1
|
Taormina VM, Eisenhardt S, Gilbert MP, Poynter ME, Kien CL, Kraft J. Full-fat versus non-fat yogurt consumption improves glucose homeostasis and metabolic hormone regulation in individuals with prediabetes: A randomized-controlled trial. Nutr Res 2025; 136:39-52. [PMID: 40139076 DOI: 10.1016/j.nutres.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Dietary guidance recommends consuming low- or non-fat dairy foods for metabolic health, yet observational research indicates full-fat yogurt intake may not detrimentally affect type 2 diabetes risk. Randomized-controlled trials are needed to further explore this relationship. Our aim was to evaluate the effect of substituting full-fat (3.25%) yogurt for non-fat yogurt on type 2 diabetes risk in individuals with prediabetes. We hypothesized beneficial effects on measures of glucose homeostasis, insulin sensitivity, and metabolic hormone response following short-term consumption of 3 full-fat yogurt servings daily. Thirteen individuals completed the 8-week randomized, double-masked crossover controlled-feeding trial comprised 2, 3-week experimental diet periods in which participants consumed 3 daily servings of full-fat or non-fat yogurt; a 1-week control preceded each diet period. Following each diet period, changes in whole-body glucose handling and metabolic hormone concentrations were measured using mixed meal and oral glucose tolerance tests. Our primary outcome measure was the blood glucose concentration at the 120-minute time point during the oral glucose tolerance test. Though differences in the primary outcome measure were not observed, the full-fat yogurt diet resulted in lower concentrations of blood fructosamine, a marker of average blood glucose concentrations over 2 to 3 weeks. Further, fasting glucagon-like peptide-1 and post-prandial glucose-dependent insulinotropic polypeptide concentrations were greater following the full-fat yogurt diet. Our preliminary results indicate that short-term consumption of full-fat relative to non-fat yogurt beneficially affected aspects of glucose homeostasis and metabolic hormone regulation in individuals with prediabetes, warranting further randomized-controlled research. This trial is registered at clinicaltrials.gov (NCT03577119).
Collapse
Affiliation(s)
- Victoria M Taormina
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Simonne Eisenhardt
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | | | | | - C Lawrence Kien
- Department of Medicine, University of Vermont, Burlington, VT, USA; Department of Pediatrics, University of Vermont, Burlington, VT, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA; Department of Medicine, University of Vermont, Burlington, VT, USA; Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
2
|
Ng NXW, Gross SM. Is Low-Fat Dairy an Appropriate Recommendation for Children? JAMA Pediatr 2025:2830700. [PMID: 39992685 DOI: 10.1001/jamapediatrics.2024.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
This viewpoint explores the evidence behind recommendations for low-fat dairy consumption in children.
Collapse
Affiliation(s)
| | - Susan Michelle Gross
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
3
|
Taormina VM, Unger AL, Kraft J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front Nutr 2024; 11:1386257. [PMID: 39135556 PMCID: PMC11317386 DOI: 10.3389/fnut.2024.1386257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Reducing dairy fat intake is a common dietary guideline to limit energy and saturated fatty acid intake for the promotion of cardiometabolic health. However, research utilizing a holistic, food-based approach to assess the consumption of the fat found in dairy, a broad and diverse food group, may provide new insight into these guidelines. Dairy fat is comprised of a diverse assembly of fatty acids, triacylglycerols, sterols, and phospholipids, all uniquely packaged in a milk fat globule. The physical structure of this milk fat globule and its membrane is modified through different processing methods, resulting in distinctive dairy-fat matrices across each dairy product. The objectives of this narrative review were to first define and compare the dairy-fat matrix in terms of its unique composition, physical structure, and fat content across common dairy products (cow's milk, yogurt, cheese, and butter). With this information, we examined observational studies and randomized controlled trials published within the last 10 years (2013-2023) to assess the individual effects of the dairy-fat matrix in milk, yogurt, cheese, and butter on cardiometabolic health and evaluate the implications for nutrition guidance. Searches conducted on Ovid MEDLINE and PubMed® utilizing search terms for cardiometabolic health, both broadly and regarding specific disease outcomes and risk factors, yielded 59 studies that were analyzed and included in this review. Importantly, this review stratifies by both dairy product and fat content. Though the results were heterogeneous, most studies reported no association between intake of these individual regular-fat dairy products and cardiometabolic outcome measures, thus, the current body of evidence suggests that regular-fat dairy product consumption may be incorporated within overall healthy eating patterns. Research suggests that there may be a beneficial effect of regular-fat milk and yogurt intake on outcome measures related to body weight and composition, and an effect of regular-fat cheese intake on outcome measures related to blood lipids, but more research is necessary to define the directionality of this relationship. Lastly, we identify methodological research gaps and propose future research directions to bolster the current evidence base available for ascertaining the role of dairy fat in a healthy diet.
Collapse
Affiliation(s)
- Victoria M. Taormina
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
| | - Allison L. Unger
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, United States
- National Dairy Council, Rosemont, IL, United States
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, The University of Vermont, Colchester, VT, United States
- Department of Nutrition and Food Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Lawson Y, Mpasi P, Young M, Comerford K, Mitchell E. A review of dairy food intake for improving health among black children and adolescents in the US. J Natl Med Assoc 2024; 116:241-252. [PMID: 38360503 DOI: 10.1016/j.jnma.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Adequate nutrition during childhood and adolescence is crucial for proper neurological, musculoskeletal, immunological, and cardiometabolic health and development. Yet, disparities among socially underserved racial/ethnic groups in the United States (US) provide significant challenges to achieving adequate nutrition during these years of rapid growth and maturation. For example, Black children and adolescents are at greater risk for having food insecurity, lower-quality diets, obesity, and numerous associated health challenges that result from these disparities compared to their White peers. A growing body of evidence indicates that improving diet quality is critical for improving childhood and adolescent health and well-being, and that the diverse nutritional profile and bioactive compounds found within dairy foods may play multiple roles in promoting proper growth and development during these life stages. Therefore, to support overall health and development among Black youth, greater education and implementation efforts are needed to help this population meet the national dietary recommendations of 2.5 to 3 servings of dairy foods per day. Continuing to fall short of these recommendations puts Black children and adolescents at risk of multiple nutrient inadequacies and health disparities that can have lifelong impacts on disease development, mental health, and quality of life. This review presents the state of knowledge on health disparities and modifiable nutritional strategies involving milk and dairy foods to support the growth and maturation of children and adolescents, with a special focus on Black youth in the US.
Collapse
Affiliation(s)
- Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Michal Young
- Emeritus, Howard University College of Medicine, Department of Pediatrics and Child Health, Washington D.C., United States
| | - Kevin Comerford
- OMNI Nutrition Science, California Dairy Research Foundation, Davis, CA, United States.
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
5
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12820-12840. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
6
|
Torres-Gonzalez M. The Relationship between Whole-Milk Dairy Foods and Metabolic Health Highlights an Opportunity for Dietary Fat Recommendations to Evolve with the State of the Science. Nutrients 2023; 15:3570. [PMID: 37630760 PMCID: PMC10459826 DOI: 10.3390/nu15163570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The science of dietary fats has evolved, and a body of evidence indicates they are complex bioactive nutrients that have different effects on health depending on their food source, chain length, degree of saturation, and other factors that can be affected by food processing, handling, and storage. As such, it is becoming increasingly clear that the effects of foods on obesity and metabolic health cannot be predicted simply with their fat content. The aim of this opinion article is to provide a brief overview of select recent research on the effects of whole-milk dairy foods on body composition and indicators of metabolic health across the lifespan to show the gap between current knowledge and dietary guidance. As the state of the science on dietary fats and human health evolves to consider the complexity of food matrices, the total nutrient package they deliver, and the health impacts associated with dietary patterns, so too must guidelines for dietary fat.
Collapse
|