Iyer HS, Stone BV, Roscoe C, Hsieh MC, Stroup AM, Wiggins CL, Schumacher FR, Gomez SL, Rebbeck TR, Trinh QD. Access to Prostate-Specific Antigen Testing and Mortality Among Men With Prostate Cancer.
JAMA Netw Open 2024;
7:e2414582. [PMID:
38833252 PMCID:
PMC11151156 DOI:
10.1001/jamanetworkopen.2024.14582]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 06/06/2024] Open
Abstract
Importance
Prostate-specific antigen (PSA) screening for prostate cancer is controversial but may be associated with benefit for certain high-risk groups.
Objectives
To evaluate associations of county-level PSA screening prevalence with prostate cancer outcomes, as well as variation by sociodemographic and clinical factors.
Design, Setting, and Participants
This cohort study used data from cancer registries based in 8 US states on Hispanic, non-Hispanic Black, and non-Hispanic White men aged 40 to 99 years who received a diagnosis of prostate cancer between January 1, 2000, and December 31, 2015. Participants were followed up until death or censored after 10 years or December 31, 2018, whichever end point came first. Data were analyzed between September 2023 and January 2024.
Exposure
County-level PSA screening prevalence was estimated using the Behavior Risk Factor Surveillance System survey data from 2004, 2006, 2008, 2010, and 2012 and weighted by population characteristics.
Main Outcomes and Measures
Multivariable logistic, Cox proportional hazards regression, and competing risks models were fit to estimate adjusted odds ratios (AOR) and adjusted hazard ratios (AHR) for associations of county-level PSA screening prevalence at diagnosis with advanced stage (regional or distant), as well as all-cause and prostate cancer-specific survival.
Results
Of 814 987 men with prostate cancer, the mean (SD) age was 67.3 (9.8) years, 7.8% were Hispanic, 12.2% were non-Hispanic Black, and 80.0% were non-Hispanic White; 17.0% had advanced disease. There were 247 570 deaths over 5 716 703 person-years of follow-up. Men in the highest compared with lowest quintile of county-level PSA screening prevalence at diagnosis had lower odds of advanced vs localized stage (AOR, 0.86; 95% CI, 0.85-0.88), lower all-cause mortality (AHR, 0.86; 95% CI, 0.85-0.87), and lower prostate cancer-specific mortality (AHR, 0.83; 95% CI, 0.81-0.85). Inverse associations between PSA screening prevalence and advanced cancer were strongest among men of Hispanic ethnicity vs other ethnicities (AOR, 0.82; 95% CI, 0.78-0.87), older vs younger men (aged ≥70 years: AOR, 0.77; 95% CI, 0.75-0.79), and those in the Northeast vs other US Census regions (AOR, 0.81; 95% CI, 0.79-0.84). Inverse associations with all-cause mortality were strongest among men of Hispanic ethnicity vs other ethnicities (AHR, 0.82; 95% CI, 0.78-0.85), younger vs older men (AHR, 0.81; 95% CI, 0.77-0.85), those with advanced vs localized disease (AHR, 0.80; 95% CI, 0.78-0.82), and those in the West vs other US Census regions (AHR, 0.89; 95% CI, 0.87-0.90).
Conclusions and Relevance
This population-based cohort study of men with prostate cancer suggests that higher county-level prevalence of PSA screening was associated with lower odds of advanced disease, all-cause mortality, and prostate cancer-specific mortality. Associations varied by age, race and ethnicity, and US Census region.
Collapse