Cui C, Zhu L, Wang Q, Liu R, Xie D, Guo Y, Yu D, Wang C, Chen D, Jiang P. A GC-MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice.
Heliyon 2022;
8:e09869. [PMID:
35855991 PMCID:
PMC9287194 DOI:
10.1016/j.heliyon.2022.e09869]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
Background
Vancomycin is a glycopeptide antibiotic that is commonly used for severe drug-resistant infections treatment. Application of vancomycin frequently leads to severe ototoxicity, hepatotoxicity, and nephrotoxicity; however, the comprehensive metabolic analysis of vancomycin-induced toxicity is lacking.
Purpose
This study attempted to investigate the metabolic changes after vancomycin administration in mice.
Methods
Experimental mice (n = 9) received continuous intraperitoneal injection of vancomycin (400 mg/kg) every day for 7 days, and mice in control group (n = 9) were treated with the same amount of normal saline. Pathological changes of the kidney were examined using haematoxylin and eosin (HE) staining. A gas chromatography-mass spectrometry (GC-MS) approach was used to identify discriminant metabolites in serum and various organs including the heart, liver, kidney, spleen, cerebral cortex, hippocampus, inner ear, lung, and intestine. The potential metabolites were identified using orthogonal partial least squares discrimination analysis (OPLS-DA). Subsequently, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG, http://www.kegg.jp) were employed to depict the metabolic pathways.
Results
Compared with the control group, the vancomycin induced 13, 17, 27, 22, 16, 10, 17, 11, 10, and 7 differential metabolites in the serum, liver, kidney, heart, cerebral cortex, lung, spleen, intestine, hippocampus, and inner ear, respectively. Further pathway analyses identified that amino acids metabolism, fatty acids biosynthesis, energy metabolism, and lipid metabolism were disrupted after VCM exposure.
Conclusion
Vancomycin affects the metabolism in various organs in mice, which provides new insights for identification of vancomycin-induced toxicity, and facilitate to better understanding of the metabolic pathogenesis of vancomycin.
Collapse