Hospital, Hangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Xiao-Juan Guo
- Institute of Lipids Medicine & School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8:CD011737. [PMID: 32827219 PMCID: PMC8092457 DOI: 10.1002/14651858.cd011737.pub3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, 56,675 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.70 to 0.98, 12 trials, 53,758 participants of whom 8% had a cardiovascular event, I² = 67%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 53. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
9
|
Hooper L, Abdelhamid AS, Jimoh OF, Bunn D, Skeaff CM. Effects of total fat intake on body fatness in adults. Cochrane Database Syst Rev 2020; 6:CD013636. [PMID: 32476140 PMCID: PMC7262429 DOI: 10.1002/14651858.cd013636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ideal proportion of energy from fat in our food and its relation to body weight is not clear. In order to prevent overweight and obesity in the general population, we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES To assess the effects of proportion of energy intake from fat on measures of body fatness (including body weight, waist circumference, percentage body fat and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) of at least six months duration. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Clinicaltrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) to October 2019. We did not limit the search by language. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included adults aged at least 18 years, 3) randomised to a lower fat versus higher fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of body fatness (body weight, BMI, percentage body fat and waist circumference) independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity, funnel plot analyses and GRADE assessment. MAIN RESULTS We included 37 RCTs (57,079 participants). There is consistent high-quality evidence from RCTs that reducing total fat intake results in small reductions in body fatness; this was seen in almost all included studies and was highly resistant to sensitivity analyses (GRADE high-consistency evidence, not downgraded). The effect of eating less fat (compared with higher fat intake) is a mean body weight reduction of 1.4 kg (95% confidence interval (CI) -1.7 to -1.1 kg, in 53,875 participants from 26 RCTs, I2 = 75%). The heterogeneity was explained in subgrouping and meta-regression. These suggested that greater weight loss results from greater fat reductions in people with lower fat intake at baseline, and people with higher body mass index (BMI) at baseline. The size of the effect on weight does not alter over time and is mirrored by reductions in BMI (MD -0.5 kg/m2, 95% CI -0.6 to -0.3, 46,539 participants in 14 trials, I2 = 21%), waist circumference (MD -0.5 cm, 95% CI -0.7 to -0.2, 16,620 participants in 3 trials; I2 = 21%), and percentage body fat (MD -0.3% body fat, 95% CI -0.6 to 0.00, P = 0.05, in 2350 participants in 2 trials; I2 = 0%). There was no suggestion of harms associated with low fat diets that might mitigate any benefits on body fatness. The reduction in body weight was reflected in small reductions in LDL (-0.13 mmol/L, 95% CI -0.21 to -0.05), and total cholesterol (-0.23 mmol/L, 95% CI -0.32 to -0.14), with little or no effect on HDL cholesterol (-0.02 mmol/L, 95% CI -0.03 to 0.00), triglycerides (0.01 mmol/L, 95% CI -0.05 to 0.07), systolic (-0.75 mmHg, 95% CI -1.42 to -0.07) or diastolic blood pressure(-0.52 mmHg, 95% CI -0.95 to -0.09), all GRADE high-consistency evidence or quality of life (0.04, 95% CI 0.01 to 0.07, on a scale of 0 to 10, GRADE low-consistency evidence). AUTHORS' CONCLUSIONS Trials where participants were randomised to a lower fat intake versus a higher fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI, waist circumference and percentage body fat compared with higher fat arms. Greater fat reduction, lower baseline fat intake and higher baseline BMI were all associated with greater reductions in weight. There was no evidence of harm to serum lipids, blood pressure or quality of life, but rather of small benefits or no effect.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Diane Bunn
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
10
|
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 5:CD011737. [PMID: 32428300 PMCID: PMC7388853 DOI: 10.1002/14651858.cd011737.pub2] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nicole Martin
- Institute of Health Informatics Research, University College London, London, UK
| | - Oluseyi F Jimoh
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Christian Kirk
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Eve Foster
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
11
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3:CD003177. [PMID: 32114706 PMCID: PMC7049091 DOI: 10.1002/14651858.cd003177.pub5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3)), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) may benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess the effects of increased intake of fish- and plant-based omega-3 fats for all-cause mortality, cardiovascular events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to February 2019, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to August 2019, with no language restrictions. We handsearched systematic review references and bibliographies and contacted trial authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation or advice to increase LCn3 or ALA intake, or both, versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 86 RCTs (162,796 participants) in this review update and found that 28 were at low summary risk of bias. Trials were of 12 to 88 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most trials assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5 g a day to more than 5 g a day (19 RCTs gave at least 3 g LCn3 daily). Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (risk ratio (RR) 0.97, 95% confidence interval (CI) 0.93 to 1.01; 143,693 participants; 11,297 deaths in 45 RCTs; high-certainty evidence), cardiovascular mortality (RR 0.92, 95% CI 0.86 to 0.99; 117,837 participants; 5658 deaths in 29 RCTs; moderate-certainty evidence), cardiovascular events (RR 0.96, 95% CI 0.92 to 1.01; 140,482 participants; 17,619 people experienced events in 43 RCTs; high-certainty evidence), stroke (RR 1.02, 95% CI 0.94 to 1.12; 138,888 participants; 2850 strokes in 31 RCTs; moderate-certainty evidence) or arrhythmia (RR 0.99, 95% CI 0.92 to 1.06; 77,990 participants; 4586 people experienced arrhythmia in 30 RCTs; low-certainty evidence). Increasing LCn3 may slightly reduce coronary heart disease mortality (number needed to treat for an additional beneficial outcome (NNTB) 334, RR 0.90, 95% CI 0.81 to 1.00; 127,378 participants; 3598 coronary heart disease deaths in 24 RCTs, low-certainty evidence) and coronary heart disease events (NNTB 167, RR 0.91, 95% CI 0.85 to 0.97; 134,116 participants; 8791 people experienced coronary heart disease events in 32 RCTs, low-certainty evidence). Overall, effects did not differ by trial duration or LCn3 dose in pre-planned subgrouping or meta-regression. There is little evidence of effects of eating fish. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20; 19,327 participants; 459 deaths in 5 RCTs, moderate-certainty evidence),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25; 18,619 participants; 219 cardiovascular deaths in 4 RCTs; moderate-certainty evidence), coronary heart disease mortality (RR 0.95, 95% CI 0.72 to 1.26; 18,353 participants; 193 coronary heart disease deaths in 3 RCTs; moderate-certainty evidence) and coronary heart disease events (RR 1.00, 95% CI 0.82 to 1.22; 19,061 participants; 397 coronary heart disease events in 4 RCTs; low-certainty evidence). However, increased ALA may slightly reduce risk of cardiovascular disease events (NNTB 500, RR 0.95, 95% CI 0.83 to 1.07; but RR 0.91, 95% CI 0.79 to 1.04 in RCTs at low summary risk of bias; 19,327 participants; 884 cardiovascular disease events in 5 RCTs; low-certainty evidence), and probably slightly reduces risk of arrhythmia (NNTB 91, RR 0.73, 95% CI 0.55 to 0.97; 4912 participants; 173 events in 2 RCTs; moderate-certainty evidence). Effects on stroke are unclear. Increasing LCn3 and ALA had little or no effect on serious adverse events, adiposity, lipids and blood pressure, except increasing LCn3 reduced triglycerides by ˜15% in a dose-dependent way (high-certainty evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and low-certainty evidence suggests that increasing LCn3 slightly reduces risk of coronary heart disease mortality and events, and reduces serum triglycerides (evidence mainly from supplement trials). Increasing ALA slightly reduces risk of cardiovascular events and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Teesside UniversitySchool of Social Sciences, Humanities and LawMiddlesboroughUKTS1 3BA
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Sciences42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthCoupland Building 3Oxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
12
|
Effects of dietary intervention and n-3 PUFA supplementation on markers of gut-related inflammation and their association with cardiovascular events in a high-risk population. Atherosclerosis 2019; 286:53-59. [PMID: 31100620 DOI: 10.1016/j.atherosclerosis.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Dysbiosis of the gut microbiota is associated with increased levels of circulating lipopolysaccharide (LPS) and subsequent activation of systemic inflammation. Diet is an important modulator of the gut microbiome. We aimed to investigate whether circulating markers of gut-related inflammation, LPS binding protein (LBP) and soluble CD14 (sCD14) can be modulated by n-3 PUFA supplementation and/or diet counselling, and whether these markers are related to cardiovascular (CV) outcome. METHODS 484 men aged 65-75 years, at high CV-risk, were included and randomized in a 2 × 2 factorial design to 36-month intervention with dietary counselling, n-3 PUFA supplementation, or both. N-3 PUFA supplementation was placebo-controlled. ELISAs were used for determination of the biomarkers measured at baseline and study-end. A composite endpoint was defined as new CV-events and CV-mortality after 36 months. RESULTS There were no significant differences in changes of either LBP or sCD14 in the intervention groups compared to their respective controls (n-3 PUFA vs. placebo: p = 0.58, p = 0.15, diet vs. no-diet: p = 0.53, p = 0.59, respectively). The group with LBP levels above median had about 2-fold unadjusted risk of suffering an endpoint compared to the group below (HR 2.22, 95% CI 1.25-3.96; p = 0.01). A similar tendency was seen for sCD14 (HR 1.72, 95% CI 0.97-3.03; p = 0.06). After adjusting for covariates, LBP remained significantly associated with a two-fold CV-risk, whereas sCD14 gained statistical significance, however, lost when hsCRP was added to the model. CONCLUSIONS In our population, markers of gut-related inflammation associated with 36-month CV outcome. However, neither n-3 PUFA nor diet intervention had an effect on these markers.
Collapse
|
13
|
Omega-3 fatty acids and leukocyte-endothelium adhesion: Novel anti-atherosclerotic actions. Mol Aspects Med 2018; 64:169-181. [DOI: 10.1016/j.mam.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
14
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
15
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
16
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD012345. [PMID: 30019767 PMCID: PMC6513571 DOI: 10.1002/14651858.cd012345.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake slightly reduces total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants) and probably slightly decreases triglycerides (MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably causes slight weight gain (MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via lipid reduction, but increasing PUFA probably slightly increases weight.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Nicole Martin
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonFarr Institute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
17
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 7:CD003177. [PMID: 30019766 PMCID: PMC6513557 DOI: 10.1002/14651858.cd003177.pub3] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet.Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichUKNR4 7TJ
| |
Collapse
|
18
|
Awoyemi A, Trøseid M, Arnesen H, Solheim S, Seljeflot I. Markers of metabolic endotoxemia as related to metabolic syndrome in an elderly male population at high cardiovascular risk: a cross-sectional study. Diabetol Metab Syndr 2018; 10:59. [PMID: 30038669 PMCID: PMC6054743 DOI: 10.1186/s13098-018-0360-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of conditions that conjoined represents a 1.5-2.5 fold increased risk of developing cardiovascular disease (CVD). Recent studies have reported that gut dysbiosis and leakage of bacterial components, may contribute to the metabolic disturbances and systemic inflammation observed in subjects with MetS. Chronic exposure to lipopolysaccharide (LPS) has been shown to induce features of MetS in experimental studies. LPS interacts with the innate immune system, facilitated through LPS-binding protein (LBP) and the co-receptor CD14, both regarded as markers of gut leakage. PURPOSE We investigated whether circulating levels of LBP and sCD14 are associated with the presence of MetS and its components, and further any association with systemic inflammation. METHODS We examined 482 men, aged between 65 and 75 years, all at high CVD risk. MetS criteria's according to the US National Cholesterol Education Program Adult Treatment Panel III were met in 182 subjects (38%). RESULTS Levels of LBP and sCD14 did not differ between individuals with and without MetS. However, a trend towards increased risk of MetS through quartiles of LBP was observed (p = 0.05). Individuals in the highest quartile (Q4), had an increased risk of MetS (OR = 1.76, 95% CI (1.04-3.00), compared to the lowest quartile (Q1) (p = 0.04). With regard to the separate constituents of MetS, patients who met the waist circumference criterion had significant higher concentration of LBP compared to those who did not (p = 0.04). We also found a weak, but significant correlation between LBP and waist circumference (r = 0.10, p = 0.03). Moderate, yet significant correlations were observed between both LBP and sCD14 and several markers of systemic inflammation (r = 0.1-0.23; p < 0.001-0.04). CONCLUSION The trend for increased prevalence of MetS observed with increasing quartiles of LBP seems to be mainly driven by central obesity in our male cohort. The associations between LBP, sCD14 and systemic inflammation, indicate a potential role of the innate immune system in MetS.Trial registration CLINICALTRIALS.GOV, NCT00764010. Registered 01 October 2008-retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT00764010?term=NCT00764010&rank=1.
Collapse
Affiliation(s)
- Ayodeji Awoyemi
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious diseases, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318 Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318 Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318 Oslo, Norway
| |
Collapse
|
19
|
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40:95-119. [PMID: 28899766 DOI: 10.1016/j.arr.2017.09.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted.
Collapse
Affiliation(s)
- Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Nabil Bosco
- Nestlé Research Center Asia, 21 Biopolis Road, 138567, Singapore
| | | | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, 33076 Bordeaux, France; Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Catholic University of Louvain, B-1200 Brussels, Belgium
| | - Joel Doré
- MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40124, Italy
| | - Markus J Lehtinen
- DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
| | - Tobias Recker
- International Life Sciences Institute European Branch, 1200 Brussels, Belgium.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
20
|
Wojtala M, Pirola L, Balcerczyk A. Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. Biofactors 2017; 43:5-16. [PMID: 27355807 DOI: 10.1002/biof.1306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Rather than being a passive barrier between circulating blood and smooth muscle cells and the underlying tissues, the endothelium is a fundamental functional component of the vasculature, and could be viewed as the largest human endocrine gland/organ, secreting multiple pro-/antiangiogenic factors, cytokines and low-molecular-weight mediators controlling the vascular tone. The location of endothelium, at the interface between the circulation and the tissues, makes this epithelial layer particularly exposed to physical and chemical cues coming from the bloodstream. In response to such stimuli, the endothelium modulates its morphology and functions to maintain vascular homeostasis. Dietary components significantly affect the proper functioning of the endothelium. High-calories and high-fat western diets, in the long term, cause endothelial dysfunction, which is a major contributor to the development of the metabolic syndrome and its pathological consequences, including atherosclerosis, diabetes, and hypertension. On the contrary, plant-derived antioxidant molecules and polyphenols have been shown to exert beneficial effects on endothelial function. Extensive research in the last decade has clearly shown the close relationship between food intake, dietary habits, and gene expression, which is driven by the action of macro- and micronutrients on chromatin regulation. Nutrient-induced chromatin epigenetic modifications via DNA methylation and histone post-translational modifications, especially in the context of the western diet, significantly contribute to the dysregulation of endothelial functioning. Here, we review the current understanding on how dietary components (macronutrients, antioxidants), acting on epigenetic mechanisms, regulate endothelial physiology, and physiopathology. © 2016 BioFactors, 43(1):5-16, 2017.
Collapse
Affiliation(s)
- Martyna Wojtala
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Luciano Pirola
- Faculty of Medicine Lyon SUD, Carmen Institute, INSERM U1060, Oullins, Cedex, France
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
21
|
Gardener SL, Rainey-Smith SR, Martins RN. Diet and Inflammation in Alzheimer's Disease and Related Chronic Diseases: A Review. J Alzheimers Dis 2016; 50:301-34. [PMID: 26682690 DOI: 10.3233/jad-150765] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inflammation is one of the pathological features of the neurodegenerative disease, Alzheimer's disease (AD). A number of additional disorders are likewise associated with a state of chronic inflammation, including obesity, cardiovascular disease, and type-2 diabetes, which are themselves risk factors for AD. Dietary components have been shown to modify the inflammatory process at several steps of the inflammatory pathway. This review aims to evaluate the published literature on the effect of consumption of pro- or anti-inflammatory dietary constituents on the severity of both AD pathology and related chronic diseases, concentrating on the dietary constituents of flavonoids, spices, and fats. Diet-based anti-inflammatory components could lead to the development of potent novel anti-inflammatory compounds for a range of diseases. However, further work is required to fully characterize the therapeutic potential of such compounds, including gaining an understanding of dose-dependent relationships and limiting factors to effectiveness. Nutritional interventions utilizing anti-inflammatory foods may prove to be a valuable asset in not only delaying or preventing the development of age-related neurodegenerative diseases such as AD, but also treating pre-existing conditions including type-2 diabetes, cardiovascular disease, and obesity.
Collapse
Affiliation(s)
- Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| |
Collapse
|
22
|
Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev 2015; 2016:CD011834. [PMID: 26250104 PMCID: PMC10403157 DOI: 10.1002/14651858.cd011834] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In order to prevent overweight and obesity in the general population we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. OBJECTIVES To assess the effects of proportion of energy intake from fat on measures of weight and body fatness (including obesity, waist circumference and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) and cohort studies in adults, children and young people SEARCH METHODS We searched CENTRAL to March 2014 and MEDLINE, EMBASE and CINAHL to November 2014. We did not limit the search by language. We also checked the references of relevant reviews. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included children (aged ≥ 24 months), young people or adults, 3) randomised to a lower fat versus usual or moderate fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We also included cohort studies in children, young people and adults that assessed the proportion of energy from fat at baseline and assessed the relationship with body weight or fatness after at least one year. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. DATA COLLECTION AND ANALYSIS We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of weight and body fatness independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity and funnel plot analyses. MAIN RESULTS We included 32 RCTs (approximately 54,000 participants) and 30 sets of analyses of 25 cohorts. There is consistent evidence from RCTs in adults of a small weight-reducing effect of eating a smaller proportion of energy from fat; this was seen in almost all included studies and was highly resistant to sensitivity analyses. The effect of eating less fat (compared with usual diet) is a mean weight reduction of 1.5 kg (95% confidence interval (CI) -2.0 to -1.1 kg), but greater weight loss results from greater fat reductions. The size of the effect on weight does not alter over time and is mirrored by reductions in body mass index (BMI) (-0.5 kg/m(2), 95% CI -0.7 to -0.3) and waist circumference (-0.3 cm, 95% CI -0.6 to -0.02). Included cohort studies in children and adults most often do not suggest any relationship between total fat intake and later measures of weight, body fatness or change in body fatness. However, there was a suggestion that lower fat intake was associated with smaller increases in weight in middle-aged but not elderly adults, and in change in BMI in the highest validity child cohort. AUTHORS' CONCLUSIONS Trials where participants were randomised to a lower fat intake versus usual or moderate fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI and waist circumference compared with controls. Greater fat reduction and lower baseline fat intake were both associated with greater reductions in weight. This effect of reducing total fat was not consistently reflected in cohort studies assessing the relationship between total fat intake and later measures of body fatness or change in body fatness in studies of children, young people or adults.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | | | | | | | | | | |
Collapse
|
23
|
Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2015:CD011737. [PMID: 26068959 DOI: 10.1002/14651858.cd011737] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review. OBJECTIVES To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA) or monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and EMBASE (Ovid) on 5 March 2014. We also checked references of included studies and reviews. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised with appropriate control group; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) not multifactorial; 4) adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 5) intervention at least 24 months; 6) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Two review authors working independently extracted participant numbers experiencing health outcomes in each arm, and we performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses and funnel plots. MAIN RESULTS We include 15 randomised controlled trials (RCTs) (17 comparisons, ˜59,000 participants), which used a variety of interventions from providing all food to advice on how to reduce saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.72 to 0.96, 13 comparisons, 53,300 participants of whom 8% had a cardiovascular event, I² 65%, GRADE moderate quality of evidence), but effects on all-cause mortality (RR 0.97; 95% CI 0.90 to 1.05; 12 trials, 55,858 participants) and cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 12 trials, 53,421 participants) were less clear (both GRADE moderate quality of evidence). There was some evidence that reducing saturated fats reduced the risk of myocardial infarction (fatal and non-fatal, RR 0.90; 95% CI 0.80 to 1.01; 11 trials, 53,167 participants), but evidence for non-fatal myocardial infarction (RR 0.95; 95% CI 0.80 to 1.13; 9 trials, 52,834 participants) was unclear and there were no clear effects on stroke (any stroke, RR 1.00; 95% CI 0.89 to 1.12; 8 trials, 50,952 participants). These relationships did not alter with sensitivity analysis. Subgrouping suggested that the reduction in cardiovascular events was seen in studies that primarily replaced saturated fat calories with polyunsaturated fat, and no effects were seen in studies replacing saturated fat with carbohydrate or protein, but effects in studies replacing with monounsaturated fats were unclear (as we located only one small trial). Subgrouping and meta-regression suggested that the degree of reduction in cardiovascular events was related to the degree of reduction of serum total cholesterol, and there were suggestions of greater protection with greater saturated fat reduction or greater increase in polyunsaturated and monounsaturated fats. There was no evidence of harmful effects of reducing saturated fat intakes on cancer mortality, cancer diagnoses or blood pressure, while there was some evidence of improvements in weight and BMI. AUTHORS' CONCLUSIONS The findings of this updated review are suggestive of a small but potentially important reduction in cardiovascular risk on reduction of saturated fat intake. Replacing the energy from saturated fat with polyunsaturated fat appears to be a useful strategy, and replacement with carbohydrate appears less useful, but effects of replacement with monounsaturated fat were unclear due to inclusion of only one small trial. This effect did not appear to alter by study duration, sex or baseline level of cardiovascular risk. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturated fats. The ideal type of unsaturated fat is unclear.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK, NR4 7TJ
| | | | | | | |
Collapse
|
24
|
Fleming JA, Kris-Etherton PM. The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv Nutr 2014; 5:863S-76S. [PMID: 25398754 PMCID: PMC4224228 DOI: 10.3945/an.114.005850] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the cardiovascular disease (CVD) benefits of α-linolenic acid (ALA, 18:3n-3) has advanced markedly during the past decade. It is now evident that ALA benefits CVD risk. The expansion of the ALA evidence base has occurred in parallel with ongoing research on eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) and CVD. The available evidence enables comparisons to be made for ALA vs. EPA + DHA for CVD risk reduction. The epidemiologic evidence suggests comparable benefits of plant-based and marine-derived n-3 (omega-3) PUFAs. The clinical trial evidence for ALA is not as extensive; however, there have been CVD event benefits reported. Those that have been reported for EPA + DHA are stronger because only EPA + DHA differed between the treatment and control groups, whereas in the ALA studies there were diet differences beyond ALA between the treatment and control groups. Despite this, the evidence suggests many comparable CVD benefits of ALA vs. EPA + DHA. Thus, we believe that it is time to revisit what the contemporary dietary recommendation should be for ALA to decrease the risk of CVD. Our perspective is that increasing dietary ALA will decrease CVD risk; however, randomized controlled clinical trials are necessary to confirm this and to determine what the recommendation should be. With a stronger evidence base, the nutrition community will be better positioned to revise the dietary recommendation for ALA for CVD risk reduction.
Collapse
|
25
|
Dueregger A, Heidegger I, Ofer P, Perktold B, Ramoner R, Klocker H, Eder IE. The use of dietary supplements to alleviate androgen deprivation therapy side effects during prostate cancer treatment. Nutrients 2014; 6:4491-519. [PMID: 25338271 PMCID: PMC4210931 DOI: 10.3390/nu6104491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/07/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer and second leading cause of male cancer death in Western societies, is typically androgen-dependent, a characteristic that underlies the rationale of androgen deprivation therapy (ADT). Approximately 90% of patients initially respond to ADT strategies, however many experience side effects including hot flashes, cardiotoxicity, metabolic and musculoskeletal alterations. This review summarizes pre-clinical and clinical studies investigating the ability of dietary supplements to alleviate adverse effects arising from ADT. In particular, we focus on herbal compounds, phytoestrogens, selenium (Se), fatty acids (FA), calcium, and Vitamins D and E. Indeed, there is some evidence that calcium and Vitamin D can prevent the development of osteoporosis during ADT. On the other hand, caution should be taken with the antioxidants Se and Vitamin E until the basis underlying their respective association with type 2 diabetes mellitus and PCa tumor development has been clarified. However, many other promising supplements have not yet been subjected large-scale clinical trials making it difficult to assess their efficacy. Given the demographic trend of increased PCa diagnoses and dependence on ADT as a major therapeutic strategy, further studies are required to objectively evaluate these supplements as adjuvant for PCa patients receiving ADT.
Collapse
Affiliation(s)
- Andrea Dueregger
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, A-6020 Austria.
| | - Isabel Heidegger
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, A-6020 Austria.
| | - Philipp Ofer
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, A-6020 Austria.
| | - Bernhard Perktold
- Department of Dietetics, University of Applied Sciences Tyrol, Innsbruck A-6020, Austria.
| | - Reinhold Ramoner
- Department of Dietetics, University of Applied Sciences Tyrol, Innsbruck A-6020, Austria.
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, A-6020 Austria.
| | - Iris E Eder
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Innsbruck, A-6020 Austria.
| |
Collapse
|
26
|
Unraveling the complex relationship triad between lipids, obesity, and inflammation. Mediators Inflamm 2014; 2014:502749. [PMID: 25258478 PMCID: PMC4166426 DOI: 10.1155/2014/502749] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/21/2014] [Accepted: 07/05/2014] [Indexed: 01/14/2023] Open
Abstract
Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators.
Collapse
|
27
|
Laake K, Myhre P, Nordby LM, Seljeflot I, Abdelnoor M, Smith P, Tveit A, Arnesen H, Solheim S. Effects of ω3 supplementation in elderly patients with acute myocardial infarction: design of a prospective randomized placebo controlled study. BMC Geriatr 2014; 14:74. [PMID: 24928284 PMCID: PMC4074832 DOI: 10.1186/1471-2318-14-74] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/16/2022] Open
Abstract
Background Both epidemiological and randomized clinical studies suggest that supplementation with very-long-chain marine polyunsaturated n-3 fatty acids (n-3 PUFA) have cardioprotective effects, however these results are not without controversy. Study population, sample-size, type of supplementation and type of endpoint have all varied widely accross different studies. Therefore, the aims of the present study are to evaluate the effect of 2 years supplementation with capsules of very-long chain marine n-3 PUFA on top of standard therapy in elderly patients after acute myocardial infarction (AMI). In addition, special characteristics of this population with regard to prediction of clinical outcome will be investigated. The hypothesis is that this supplementation on top of modern therapy will reduce the occurence of major cardiovascular events (MACE). We present the design of the OMEMI (OMega-3 fatty acids in Elderly patients with Myocardial Infarction) study. Methods/Design The OMEMI study is designed as a randomized, placebo-controlled double-blind multicenter trial. Included are patients ≥70-82 years of age who have sustained AMI. Patients of either gender are eligible. Sample size calculation based on existing literature has resulted in the need for 1400 patients followed for 2 years, based on the assumption that the n-3 PUFA supplementation will reduce MACE with 30%. The study medication is Pikasol® Axellus AS, Norway, 3 capsules (1.8 g eicosapentaenoic acid (EPA) + docohexaenoic acid (DHA)) per day, and matching placebo is corn oil. The Primary end-point is the composite of total mortality, first non-fatal recurring AMI, stroke and revascularization. Secondary end-point is the occurrence of new onset atrial fibrillation. Extensive biobanking will be performed, including adipose tissue biopsies. Compliance will be assessed by measurements of the fatty acid profile in serum, sampled at inclusion, after 12 months and at the end of study. Discussion The OMEMI study is scheduled to terminate when the last included patient has been followed for 2 years. To the best of our knowledge, the OMEMI study is the first to evaluate the effect of n-3 PUFAs on CVDs and mortality in a high risk elderly population having suffered an acute myocardial infarction. Trial registration ClinicalTrials.gov, NCT01841944
Collapse
Affiliation(s)
- Kristian Laake
- Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS, Willett WC, Richter JM, Chan AT. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease. Gut 2014; 63:776-84. [PMID: 23828881 PMCID: PMC3915038 DOI: 10.1136/gutjnl-2013-305304] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Dietary fats influence intestinal inflammation and regulate mucosal immunity. Data on the association between dietary fat and risk of Crohn's disease (CD) and ulcerative colitis (UC) are limited and conflicting. METHODS We conducted a prospective study of women enrolled in the Nurses' Health Study cohorts. Diet was prospectively ascertained every 4 years using a validated semi-quantitative food frequency questionnaire. Self-reported CD and UC were confirmed through medical record review. We examined the effect of energy-adjusted cumulative average total fat intake and specific types of fat and fatty acids on the risk of CD and UC using Cox proportional hazards models adjusting for potential confounders. RESULTS Among 170,805 women, we confirmed 269 incident cases of CD (incidence 8/100,000 person-years) and 338 incident cases of UC (incidence 10/100,000 person-years) over 26 years and 3,317,338 person-years of follow-up. Cumulative energy-adjusted intake of total fat, saturated fats, unsaturated fats, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were not associated with risk of CD or UC. However, greater intake of long-chain n-3 PUFAs was associated with a trend towards lower risk of UC (HR 0.72, 95% CI 0.51 to 1.01). In contrast, high long-term intake of trans-unsaturated fatty acids was associated with a trend towards an increased incidence of UC (HR 1.34, 95% CI 0.94 to 1.92). CONCLUSIONS A high intake of dietary long-chain n-3 PUFAs may be associated with a reduced risk of UC. In contrast, high intake of trans-unsaturated fats may be associated with an increased risk of UC.
Collapse
Affiliation(s)
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gauree G. Konijeti
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leslie M. Higuchi
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston and Harvard Medical School, Boston, MA
| | - Punyanganie de Silva
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Walter C. Willett
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Nutrition, Harvard School of Public Health
| | - James M. Richter
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Petersen KS, Clifton PM, Keogh JB. The association between carotid intima media thickness and individual dietary components and patterns. Nutr Metab Cardiovasc Dis 2014; 24:495-502. [PMID: 24374005 DOI: 10.1016/j.numecd.2013.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
AIMS To review: 1) the correlation between individual dietary components and carotid intima media thickness (cIMT); 2) the relationship between dietary patterns and cIMT; 3) the effect of dietary interventions on cIMT progression. DATA SYNTHESIS An electronic search for epidemiological and intervention trials investigating the association between dietary components or patterns of intake and cIMT was performed in PUBMED, EMBASE and the Cochrane Library. Epidemiological data shows that a higher intake of fruit, wholegrains and soluble fibre and lower consumption of saturated fat in favour of polyunsaturated fat is associated with lower cIMT. In people at high risk of cardiovascular disease >93 g/day of fruit is associated with lower cIMT. Lower cIMT has also been observed when >0.79 serves/day of wholegrains and >25 g/day of fibre, predominately in the soluble form is consumed. Saturated fat is positively associated with cIMT, for every 10 g/day increase in saturated fat cIMT is 0.03 mm greater. Olive oil is inversely associated with cIMT, with a benefit seen when >34 g/day is consumed. While there are many epidemiological studies exploring the association between dietary intake and cIMT there are few intervention studies. Intervention studies show that a Mediterranean diet may reduce cIMT progression, especially in those with a higher cIMT. CONCLUSIONS A Mediterranean style dietary pattern, which is high in fruits, wholegrains, fibre and olive oil and low in saturated fat, may reduce carotid atherosclerosis development and progression. However further research from randomised controlled trials is required to understand the association between diet and cIMT and the underlying mechanisms.
Collapse
Affiliation(s)
- K S Petersen
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5000, Australia
| | - P M Clifton
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5000, Australia
| | - J B Keogh
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5000, Australia.
| |
Collapse
|
30
|
Association of n-3 polyunsaturated fatty acids with soluble thrombomodulin as a marker of endothelial damage: a cross-sectional pilot study. J Cardiol 2014; 64:312-7. [PMID: 24679942 DOI: 10.1016/j.jjcc.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Soluble thrombomodulin (sTM) is a useful marker of vascular endothelial damage. Although n-3 polyunsaturated fatty acids (n-3 PUFAs) (eicosapentaenoic acid: EPA; docosahexaenoic acid: DHA) have various cardiovascular protective effects, their effect in preventing vascular endothelial damage remains unclear. Furthermore, little is known about the association of EPA and DHA with sTM using the cross-sectional study method. METHODS AND RESULTS This pilot study was designed as a hospital-based cross-sectional study to investigate the relationships between serum n-3 PUFA levels and sTM level in patients with the presence of one or more risk factors for atherosclerosis. Of the 534 sequential patients who had routinely been registered to a study cohort of our institute, 324 patients without chronic kidney disease (because sTM is eliminated by renal excretion and the serum sTM level is increased by renal dysfunction) were enrolled in this study. In a multivariate analysis after adjustment for atherosclerotic risk factors, elevated EPA+DHA level was an independent variable of decreased sTM level (β=-0.183, p=0.0006). The serum levels of EPA and DHA showed a strong correlation (r=0.736, p<0.0001); however, multivariate analysis including EPA and DHA revealed that serum DHA (β=-0.243, p=0.003), but not serum EPA (β=0.049, p=0.538), was identified as an independent negative determinant of sTM level. CONCLUSION Although there are numerous unresolved issues in regard to the differences in the cardiovascular protective effects between EPA and DHA, DHA may be associated with a decrease in sTM. A large-scale trial would be warranted to demonstrate whether the beneficial effect of n3-PUFAs therapy on endothelial damage and improvement of endothelial function might also result in fewer clinical cardiovascular events.
Collapse
|
31
|
Yusof HM, Cawood AL, Ding R, Williams JA, Napper FL, Shearman CP, Grimble RF, Payne SP, Calder PC. Limited impact of 2 g/day omega-3 fatty acid ethyl esters (Omacor®) on plasma lipids and inflammatory markers in patients awaiting carotid endarterectomy. Mar Drugs 2013; 11:3569-81. [PMID: 24065166 PMCID: PMC3806474 DOI: 10.3390/md11093569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to determine the effects of prescription omega-3 (n-3) fatty acid ethyl esters (Omacor®) on blood pressure, plasma lipids, and inflammatory marker concentrations in patients awaiting carotid endarterectomy. Patients awaiting carotid endarterectomy (n = 121) were randomised to Omacor® or olive oil as placebo (2 g/day) until surgery (median 21 days). Blood pressure, plasma lipids, and plasma inflammatory markers were determined. There were significant decreases in systolic and diastolic blood pressure and in plasma triglyceride, total cholesterol, low density lipoprotein-cholesterol, soluble vascular cellular adhesion molecule 1, and matrix metalloproteinase 2 concentrations, in both groups. The extent of triglyceride lowering was greater with Omacor® (25%) compared with placebo (9%). Soluble E-selectin concentration was significantly decreased in the Omacor® group but increased in the placebo group. At the end of the supplementation period there were no differences in blood pressure or in plasma lipid and inflammatory marker concentrations between the two groups. It is concluded that Omacor® given at 2 g/day for an average of 21 days to patients with advanced carotid atherosclerosis lowers triglycerides and soluble E-selectin concentrations, but has limited broad impact on the plasma lipid profile or on inflammatory markers. This may be because the duration of intervention was too short or the dose of n-3 fatty acids was too low.
Collapse
Affiliation(s)
- Hayati M. Yusof
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
- Department of Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +60-966-849-61; Fax: +60-966-849-49
| | - Abbie L. Cawood
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Ren Ding
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Jennifer A. Williams
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Frances L. Napper
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Clifford P. Shearman
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Robert F. Grimble
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
| | - Simon P.K. Payne
- Department of Vascular Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK; E-Mail:
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; E-Mails: (A.L.C.); (R.D.); (J.A.W.); (F.L.N.); (C.P.S.); (R.F.G.); (P.C.C.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
32
|
Abstract
All fats, including saturated fatty acids, have important roles in the body. However, the most important fats are those that the body cannot make and thus must come from the food we eat. These essential fatty acids (EFAs) are based on linoleic acid (omega-6 group) and alpha-linolenic acid (omega-3 group). We need both groups of essential fatty acids to survive. For various reasons EFA deficiency is common in the general population, as is a disproportionate intake of omega-6 fatty acids over omega-3 fatty acids. As such, it is important to eat the right foods to make sure that you're taking in enough and the right kinds of the essential fatty acids. However, there is much more to the story. Studies have shown that increasing the intake of certain essential fatty acids, either alone or in combination with other fats and compounds, can increase health, help in treating certain diseases, and even improve body composition, mental and physical performance.
Collapse
|
33
|
Fish oil administration in older adults with cardiovascular disease or cardiovascular risk factors: is there potential for adverse events? A systematic review of the literature. Int J Cardiol 2013; 168:4371-5. [PMID: 23742929 DOI: 10.1016/j.ijcard.2013.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/04/2013] [Indexed: 11/23/2022]
|
34
|
Hooper L, Abdelhamid A, Moore HJ, Douthwaite W, Skeaff CM, Summerbell CD. Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ 2012; 345:e7666. [PMID: 23220130 PMCID: PMC3516671 DOI: 10.1136/bmj.e7666] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the relation between total fat intake and body weight in adults and children. DESIGN Systematic review and meta-analysis of randomised controlled trials and cohort studies. DATA SOURCES Medline, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials to June 2010. INCLUSION CRITERIA Randomised controlled trials and cohort studies of adults or children that compared lower versus usual total fat intake and assessed the effects on measures of body fatness (body weight, body mass index, or waist circumference) after at least six months (randomised controlled trials) or one year (in cohorts). Randomised controlled trials with any intention to reduce weight in participants or confounded by additional medical or lifestyle interventions were excluded. DATA EXTRACTION Data were extracted and validity was assessed independently and in duplicate. Random effects meta-analyses, subgroups, sensitivity analyses, and metaregression were done. RESULTS 33 randomised controlled trials (73,589 participants) and 10 cohort studies were included, all from developed countries. Meta-analysis of data from the trials suggested that diets lower in total fat were associated with lower relative body weight (by 1.6 kg, 95% confidence interval -2.0 to -1.2 kg, I(2)=75%, 57,735 participants). Lower weight gain in the low fat arm compared with the control arm was consistent across trials, but the size of the effect varied. Metaregression suggested that greater reduction in total fat intake and lower baseline fat intake were associated with greater relative weight loss, explaining most of the heterogeneity. The significant effect of a low fat diet on weight was not lost in sensitivity analyses (including removing trials that expended greater time and attention on low fat groups). Lower total fat intake also led to lower body mass index (-0.51 kg/m(2), 95% confidence interval -0.76 to -0.26, nine trials, I(2)=77%) and waist circumference (by 0.3 cm, 95% confidence interval -0.58 to -0.02, 15,671 women, one trial). There was no suggestion of negative effects on other cardiovascular risk factors (lipid levels or blood pressure). GRADE assessment suggested high quality evidence for the relation between total fat intake and body weight in adults. Only one randomised controlled trial and three cohort studies were found in children and young people, but these confirmed a positive relation between total fat intake and weight gain. CONCLUSIONS There is high quality, consistent evidence that reduction of total fat intake has been achieved in large numbers of both healthy and at risk trial participants over many years. Lower total fat intake leads to small but statistically significant and clinically meaningful, sustained reductions in body weight in adults in studies with baseline fat intakes of 28-43% of energy intake and durations from six months to over eight years. Evidence supports a similar effect in children and young people.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG, Moore HJ, Davey Smith G. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev 2012; 2012:CD002137. [PMID: 22592684 PMCID: PMC6486029 DOI: 10.1002/14651858.cd002137.pub3] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Reduction and modification of dietary fats have differing effects on cardiovascular risk factors (such as serum cholesterol), but their effects on important health outcomes are less clear. OBJECTIVES To assess the effect of reduction and/or modification of dietary fats on mortality, cardiovascular mortality, cardiovascular morbidity and individual outcomes including myocardial infarction, stroke and cancer diagnoses in randomised clinical trials of at least 6 months duration. SEARCH METHODS For this review update, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE, were searched through to June 2010. References of Included studies and reviews were also checked. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised with appropriate control group, 2) intention to reduce or modify fat or cholesterol intake (excluding exclusively omega-3 fat interventions), 3) not multi factorial, 4) adult humans with or without cardiovascular disease, 5) intervention at least six months, 6) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Participant numbers experiencing health outcomes in each arm were extracted independently in duplicate and random effects meta-analyses, meta-regression, sub-grouping, sensitivity analyses and funnel plots were performed. MAIN RESULTS This updated review suggested that reducing saturated fat by reducing and/or modifying dietary fat reduced the risk of cardiovascular events by 14% (RR 0.86, 95% CI 0.77 to 0.96, 24 comparisons, 65,508 participants of whom 7% had a cardiovascular event, I(2) 50%). Subgrouping suggested that this reduction in cardiovascular events was seen in studies of fat modification (not reduction - which related directly to the degree of effect on serum total and LDL cholesterol and triglycerides), of at least two years duration and in studies of men (not of women). There were no clear effects of dietary fat changes on total mortality (RR 0.98, 95% CI 0.93 to 1.04, 71,790 participants) or cardiovascular mortality (RR 0.94, 95% CI 0.85 to 1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis.Few studies compared reduced with modified fat diets, so direct comparison was not possible. AUTHORS' CONCLUSIONS The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang Y, Lu N, Chen D, Meng L, Zheng Y, Hui R. Effects of n-3 PUFA supplementation on plasma soluble adhesion molecules: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012; 95:972-80. [PMID: 22378734 DOI: 10.3945/ajcn.111.025924] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies indicate that oral supplementation with n-3 PUFA protects against atherosclerotic disease by inhibiting inflammatory processes, which underlie atherosclerosis and are reflected by the plasma concentrations of soluble adhesion molecules. However, consistent results were not obtained among studies. OBJECTIVE The objective was to assess the effects of n-3 PUFA supplementation on plasma concentrations of soluble adhesion molecules. DESIGN We conducted a meta-analysis of randomized controlled trials identified from PubMed, Embase, the Cochrane Library, and reference lists of relevant articles and reviews. RESULTS Eighteen studies were included. n-3 PUFA supplementation reduced plasma concentrations of soluble intercellular adhesion molecule-1 [sICAM-1; weighted mean difference (WMD): -5.17; 95% CI: -10.07, -0.27; P = 0.04] but had no significant effects on soluble vascular cell adhesion molecule-1 (WMD: -5.90; 95% CI: -17.63, 5.84; P = 0.32), soluble P-selectin (WMD: -1.53; 95% CI: -4.33, 1.28; P = 0.29), or soluble E-selectin (WMD: 0.46; 95% CI: -1.54, 2.46; P = 0.65). Subgroup analysis stratified by the subjects' health status showed that n-3 PUFA supplementation reduced sICAM-1 concentrations in healthy subjects (WMD: -8.87; 95% CI: -15.20, -2.53; P = 0.006; heterogeneity test: I² = 0%, P = 0.76) and in subjects with dyslipidemia (WMD: -15.31; 95% CI: -26.82, -3.81; P = 0.009; heterogeneity test: I² = 26%, P = 0.26). CONCLUSIONS n-3 PUFA supplementation can reduce plasma concentrations of sICAM-1. The effect is identified in both healthy subjects and subjects with dyslipidemia, which supports the hypothesis that n-3 PUFA can be supplemented as a primary or secondary means for preventing the development as well as the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, Bethune First Hospital of Jilin University, Changchun City, China
| | | | | | | | | | | |
Collapse
|
37
|
Dewell A, Marvasti FF, Harris WS, Tsao P, Gardner CD. Low- and high-dose plant and marine (n-3) fatty acids do not affect plasma inflammatory markers in adults with metabolic syndrome. J Nutr 2011; 141:2166-71. [PMID: 22031659 PMCID: PMC3223874 DOI: 10.3945/jn.111.142240] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation is considered to play a role in the development of cardiovascular disease. Various (n-3) fatty acids (FA) have been reported to have antiinflammatory effects, but there is a lack of consensus in this area, particularly in regard to optimal source(s) and dose(s). This study aimed to determine the effects of high and low doses of (n-3) FA from plant and marine sources on plasma inflammatory marker concentrations. One-hundred adults with metabolic syndrome were randomly assigned to a low or high dose of plant- (2.2 or 6.6 g/d α-linolenic acid) or marine- (1.2 or 3.6 g/d EPA and DHA) derived (n-3) FA or placebo for 8 wk, using a parallel arm design (n = 20/arm). Fasting blood samples collected at 0, 4, and 8 wk were analyzed for concentrations of monocyte chemotactic protein-1 (MCP-1), IL-6, and soluble intercellular adhesion molecule-1 (sICAM-1) and for cardiovascular risk factors. Baseline concentrations across all 5 groups combined were (mean ± SD) 103 ± 32 ng/L for MCP-1, 1.06 ± 0.56 ng/L for IL-6, and 0.197 ± 0.041 ng/L for sICAM-1. There were no significant differences in 8-wk changes in plasma inflammatory marker concentrations among the 5 groups. Plasma TG and blood pressure decreased significantly more and the LDL cholesterol concentration increased more in the high-dose fish oil group compared to the 8-wk changes in some of the other 4 groups (P ≤ 0.04). In conclusion, no beneficial effects were detected for any of the 3 inflammatory markers investigated in response to (n-3) FA in adults with metabolic syndrome regardless of dose or source.
Collapse
Affiliation(s)
- Antonella Dewell
- Stanford Prevention Research Center and Department of Medicine, and
| | | | - William S. Harris
- Cardiovascular Health Research Center Sanford Research/University of South Dakota, Sioux Falls, SD
| | - Philip Tsao
- Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA; and
| | - Christopher D. Gardner
- Stanford Prevention Research Center and Department of Medicine, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
McCall DO, McGartland CP, McKinley MC, Sharpe P, McCance DR, Young IS, Woodside JV. The effect of increased dietary fruit and vegetable consumption on endothelial activation, inflammation and oxidative stress in hypertensive volunteers. Nutr Metab Cardiovasc Dis 2011; 21:658-664. [PMID: 20392617 DOI: 10.1016/j.numecd.2010.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here. METHODS AND RESULTS Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores. CONCLUSIONS Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.
Collapse
Affiliation(s)
- D O McCall
- Nutrition and Metabolism Group, Centre for Public Health, Grosvenor Road, Belfast, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hooper L, Summerbell CD, Thompson R, Sills D, Roberts FG, Moore H, Smith GD. Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane Database Syst Rev 2011:CD002137. [PMID: 21735388 PMCID: PMC4163969 DOI: 10.1002/14651858.cd002137.pub2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Reduction and modification of dietary fats have differing effects on cardiovascular risk factors (such as serum cholesterol), but their effects on important health outcomes are less clear. OBJECTIVES To assess the effect of reduction and/or modification of dietary fats on mortality, cardiovascular mortality, cardiovascular morbidity and individual outcomes including myocardial infarction, stroke and cancer diagnoses in randomised clinical trials of at least 6 months duration. SEARCH STRATEGY For this review update, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE, were searched through to June 2010. References of Included studies and reviews were also checked. SELECTION CRITERIA Trials fulfilled the following criteria: 1) randomised with appropriate control group, 2) intention to reduce or modify fat or cholesterol intake (excluding exclusively omega-3 fat interventions), 3) not multi factorial, 4) adult humans with or without cardiovascular disease, 5) intervention at least six months, 6) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS Participant numbers experiencing health outcomes in each arm were extracted independently in duplicate and random effects meta-analyses, meta-regression, sub-grouping, sensitivity analyses and funnel plots were performed. MAIN RESULTS This updated review suggested that reducing saturated fat by reducing and/or modifying dietary fat reduced the risk of cardiovascular events by 14% (RR 0.86, 95% CI 0.77 to 0.96, 24 comparisons, 65,508 participants of whom 7% had a cardiovascular event, I(2) 50%). Subgrouping suggested that this reduction in cardiovascular events was seen in studies of fat modification (not reduction - which related directly to the degree of effect on serum total and LDL cholesterol and triglycerides), of at least two years duration and in studies of men (not of women). There were no clear effects of dietary fat changes on total mortality (RR 0.98, 95% CI 0.93 to 1.04, 71,790 participants) or cardiovascular mortality (RR 0.94, 95% CI 0.85 to 1.04, 65,978 participants). This did not alter with sub-grouping or sensitivity analysis.Few studies compared reduced with modified fat diets, so direct comparison was not possible. AUTHORS' CONCLUSIONS The findings are suggestive of a small but potentially important reduction in cardiovascular risk on modification of dietary fat, but not reduction of total fat, in longer trials. Lifestyle advice to all those at risk of cardiovascular disease and to lower risk population groups, should continue to include permanent reduction of dietary saturated fat and partial replacement by unsaturates. The ideal type of unsaturated fat is unclear.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Carolyn D Summerbell
- School of Medicine and Health, Wolfson Research Institute, Queen’s Campus, Durham University, Stockton-on-Tees, UK
| | | | | | | | - Helen Moore
- School of Medicine and Health, Wolfson Research Institute, Queen’s Campus, Durham University, Stockton-on-Tees, UK
| | - George Davey Smith
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Young K, Bunn F, Trivedi D, Dickinson A. Nutritional education for community dwelling older people: A systematic review of randomised controlled trials. Int J Nurs Stud 2011; 48:751-80. [DOI: 10.1016/j.ijnurstu.2011.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/22/2010] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
|
41
|
Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr Opin Clin Nutr Metab Care 2011; 14:121-31. [PMID: 21252652 DOI: 10.1097/mco.0b013e3283439622] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dysfunction of the endothelium plays an integral role in atherogenesis. This review summarizes recent findings on the effects of marine [eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)] and plant [alpha-linolenic acids (ALA)] n-3 polyunsaturated fatty acids (PUFAs) on endothelial function in healthy individuals and in patients with cardiovascular disease (CVD) risk factors or manifest CVD. RECENT FINDINGS We identified 33 intervention trials investigating the effects of n-3 PUFA on fasting and/or postprandial endothelial function. In healthy individuals regular supplementation of EPA/DHA or ALA shows inconsistent results on endothelial function, whereas markers of endothelial function seem to be improved in overweight dyslipidaemic patients and type 2 diabetics. Conflicting results are observed in CVD patients. Reasons for discrepancies between the study results include the health status and age of participants, duration of supplementation, dose and fatty acid composition of the administered n-3 PUFAs as well as methods used to assess endothelial function. SUMMARY In individuals with CVD risk factors including overweight, dyslipidemia and type 2 diabetes n-3 PUFAs may improve endothelial function. However, the evidence for a clinical efficacy is not strong enough to make final recommendations with respect to a specific dose and the duration of supplementation.
Collapse
Affiliation(s)
- Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
42
|
Larsson SC, Virtamo J, Wolk A. Fish consumption and risk of stroke in Swedish women. Am J Clin Nutr 2011; 93:487-93. [PMID: 21191140 DOI: 10.3945/ajcn.110.002287] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Epidemiologic studies of fish consumption in relation to risk of stroke have yielded inconsistent results. OBJECTIVE In this study, we examined the association between fish consumption and stroke incidence in women. DESIGN We analyzed data from a population-based prospective cohort of 34,670 women in the Swedish Mammography Cohort who were free of cardiovascular disease and cancer at baseline. Information on fish consumption was obtained by a self-administered questionnaire in 1997. Incident cases of stroke were ascertained from the Swedish Hospital Discharge Registry. We used Cox proportional hazards regression to estimate relative risks (RRs) and 95% CIs. RESULTS Over a mean follow-up of 10.4 y, we ascertained 1680 incident cases of stroke, including 1310 cerebral infarctions, 233 hemorrhagic strokes, and 137 unspecified strokes. Fish consumption was significantly inversely associated with risk of total stroke but not with cerebral infarction or hemorrhagic stroke. Compared with women in the lowest quintile of fish consumption (<1.0 serving of fish/wk), the multivariable RR of total stroke for women in the highest quintile (>3.0 servings of fish/wk) was 0.84 (95% CI: 0.71, 0.98; P for trend = 0.049). Consumption of lean fish but not of other fish types was inversely associated with risk of stroke. The multivariable RR of total stroke was 0.67 (95% CI: 0.49, 0.93; P for trend = 0.07) for ≥3 servings of lean fish/wk compared with that for no consumption. CONCLUSION These results suggest that the consumption of fish, especially of lean fish, may reduce risk of stroke in women. This trial was registered at clinicaltrials.gov as NCT01127698.
Collapse
Affiliation(s)
- Susanna C Larsson
- Division of Nutritional Epidemiology, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
Myhrstad MCW, Retterstøl K, Telle-Hansen VH, Ottestad I, Halvorsen B, Holven KB, Ulven SM. Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors. Inflamm Res 2011; 60:309-19. [PMID: 21229287 PMCID: PMC3058501 DOI: 10.1007/s00011-010-0302-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/29/2010] [Accepted: 12/14/2010] [Indexed: 12/22/2022] Open
Abstract
Objective The aim of the present paper was to review the literature in order to summarize the effects of marine n-3 fatty acids on circulating inflammatory markers among healthy subjects, subjects with high risk of developing cardiovascular disease (CVD) and in patients with CVD in human intervention studies. Methods A systematic literature search in PubMed was performed. Intervention studies describing the effects of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects, subjects with high risk of CVD and patients with CVD were included. The following exclusion criteria were used: (1) interventions assessing inflammatory markers with ex vivo methods (2) interventions with children (3) articles describing animal or cell culture studies. Twenty-two articles were included. Additionally, 13 papers from their literature lists were included based on the same inclusion and exclusion criteria as the literature search. Results and conclusion Intervention studies with marine n-3 fatty acids administered from either fish or fish oil demonstrate different results on inflammatory markers. No firm conclusion can be drawn about the effect of marine n-3 fatty acids on circulating inflammatory markers in healthy individuals, individuals with high risk of developing CVD or individuals with CVD related diseases.
Collapse
Affiliation(s)
- Mari C. W. Myhrstad
- Faculty of Health, Nutrition and Management, Akershus University College, PO box 423, 2001 Lillestrøm, Norway
| | - Kjetil Retterstøl
- Lipid Clinic, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
- The Norwegian Medicines Agency, 0950 Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Faculty of Health, Nutrition and Management, Akershus University College, PO box 423, 2001 Lillestrøm, Norway
- Department of Nutrition, Institute of Basic Medical sciences, University of Oslo, PO Box 1046, Blindern 0316 Oslo, Norway
| | - Inger Ottestad
- Faculty of Health, Nutrition and Management, Akershus University College, PO box 423, 2001 Lillestrøm, Norway
- Department of Nutrition, Institute of Basic Medical sciences, University of Oslo, PO Box 1046, Blindern 0316 Oslo, Norway
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical sciences, University of Oslo, PO Box 1046, Blindern 0316 Oslo, Norway
| | - Stine M. Ulven
- Faculty of Health, Nutrition and Management, Akershus University College, PO box 423, 2001 Lillestrøm, Norway
| |
Collapse
|
44
|
Kooshki A, Taleban F, Tabibi H, Hedayati M. Effects of Marine Omega-3 Fatty Acids on Serum Systemic and Vascular Inflammation Markers and Oxidative Stress in Hemodialysis Patients. ANNALS OF NUTRITION AND METABOLISM 2011; 58:197-202. [DOI: 10.1159/000329727] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/30/2011] [Indexed: 01/12/2023]
|
45
|
n−3 LC-PUFA-enriched dairy products are able to reduce cardiovascular risk factors: A double-blind, cross-over study. Clin Nutr 2010; 29:592-9. [DOI: 10.1016/j.clnu.2010.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/21/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
|
46
|
A randomized clinical trial on n-3 polyunsaturated fatty acids supplementation and all-cause mortality in elderly men at high cardiovascular risk. ACTA ACUST UNITED AC 2010; 17:588-92. [DOI: 10.1097/hjr.0b013e328339cc70] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Einvik G, Ekeberg O, Lavik JG, Ellingsen I, Klemsdal TO, Hjerkinn EM. The influence of long-term awareness of hyperlipidemia and of 3 years of dietary counseling on depression, anxiety, and quality of life. J Psychosom Res 2010; 68:567-72. [PMID: 20488274 DOI: 10.1016/j.jpsychores.2009.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the long-term effects of participation in a cardiovascular screening program and of dietary counseling on self-reported psychosocial outcomes and health concerns. METHODS High-risk subjects (n=563) with hyperlipidemia from the Oslo Diet and Antismoking Study (1972-1977) were reexamined after 25 years and randomly assigned to a new 3-year prospective 2x2 factorial placebo-controlled study in 1997 of n-3 polyunsaturated fatty acids and/or dietary counseling. Hospital Anxiety and Depression Scale (HADS), Life Satisfaction Index (LSI), and a new questionnaire on health concerns and behavior in response to risk information were collected at the 25-year follow-up. Hospital Anxiety and Depression Scale and LSI were evaluated at the end of the 3-year Diet and Omega-3 Intervention Trial on atherosclerosis (DOIT) in 505 subjects. RESULTS Twenty-five years after the screening program, HADS-anxiety was similar to the Norwegian norms (3.3 vs. 3.5), while HADS-depression was significantly lower (3.6 vs. 4.1, P<.01). Patients reported that 25 years of awareness of hyperlipidemia had influenced health concerns through a moderate change in diet habits, some restriction in life conduct, but an improvement of the total life situation. After a novel 3-year intervention in DOIT, there was no difference between the dietary counseling and control group with regard to anxiety, depression, or life satisfaction, but HADS-anxiety increased significantly (4.0 vs. 3.3, P<.001) in both groups. CONCLUSION Compared to the general population, screening-positive subjects did not have increased mental distress 25 years after screening, and beneficial health behavior persisted. Dietary counseling did not affect psychosocial outcomes.
Collapse
Affiliation(s)
- Gunnar Einvik
- Division of Medicine, Akershus University Hospital, Lorenskog, Norway; Department of Behavioural Science, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
48
|
Zabel R, Ash S, King N, Naslund E, Bauer J. Gender differences in the effect of fish oil on appetite, inflammation and nutritional status in haemodialysis patients. J Hum Nutr Diet 2010; 23:416-25. [DOI: 10.1111/j.1365-277x.2010.01064.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Robinson JG, Ijioma N, Harris W. Omega-3 fatty acids and cognitive function in women. WOMEN'S HEALTH (LONDON, ENGLAND) 2010; 6:119-34. [PMID: 20088735 PMCID: PMC2826215 DOI: 10.2217/whe.09.75] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Omega-3 fatty acids (FAs) could play an important role in maintaining cognitive function in aging individuals. The omega-3 FA docosahexaenoic acid is a major constituent of neuronal membranes and, along with the other long-chain omega-3 FAs from fish such as eicosapentaentoic acid, has been shown to have a wide variety of beneficial effects on neuronal functioning, inflammation, oxidation and cell death, as well as on the development of the characteristic pathology of Alzheimer's disease. Omega-3 FAs may prevent vascular dementia via salutary effects on lipids, inflammation, thrombosis and vascular function. Epidemiologic studies have generally supported a protective association between fish and omega-3 FA levels and cognitive decline. Some of the small, short-term, randomized trials of docosahexaenoic acid and/or eicosapentaentoic acid supplementation have found positive effects on some aspects of cognition in older adults who were cognitively intact or had mild cognitive impairment, although little effect was found in participants with Alzheimer's disease. Large, long-term trials in this area are needed.
Collapse
Affiliation(s)
- Jennifer G Robinson
- Lipid Research Clinic, 200 Hawkins Drive, SE 226 GH, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
50
|
Trøseid M, Arnesen H, Hjerkinn EM, Seljeflot I. Serum levels of interleukin-18 are reduced by diet and n-3 fatty acid intervention in elderly high-risk men. Metabolism 2009; 58:1543-9. [PMID: 19595382 DOI: 10.1016/j.metabol.2009.04.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/24/2009] [Indexed: 11/16/2022]
Abstract
Inflammation plays a central role in the development and progression of atherosclerosis, and inflammatory markers have been reported to predict cardiovascular events. Mediterranean-like diet and very long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation have been reported to reduce the risk of cardiovascular mortality and morbidity, but the mechanisms are not fully clarified. The aims of the present study were to investigate the effect of such interventions on serum levels of inflammatory markers, and potential associations with changes in serum fatty acids and anthropometric measures. This was a randomized 2 x 2 factorial-designed trial comparing the effect of 3 years of dietary counseling, n-3 PUFA supplementation (2.4 g/d), or both on different measures of atherosclerosis in elderly high-risk men (N = 563). Levels of interleukin-18 (IL-18) were decreased by diet (-10.5% vs baseline, P = .012 compared with no diet) and by n-3 PUFA supplementation (-9.9% vs baseline, P = .008 compared with placebo). Other measured inflammatory markers were not affected. Changes in IL-18 were significantly correlated to changes in triglycerides (r = 0.20, P < .001), eicosapentaenoic acid (r = -0.14, P = .030), docosahexaenoic acid (r = -0.14, P = .034), body mass index (r = 0.16, P < .001), and waist circumference (r = 0.12, P = .007). In conclusion, levels of IL-18 were significantly reduced by Mediterranean-like diet and n-3 PUFA supplementation. However, the changes correlated only weakly to changes in triglycerides, serum fatty acids, and anthropometric measures. The cardioprotective effects of both interventions might thus in part be explained by reduced levels of IL-18, but probably beyond changes in serum fatty acids and body composition.
Collapse
Affiliation(s)
- Marius Trøseid
- Center for Clinical Heart Research, Ullevål Department of Cardiology, Oslo University Hospital, University of Oslo, N-0407 Oslo, Norway
| | | | | | | |
Collapse
|