1
|
Bonfield TL, Zuckerman ST, Sutton MT, Korley JN, von Recum HA. Polymerized cyclodextrin microparticles for sustained antibiotic delivery in lung infections. J Biomed Mater Res A 2024; 112:1305-1316. [PMID: 38380736 PMCID: PMC11187681 DOI: 10.1002/jbm.a.37680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Pulmonary infections complicate chronic lung diseases requiring attention to both the pathophysiology and complexity associated with infection management. Patients with cystic fibrosis (CF) struggle with continuous bouts of pulmonary infections, contributing to lung destruction and eventual mortality. Additionally, CF patients struggle with airways that are highly viscous, with accumulated mucus creating optimal environments for bacteria colonization. The unique physiology and altered airway environment provide an ideal niche for bacteria to change their phenotype often becoming resistant to current treatments. Colonization with multiple pathogens at the same time further complicate treatment algorithms, requiring drug combinations that can challenge CF patient tolerance to treatment. The goal of this research initiative was to explore the utilization of a microparticle antibiotic delivery system, which could provide localized and sustained antibiotic dosing. The outcome of this work demonstrates the feasibility of providing efficient localized delivery of antibiotics to manage infection using both preclinical in vitro and in vivo CF infection models. The studies outlined in this manuscript demonstrate the proof-of-concept and unique capacity of polymerized cyclodextrin microparticles to provide site-directed management of pulmonary infections.
Collapse
Affiliation(s)
- Tracey L. Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University
| | - Sean T. Zuckerman
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| | - Morgan T. Sutton
- Department of Genetics and Genome Sciences, Case Western Reserve University
- Saint Jude Children Research Hospital Graduate School of Biomedical Sciences, Memphis Tennessee
| | | | - Horst A. von Recum
- Affinity Therapeutics, Cleveland Ohio, United States
- Department of Biomedical Engineering, Case Western Reserve University
| |
Collapse
|
2
|
Hernández‐Chico I, Rodríguez‐Guerrero E, Expósito‐Ruiz M, Navarro‐Marí J, Gutiérrez‐Fernández J. Reliability of a Screening Method Using Antibiotic Disks to Detect Carbapenemases in Glucose-Nonfermenting Gram-Negative Microorganisms From Clinical Samples of a Regional Hospital in Southeastern Spain. J Clin Lab Anal 2024; 38:e25036. [PMID: 38619303 PMCID: PMC11073814 DOI: 10.1002/jcla.25036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Infections by glucose-nonfermenting gram-negative bacilli (NFGNB) pose a major public health problem due to multiresistance to beta-lactam antibiotics, especially plasmid-borne carbapenemases. Their detection by microbiology laboratories is challenging, and there is a need for easy-to-use and reliable diagnostic techniques. Our objective was to evaluate an in-house screening method to presumptively detect carbapenemases in NFGNB in a simple and clinically useful manner. METHODS The study included 175 NFGNB isolates from urinary, respiratory, and rectal samples. In a triple assay, isolates were incubated at 37°C for 24 h on three solid-culture media: MacConkey II Agar, 5% Sheep Blood Columbia Agar and Mueller Hinton II Agar; meropenem (MEM) and cefepime (FEP) disks were employed for screening. Studies were then performed on the inhibition halo diameter, scanning effects, and the appearance of mutant colonies, which were compared with those observed using the colorimetric Neo-Rapid CARB Kit and immunochromatography (NG5-Test Carba and K-Set for OXA-23). Receiver operating characteristic curves were constructed for these data. RESULTS Carbapenemases were expressed by 79/175 (45.1%): 19 Pseudomonas aeruginosa and 60 Acinetobacter baumannii. Optimal inhibition halo diameter cutoffs to detect this resistance on 5% sheep blood agar were as follows: 6 mm (MEM) and 6.5 mm (FEP) for P. aeruginosa (in the absence of scanning effects and mutations) and 10.5 mm (MEM) and 16 mm (FEP) for A. baumannii (even in the presence of scanning effects). CONCLUSION The combined utilization of MEM and FEP antibiotic disks in 5% sheep blood agar, measuring their inhibition haloes, offers an effective method to predict the presence of carbapenemases as resistance mechanism in P. aeruginosa and A. baumannii.
Collapse
Affiliation(s)
- Itahisa Hernández‐Chico
- Departmento de Microbiología, Facultad de MedicinaUniversidad de Granada‐Instituto de Investigación BiosanitariaGranadaSpain
| | - Enrique Rodríguez‐Guerrero
- Departmento de MicrobiologíaHospital Universitario Virgen de las Nieves‐Instituto de Investigación BiosanitariaGranadaSpain
| | - Manuela Expósito‐Ruiz
- Departmento de Estadística, Facultad de MedicinaUniversity of Granada‐Instituto de Investigación BiosanitariaGranadaSpain
| | - José María Navarro‐Marí
- Departmento de MicrobiologíaHospital Universitario Virgen de las Nieves‐Instituto de Investigación BiosanitariaGranadaSpain
| | - José Gutiérrez‐Fernández
- Departmento de Microbiología, Facultad de MedicinaUniversidad de Granada‐Instituto de Investigación BiosanitariaGranadaSpain
- Departmento de MicrobiologíaHospital Universitario Virgen de las Nieves‐Instituto de Investigación BiosanitariaGranadaSpain
| |
Collapse
|
3
|
Ma Y, Wu N, Zhang T, Li Y, Cao L, Zhang P, Zhang Z, Zhu T, Zhang C. The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. Microbiol Spectr 2024; 12:e0390023. [PMID: 38132570 PMCID: PMC10846037 DOI: 10.1128/spectrum.03900-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Nannan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Chan AJ, Lebovic G, Wan M, Chen Y, Leung E, Langford BJ, Seah J, Taggart LR, Downing M. Impact of extended-infusion piperacillin-tazobactam in a Canadian community hospital. INFECTIOUS MEDICINE 2023; 2:31-35. [PMID: 38076404 PMCID: PMC10699660 DOI: 10.1016/j.imj.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 03/30/2024]
Abstract
BACKGROUND Studies have demonstrated improved clinical outcomes with extended infusion (EI) piperacillin/tazobactam (TZP) compared to standard infusion (SI). However, there is less evidence on its benefits in noncritically-ill patients. Hospital-wide EI TZP was implemented at our site on February 21, 2012. Our objectives were to compare clinical, safety and economic outcomes between EI and SI TZP. METHODS A retrospective cohort study of all adult patients who received EI TZP (3.375 g IV q8h infused over 4 hours and SI TZP for ≥ 48 hours during 3 years pre-and postimplementation was conducted. The primary study outcome was 14-day mortality while secondary outcomes included length of hospital stay (LOS), nursing plus pharmacy cost, occurrence of Clostridioides difficile infection, readmission within 30 days and change in Pseudomonas aeruginosa minimum inhibitory concentration (MIC) distribution for TZP. The primary outcome and binary secondary outcomes were analyzed using a logistic regression model. LOS was examined using time to event analysis. Cost was examined using linear regression modelling. RESULTS Overall, 2034 patients received EI TZP and 1364 patients received SI TZP. EI TZP was associated with lower odds of mortality (OR 0.76, 95% CI 0.63-0.91), lower odds of C. difficile infection (OR 0.59, 95% CI 0.41-0.84) and 8% lower cost (estimate 0.92, 95% CI 0.87-0.98) compared to SI TZP. CONCLUSIONS Hospital-wide implementation of EI TZP was associated with lower odds of 14-day mortality and incidence of C. difficile infection with cost savings at our institution.
Collapse
Affiliation(s)
- April J. Chan
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | | | - Michael Wan
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yan Chen
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Elizabeth Leung
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Bradley J. Langford
- University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Hotel Dieu Shaver Health and Rehabilitation Centre, St. Catharines, Ontario, Canada
| | - Jenny Seah
- Department of Pharmacy, Unity Health Toronto, Toronto, Ontario, Canada
| | - Linda R. Taggart
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark Downing
- University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Gill CM, Nicolau DP. Piperacillin/Tazobactam Dose Optimization in the Setting of Piperacillin/Tazobactam-susceptible, Carbapenem-resistant Pseudomonas aeruginosa: Time to Reconsider Susceptible Dose Dependent. Clin Ther 2023; 45:72-77. [PMID: 36593150 DOI: 10.1016/j.clinthera.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE This study evaluates the in vitro potency of piperacillin/tazobactam among a global collection of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) and assesses the adequacy of the Clinical and Laboratory Standards Institute (CLSI) P aeruginosa breakpoint dose in the setting of CR-PA using Monte Carlo simulation. METHODS Isolates were collected during the Enhancing Rational Antimicrobials Against Carbapenem-Resistant P aeruginosa (ERACE-PA) Global Surveillance Program. Piperacillin/tazobactam MICs were determined using broth microdilution per CLSI standards. A 5000-patient Monte Carlo simulation was performed using various piperacillin/tazobactam dosing regimens to determine the probability of target attainment (PTA) for 50% free time above the MIC. The MIC distribution of piperacillin/tazobactam-susceptible CR-PA was used to calculate cumulative fraction of response (CFR). Optimal PTA and CFR were defined as 90% target achievement. FINDINGS A total of 28% of tested CR-PA were piperacillin/tazobactam susceptible. Of these, 71% had MICs of 8 to 16/4 mg/L. Doses of 3.375 g q6h as 0.5-hour infusion (current breakpoint dose) had adequate PTA at MIC of 8/4 mg/L (CFR, 81%); however, extended infusion of 3 or 4 hours improved PTA at 16/4 mg/L (CFR, >90%). Doses of 4.5 g q8h as a 4-hour infusion and 4.5 g q6h as a 3-hour infusion both provide >90% PTA at an MIC of 16 mg/L (CFRs, 97 and 100%, respectively), favoring susceptible dose dependent interpretive criteria with these regimens. IMPLICATIONS Although susceptible, piperacillin/ tazobactam has reduced potency in CR-PA. If piperacillin/tazobactam is used for susceptible CR-PA, high-doses (4.5 g q6h) and extended infusion (3 hours or continuous infusion) are needed to optimize exposure.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research & Development Hartford Hospital, Hartford, Connecticut
| | - David P Nicolau
- Center for Anti-Infective Research & Development Hartford Hospital, Hartford, Connecticut; Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut.
| | | |
Collapse
|
7
|
Paprocka P, Durnaś B, Mańkowska A, Król G, Wollny T, Bucki R. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022; 11:pathogens11060679. [PMID: 35745533 PMCID: PMC9230571 DOI: 10.3390/pathogens11060679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most frequent opportunistic microorganisms causing infections in oncological patients, especially those with neutropenia. Through its ability to adapt to difficult environmental conditions and high intrinsic resistance to antibiotics, it successfully adapts and survives in the hospital environment, causing sporadic infections and outbreaks. It produces a variety of virulence factors that damage host cells, evade host immune responses, and permit colonization and infections of hospitalized patients, who usually develop blood stream, respiratory, urinary tract and skin infections. The wide intrinsic and the increasing acquired resistance of P. aeruginosa to antibiotics make the treatment of infections caused by this microorganism a growing challenge. Although novel antibiotics expand the arsenal of antipseudomonal drugs, they do not show activity against all strains, e.g., MBL (metalo-β-lactamase) producers. Moreover, resistance to novel antibiotics has already emerged. Consequently, preventive methods such as limiting the transmission of resistant strains, active surveillance screening for MDR (multidrug-resistant) strains colonization, microbiological diagnostics, antimicrobial stewardship and antibiotic prophylaxis are of particular importance in cancer patients. Unfortunately, surveillance screening in the case of P. aeruginosa is not highly effective, and a fluoroquinolone prophylaxis in the era of increasing resistance to antibiotics is controversial.
Collapse
Affiliation(s)
- Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Jana Kilińśkiego 1 Białystok, 15-089 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-83
| |
Collapse
|
8
|
Therapeutic failures of targeted antibiotic prophylaxis in urology. Eur J Clin Microbiol Infect Dis 2021; 41:299-304. [PMID: 34787746 DOI: 10.1007/s10096-021-04329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/29/2021] [Indexed: 10/19/2022]
Abstract
Targeted antibiotic prophylaxis (TAP) is required for patients with positive urine culture before urological surgery. Our aim was to determine the efficacy of TAP. This was a prospective single-center study performed in a urology department. All patients who underwent a programmed surgery were included. Urine culture was obtained before surgery requiring a prophylaxis: in the case of sterile urines, antibiotics were used in accordance with national recommendations; for positive urine culture, a TAP was used in accordance with susceptibility testing. The drugs were administered for 2 days before surgery until withdrawal of bladder catheter. The occurrence of healthcare-associated infections was registered until day 30 after surgery. Two hundred three patients were included for 8 non-consecutive weeks in 2020, among whom fifteen were lost of sight before day 30. Among the remaining 188 patients, most frequent surgeries were 75 prostatic diseases (40%), 50 endo-ureteral surgeries for JJ stent insertion (27%), and 23 bladder cancers (12%). One hundred forty-eight (79%) patients required a urine culture before procedure; 142/148 (96%) urine cultures were performed, leading to 74 TAP. The main isolated bacteria were 48 Enterobacteriaceae and 8 Enterococcus spp. TAP was cotrimoxazole (n = 30), aminoglycosides (n = 11), amoxicillin (n = 9), fluoroquinolones (n = 7), and others (n = 17). The rate of healthcare-associated infections was 14.8% (11/74), including six microbiologically documented antibiotic failures. The rate of healthcare-associated infection after urological surgery using TAP was high, implying to discuss the choice and the dosage of the antibiotic molecules.
Collapse
|
9
|
Gan Z, Zhang K, Shi P, Zhao Y, Zeng R. Copper(i)-catalyzed radical carboamination reaction of 8-aminoquinoline-oriented buteneamides with chloroform: synthesis of-β-lactams. RSC Adv 2021; 11:28081-28084. [PMID: 35480755 PMCID: PMC9037986 DOI: 10.1039/d1ra05233k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
A novel Cu(CH3CN)4PF6-catalyzed carboamination reaction of 8-aminoquinoline-oriented buteneamides with chloroform to afford 4-(2,2,2-trichloroethyl)-β-lactams is described. The reaction proceeded at 110 °C in air with di-t-butyl peroxide. Preliminary studies indicated that the reaction undergoes a free radical mechanism via a Cu(i)/Cu(ii)/Cu(iii) catalytic cycle.
Collapse
Affiliation(s)
- Zixu Gan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Ke Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg1 52074 Aachen Germany
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
10
|
Kara E, Bahap M, Inkaya AC. Should prolonged ceftriaxone infusions be preferred in septic patients? Am J Emerg Med 2020; 44:474-475. [PMID: 33071095 DOI: 10.1016/j.ajem.2020.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Emre Kara
- Hacettepe University Faculty of Pharmacy, Department of Clinical Pharmacy, Ankara, Turkey.
| | - Melda Bahap
- Hacettepe University Faculty of Pharmacy, Department of Clinical Pharmacy, Ankara, Turkey
| | - Ahmet Cagkan Inkaya
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| |
Collapse
|