1
|
Clark KL, George JW, Davis JS. Adolescent exposure to a mixture of per- and polyfluoroalkyl substances (PFAS) depletes the ovarian reserve, increases ovarian fibrosis, and alters the Hippo pathway in adult female mice. Toxicol Sci 2024; 202:36-49. [PMID: 39141488 PMCID: PMC11514835 DOI: 10.1093/toxsci/kfae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their environmental persistence and resistance to biodegradation. This study investigated the impact of adolescent exposure to a PFAS mixture on adult ovarian function. Female CD-1 mice were orally exposed to vehicle control or a PFAS mixture (comprised of perfluorooctanoic acid, perfluorooctanesulfonic acid, undecafluoro-2-methyl-3-oxahexanoic acid, and perfluorobutanesulfonic acid) for 15 d. After a 42-d recovery period, reproductive hormones, ovarian fibrosis, and ovarian gene and protein expression were analyzed using ELISA, Picrosirius red staining, qPCR, and immunoblotting, respectively. Results revealed that PFAS exposure did not affect adult body or organ weight, although ovarian weight slightly decreased. PFAS-exposed mice exhibited a disturbed estrous cycle, with less time spent in proestrus than control mice. Follicle counting indicated a reduction in primordial and primary follicles. Serum analysis revealed no changes in steroid hormones, follicle-stimulating hormone, or anti-Müllerian hormone, but a significant increase in luteinizing hormone was observed in PFAS-treated mice. Ovaries collected from PFAS-treated mice had increased mRNA transcripts for steroidogenic enzymes and fatty acid synthesis-related genes. PFAS exposure also increased collagen content in the ovary. Additionally, serum tumor necrosis factor-α levels were higher in PFAS-treated mice. Finally, transcripts and protein abundance for Hippo pathway components were upregulated in the ovaries of the PFAS-treated mice. Overall, these findings suggest that adolescent exposure to PFAS can disrupt ovarian function in adulthood.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
2
|
Clark KL, Shukla M, George JW, Gustin S, Rowley MJ, Davis JS. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol Sci 2024; 200:57-69. [PMID: 38603627 PMCID: PMC11199914 DOI: 10.1093/toxsci/kfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Stephanie Gustin
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Heartland Center for Reproductive Medicine, Omaha, Nebraska 68138, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| |
Collapse
|
3
|
Xu X, Zhang X, Chen J, Du X, Sun Y, Zhan L, Wang W, Li Y. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116251. [PMID: 38537477 DOI: 10.1016/j.ecoenv.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The pathogeny of polycystic ovary syndrome (PCOS) is intricate, with endocrine disruptors (EDCs) being acknowledged as significant environmental factors. Research has shown a link between exposure to per- and polyfluoroalkyl substances (PFAS) and the development and progression of PCOS, although the precise mechanism is not fully understood. This study utilized toxicogenomics and comparative toxicogenomics databases to analyze data and investigate how PFAS mixtures may contribute to the development of PCOS. The results indicated that 74 genes are associated with both PFAS exposure and PCOS progression. Enrichment analysis suggested that cell cycle regulation and steroid hormone synthesis may be crucial pathways through which PFAS mixtures participate in the development of PCOS, involving important genes such as CCNB1 and SRD5A1. Furthermore, the study identified transcription factors (TFs) and miRNAs that may be involved in the onset and progression of PCOS, constructing regulatory networks encompassing TFs-mRNA interactions and miRNA-mRNA relationships to elucidate their regulatory roles in gene expression. By utilizing data mining techniques based on toxicogenomic databases, this study provides relatively comprehensive insights into the association between exposure factors and diseases compared to traditional toxicology studies. These findings offer new perspectives for further in vivo or in vitro investigations and contribute to understanding the pathogenesis of PCOS, thereby providing valuable references for identifying clinical treatment targets.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiaoping Zhang
- Ganzhou Ganxian District Maternity and Child Health Hospital, Ganzhou, Jiangxi Province 341100, China
| | - Jiake Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiushuai Du
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Sun
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenxiang Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
| |
Collapse
|
4
|
Jain RB, Ducatman A. Factors affecting serum PFAS concentrations among US females with surgically and naturally induced menopause: data from NHANES 2003-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84705-84724. [PMID: 37369902 DOI: 10.1007/s11356-023-28395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Sex hormones influence excretion of the biopersistent per-and polyfluoroalkyl substances (PFAS) in rodents, but such influences in human studies are less clear. Data from National Health and Nutrition Examination Survey (NHANES) for 2003-2018 for US females aged ≥ 20 years who reported having hysterectomy (HYST, N=1064) and who reported being in natural menopause (MENOP, N=1505) were analyzed for associations of ever use of birth control pills, past pregnancies, live births, and other factors with serum concentrations of six per- and polyfluoroalkyl substances (PFAS). For both HYST and MENOP, PFAS concentrations computed as adjusted geometric means (AGM) were higher among those who took female replacement hormone therapy (HRT) compared to nonusers in multivariable adjusted models, for example PFOS in HRT takers (10.70 ng/mL; 95% C.I. 9.46-12.11) vs. 8.70 ng/mL (95% C.I. 8.07-9.37) in nonusers (p<0.01), and PFOA in HRT users was 2.85 ng/mL (95% C.I. 2.53-3.21) vs. 2.44 ng/mL (95% C.I. 2.32-2.36) in nonusers (p=0.01), with similar findings across race/ethnicity stratifications. HYST participants with retained ovaries sometimes had higher serum PFAS than those without ovaries in post-HYST participants not taking HRT, but results had overlapping confidence intervals in all cases and were inconsistent. PFASs were inversely associated with obesity and directly associated with higher SES as reflected in poverty income ratio (PIR) in most cases, yet HRT results for the entire population are robust to adjustments for obesity and PIR. The results suggest the hypothesis that exogenous hormone use, and specifically estrogen hormones, are associated with higher serum PFAS in postmenopausal women. We discuss potential explanations for the findings, including data from other populations that estrogens may delay the onset of kidney disease, a finding which might paradoxically increase serum PFAS among the HRT population to explain some or all of our findings in a menopausal population.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30019, USA.
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, WV, USA
| |
Collapse
|
5
|
Levine L, Hall JE. Does the environment affect menopause? A review of the effects of endocrine disrupting chemicals on menopause. Climacteric 2023; 26:206-215. [PMID: 37011670 DOI: 10.1080/13697137.2023.2173570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Endocrine disrupting chemicals are widely distributed in our environment. Humans are exposed to these compounds not only through their occupations, but also through dietary consumption and exposure to contaminated water, personal care products and textiles. Chemicals that are persistent in the body and in our environment include dioxins and polychlorinated biphenyls. Non-persistent chemicals including bisphenol A, phthalates and parabens are equally as important because they are ubiquitous in our environment. Heavy metals, including lead and cadmium, can also have endocrine disrupting properties. Although difficult to study due to their variety of sources of exposures and mechanisms of action, these chemicals have been associated with early menopause, increased frequency of vasomotor symptoms, altered steroid hormone levels and markers of diminished ovarian reserve. Understanding the impacts of these exposures is important given the potential for epigenetic modification, which can alter gene function and result in multi-generational effects. This review summarizes findings in humans and animals or cell-based models from the past decade of research. Continued research is needed to assess the effects of mixtures of chemicals, chronic exposures and new compounds that are continuously being developed as replacements for toxic chemicals that are being phased out.
Collapse
Affiliation(s)
- L Levine
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Associations of per- and polyfluoroalkyl substances and alternatives with reproductive hormones in women of childbearing age. Int J Hyg Environ Health 2023; 250:114158. [PMID: 36934548 DOI: 10.1016/j.ijheh.2023.114158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Experimental studies suggested that per- and polyfluoroalkyl substances (PFAS) may have endocrine-disrupting effects. However, the epidemiological evidence on the associations of PFAS with female reproductive hormones is sparse and limited to perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). OBJECTIVE To evaluate effects of legacy and emerging PFAS alternatives on female reproductive hormones. METHODS A total of 433 reproductive-aged females were recruited from 2014 to 2016. Information on age, age at menarche, gravity, menstrual cycle, BMI, education, and income was obtained from medical records and questionnaires. Serum samples were collected for reproductive hormones, and plasma samples for PFAS measurement by ultraperformance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). Multiple linear regression and quantile g-computation (q-gcomp) were used to examine the associations of individual PFAS and their mixture with reproductive hormones. RESULTS Multiple linear regression analysis showed significant effects of certain PFAS on total testosterone (TT): adjusted estimate (β) for perfluoroheptanoic acid (PFHpA) was 0.57 (95% CI: 0.18, 0.97). Moreover, a positive association was detected between PFAS mixture and TT in the q-gcomp model. Higher concentrations of 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) were associated with significantly lower prolactin level (β = -0.07, 95% CI: -0.14, -0.001). CONCLUSION Our study found that exposure to PFAS alternatives was associated with altered levels of reproductive hormones in women of childbearing age.
Collapse
|
7
|
Huang Y, Nian M, Yu G, Tian Y, Zhang J, Jiang F, Zhang J. Environmental exposure to per- and polyfluoroalkyl substances and sleep disturbance in pregnant women: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156869. [PMID: 35752248 DOI: 10.1016/j.scitotenv.2022.156869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Previous studies on the association between exposure to per- and polyfluoroalkyl substances (PFAS) and sleep patterns in pregnant women are limited. This cohort study aims to assess the associations between PFAS and sleep quality in pregnant women. Of the 4127 women who participated in the Shanghai Birth Cohort, 3174, 3070, and 2887 women in their first, second, and third trimesters of gestation, respectively, were included in our analysis. Sleep measures were taken using the Pittsburgh Sleep Quality Index questionnaire. Ten PFAS were measured in blood samples collected in early pregnancy. We first evaluate the associations between individual PFAS and sleep quality in the three trimesters. Weighted quantile sum (WQS) regression models were performed to test the overall effect of the PFAS mixture on sleep quality during the three trimesters. Longitudinal analyses throughout pregnancy were performed with generalized estimating equation models. Furthermore, the effect of the PFAS mixture on longitudinal sleep patterns was examined using longitudinal latent class analyses combined with WQS models. The single pollutant analysis suggested that most PFAS were associated with increased sleep disturbance risk, lower sleep efficiency, and shorter sleep duration in the three trimesters. Similarly, the WQS models revealed a significant association between the PFAS mixtures and elevated sleep disturbance risk in pregnant women, with perfluorobutane sulfonate acting as the predominant risk factor. Additionally, the longitudinal analysis confirmed the effects of PFAS exposure on increased sleep disturbance over time. The PFAS mixture was positively associated with higher risks of poor sleep quality and sleep medicine use [adjusted odds ratio (aOR) = 1.10; 95 % confidence interval (95%CI): 1.01, 1.20; and aOR = 1.25 (95%CI: 1.04, 1.50) respectively] throughout the three trimesters. Our study suggests that PFAS may increase the risk of sleep disturbance in pregnant women. Further studies are needed to confirm our results and elucidate potential mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China
| | - Jingsong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Medical Psychology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Fan Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institution, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Rd, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200052, China.
| |
Collapse
|