1
|
Genetic correlation between alcohol preference and conditioned fear: Exploring a functional relationship. Alcohol 2017; 58:127-137. [PMID: 27908524 DOI: 10.1016/j.alcohol.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/24/2023]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorders have a high rate of co-occurrence, possibly because they are regulated by common genes. In support of this idea, mice selectively bred for high (HAP) alcohol preference show greater fear potentiated startle (FPS), a model for fear-related disorders such as PTSD, compared to mice selectively bred for low (LAP) alcohol preference. This positive genetic correlation between alcohol preference and FPS behavior suggests that the two traits may be functionally related. This study examined the effects of fear conditioning on alcohol consumption and the effects of alcohol consumption on the expression of FPS in male and female HAP2 and LAP2 mice. In experiment 1, alcohol consumption (g/kg) under continuous-access conditions was monitored daily for 4 weeks following a single fear-conditioning or control treatment (foot shock and no shock). FPS was assessed three times (once at the end of the 4-week alcohol access period, once at 24 h after removal of alcohol, and once at 6-8 days after removal of alcohol), followed by two more weeks of alcohol access. Results showed no change in alcohol consumption, but alcohol-consuming, fear-conditioned, HAP2 males showed increased FPS at 24 h during the alcohol abstinence period compared to control groups. In experiment 2, alcohol consumption under limited-access conditions was monitored daily for 4 weeks. Fear-conditioning or control treatments occurred four times during the first 12 days and FPS testing occurred four times during the second 12 days of the 4-week alcohol consumption period. Results showed that fear conditioning increased alcohol intake in both HAP2 and LAP2 mice immediately following the first conditioning session. Fear-conditioned HAP2 but not LAP2 mice showed greater alcohol intake compared to control groups on drinking days that occurred between fear conditioning and FPS test sessions. FPS did not change as a function of alcohol consumption in either line. These results in mice help shed light on how a genetic propensity toward high alcohol consumption may be related to the risk for developing PTSD and co-morbid alcohol-use disorders in humans.
Collapse
|
2
|
Abstract
Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
Collapse
|
3
|
Roltsch EA, Baynes BB, Mayeux JP, Whitaker AM, Baiamonte BA, Gilpin NW. Predator odor stress alters corticotropin-releasing factor-1 receptor (CRF1R)-dependent behaviors in rats. Neuropharmacology 2013; 79:83-9. [PMID: 24269607 DOI: 10.1016/j.neuropharm.2013.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/22/2022]
Abstract
Humans with stress-related anxiety disorders exhibit increases in arousal and alcohol drinking, as well as altered pain processing. Our lab has developed a predator odor stress model that produces reliable and lasting increases in alcohol drinking. Here, we utilize this predator odor stress model to examine stress-induced increases in arousal, nociceptive processing, and alcohol self-administration by rats, and also to determine the effects of corticotropin-releasing factor-1 receptors (CRF1Rs) in mediating these behavioral changes. In a series of separate experiments, rats were exposed to predator odor stress, then tested over subsequent days for thermal nociception in the Hargreaves test, acoustic startle reactivity, or operant alcohol self-administration. In each experiment, rats were systemically injected with R121919, a CRF1R antagonist, and/or vehicle. Predator odor stress increased thermal nociception (i.e., hyperalgesia) and acoustic startle reactivity. Systemic administration of R121919 reduced thermal nociception and hyperarousal in stressed rats but not unstressed controls, and reduced operant alcohol responding over days. Stressed rats exhibited increased sensitivity to the behavioral effects of R121919 in all three tests, suggesting up-regulation of brain CRF1Rs number and/or function in stressed rats. These results suggest that post-stress alcohol drinking may be driven by a high-nociception high-arousal state, and that brain CRF1R signaling mediates these stress effects.
Collapse
Affiliation(s)
- Emily A Roltsch
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| | - Brittni B Baynes
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| | - Jacques P Mayeux
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| | - Annie M Whitaker
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| | - Brandon A Baiamonte
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.
| |
Collapse
|
4
|
Radke AK, Holtz NA, Gewirtz JC, Carroll ME. Reduced emotional signs of opiate withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake. Psychopharmacology (Berl) 2013; 227:117-26. [PMID: 23254375 PMCID: PMC3624049 DOI: 10.1007/s00213-012-2945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/01/2012] [Indexed: 02/01/2023]
Abstract
RATIONALE Rats bred for high (HiS) and low (LoS) saccharin intake exhibit divergent behavioral responses to multiple drugs of abuse, with HiS rats displaying greater vulnerability to drug taking. Previous research indicates that this effect may be due to increased sensitivity to reward in HiS rats and to the aversive effects of acute drug administration in LoS rats. OBJECTIVE The current study investigated whether HiS and LoS rats also exhibit different behavioral signs of withdrawal following one or repeated opiate exposures. METHODS Emotional signs of opiate withdrawal were assessed with potentiation of the acoustic startle reflex and conditioned place aversion (CPA) in male and female HiS and LoS rats. Startle was measured before and 4 h after a 10-mg/kg injection of morphine on days 1, 2, and 7 of opiate exposure. CPA was induced with a 2-day, naloxone-precipitated conditioning paradigm. Somatic signs of withdrawal and weight loss were also measured. RESULTS Male and female LoS rats exhibited lower startle potentiation than HiS rats on the seventh day of morphine exposure. LoS male rats also failed to develop a CPA to morphine withdrawal. No differences in physical withdrawal signs were observed between HiS and LoS rats, but males of both lines had more physical signs of withdrawal than females. CONCLUSIONS These results suggest that LoS rats are less vulnerable to the negative emotional effects of morphine withdrawal than HiS rats. A less severe withdrawal syndrome may contribute to decreased levels of drug taking in the LoS line.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
,National Institute of Alcohol Abuse and Alcoholism National Institutes of Health 5625 Fishers Lane Rockville, MD 20852 Phone: 301-443-4052 Fax: 301-480-1952
| | - Nathan A. Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan C. Gewirtz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marilyn E. Carroll
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Barrenha GD, Chester JA. Effects of cross-fostering on alcohol preference and correlated responses to selection in high- and low-alcohol-preferring mice. Alcohol Clin Exp Res 2012; 36:2065-73. [PMID: 22591228 DOI: 10.1111/j.1530-0277.2012.01839.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/07/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Selectively bred rodent lines are valuable tools for investigating gene × environment interactions related to risk for alcoholism in humans. Early maternal environment is one particular factor known for critically influencing neural, hormonal, and behavioral outcomes in adulthood. Cross-fostering is a procedure that may be used to explore the role of genotype-dependent maternal influences on phenotypic variability in adulthood. The purpose of these experiments was to examine the effects of cross-fostering on free-choice alcohol drinking and correlated responses to selection for alcohol preference in mice selectively bred for high (HAP2) and low (LAP2) alcohol preference. METHODS Mice were assigned to one of the following treatments: SHAM (pups that were fostered to their original biological mother), IN (pups that were fostered to a different mother of the same line), and CROSS (pups that were fostered to a mother of a different line). Mice were tested in adulthood for (i) free 24-hour access to alcohol for a period of 28 days; (ii) the expression of the acoustic startle response and fear-potentiated startle (FPS); and (iii) handling-induced convulsions (HICs) during acute alcohol withdrawal. RESULTS Overall, the expression of the alcohol preference selection phenotype was robust in all groups (HAP2 > LAP2). Cross-fostering produced a moderate but significant reduction in g/kg alcohol drinking and preference scores in HAP2 mice (CROSS < SHAM) but had no effect in LAP2 mice. Cross-fostering did not affect the expression of correlated responses to selection: acoustic startle response (HAP2 > LAP2), FPS (HAP2 > LAP2), HICs (LAP2 > HAP2). CONCLUSIONS It appears that maternal environment can modify the expression of the high-alcohol-preference phenotype in HAP2 selectively bred mice. These results suggest a gene × environment interaction with respect to the expression of the high-alcohol-preference selection phenotype but not correlated responses to selection.
Collapse
Affiliation(s)
- Gustavo D Barrenha
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA
| | | |
Collapse
|
7
|
Marín M, Ponce G, Martínez-Gras I, Koeneke A, Curivil P, Jiménez-Arriero MA, Rubio G. Impairments of Prepulse Inhibition of the Startle Response in Abstinent Alcoholic Male Patients. Alcohol Alcohol 2012; 47:545-51. [DOI: 10.1093/alcalc/ags055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Lopez MF, Grahame NJ, Becker HC. Development of ethanol withdrawal-related sensitization and relapse drinking in mice selected for high- or low-ethanol preference. Alcohol Clin Exp Res 2011; 35:953-62. [PMID: 21314693 DOI: 10.1111/j.1530-0277.2010.01426.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptibility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. METHODS Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 h/d) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hours after final ethanol (or air) exposure for 5 consecutive days. RESULTS Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared with HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice did not change from baseline levels of intake. In contrast, HAP-2 female and LAP-2 mice of both sexes did not show changes in ethanol intake as a consequence of intermittent ethanol exposure. CONCLUSIONS Overall, these results indicate that the magnitude of ethanol withdrawal-related seizures is inversely related to inherited ethanol intake preference. Additionally, intermittent ethanol vapor exposure appears more likely to affect high-drinking mice (C57BL/6J and HAP-2) than low drinkers, although these animals are less affected by ethanol withdrawal.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 29425, USA.
| | | | | |
Collapse
|
9
|
Froehlich JC. What aspects of human alcohol use disorders can be modeled using selectively bred rat lines? Subst Use Misuse 2010; 45:1727-41. [PMID: 20590397 DOI: 10.3109/10826084.2010.482424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of selective breeding to produce animal models for the study of alcohol abuse and alcoholism represents one of the major advances in the field of alcohol research. Rats selectively bred for alcohol preference and alcohol nonpreference have been useful to both preclinical and clinical investigators in the alcohol research community for studying the behavioral, neurobiological, and molecular basis of alcohol drinking, for identifying the genes that may contribute to the development of alcohol abuse and alcoholism, and for evaluating the utility of drugs aimed at reducing alcohol intake and preventing alcohol relapse. Rats selectively bred for alcohol preference (alcohol preferring or "P" line) have enhanced responsiveness to the low dose reinforcing effects of alcohol, less aversion to moderate/high doses of alcohol, and are able to develop tolerance to the aversive effects of alcohol more rapidly and to maintain tolerance longer than rats selectively bred for alcohol nonpreference (alcohol nonpreferring or "NP" line). The increased potency of low-dose alcohol as a reinforcer for P rats might be expected to foster and maintain alcohol drinking. Weaker aversion to the pharmacological effects of moderate/high doses of alcohol in the P line would allow P rats to drink more alcohol than NP rats before the postingestional effects become aversive. Rapid induction of tolerance to the aversive effects of alcohol with repeated bouts of voluntary alcohol drinking, as well as persistence of alcohol tolerance in rats of the P line might serve to maintain alcohol drinking. These are powerful mechanisms that may serve to promote and maintain a high alcohol drinking behavior. Although these rat lines have been used to address several characteristics of excessive alcohol consumption in humans, they have not yet been used to model several aspects of human alcohol use disorders. New applications of these selectively bred rat lines are discussed which may further our understanding of the factors contributing to alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- J C Froehlich
- Chancellor's Professor and Professor of Medicine, Cellular and Integrative Physiology and Medical Neurobiology, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Heilig M, Egli M, Crabbe JC, Becker HC. Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol 2010; 15:169-84. [PMID: 20148778 PMCID: PMC3268458 DOI: 10.1111/j.1369-1600.2009.00194.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of withdrawal-related phenomena in the development and maintenance of alcohol addiction remains under debate. A 'self-medication' framework postulates that emotional changes are induced by a history of alcohol use, persist into abstinence, and are a major factor in maintaining alcoholism. This view initially focused on negative emotional states during early withdrawal: these are pronounced, occur in the vast majority of alcohol-dependent patients, and are characterized by depressed mood and elevated anxiety. This concept lost popularity with the realization that in most patients, these symptoms abate over 3-6 weeks of abstinence, while relapse risk persists long beyond this period. More recently, animal data have established that a prolonged history of alcohol dependence induces more subtle neuroadaptations. These confer altered emotional processing that persists long into protracted abstinence. The resulting behavioral phenotype is characterized by excessive voluntary alcohol intake and increased behavioral sensitivity to stress. Emerging human data support the clinical relevance of negative emotionality for protracted abstinence and relapse. These developments prompt a series of research questions: (1) are processes observed during acute withdrawal, while transient in nature, mechanistically related to those that remain during protracted abstinence?; (2) is susceptibility to negative emotionality in acute withdrawal in part due to heritable factors, similar to what animal models have indicated for susceptibility to physical aspects of withdrawal?; and (3) to what extent is susceptibility to negative affect that persists into protracted abstinence heritable?
Collapse
Affiliation(s)
- Markus Heilig
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
11
|
Reilly W, Koirala B, Devaud LL. Sex differences in acoustic startle responses and seizure thresholds between ethanol-withdrawn male and female rats. Alcohol Alcohol 2009; 44:561-6. [PMID: 19745208 DOI: 10.1093/alcalc/agp049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS We have found consistent and significant sex differences in recovery from the increased seizure susceptibility observed during ethanol withdrawal (EW) in our rat model system. The main objective of the present study was to determine if sex differences in EW generalized to an additional behavioral measure startle reactivity. METHODS Acoustic startle or seizure threshold responses were measured in separate groups of rats at 1 day or 3 days of EW. RESULTS Both pair-fed control and EW males showed greater increases in acoustic startle responses than either the female or ovariectomized female (OVX) counterparts. There was a selective effect of pregnanolone on acoustic startle in that it reduced peak force of response only at 3 days EW in male rats. Unexpectedly, it modestly increased startle reactivity in control female and OVX rats. Acute treatment with low-dose ethanol trended toward reducing startle responses in control animals, as expected, while generally enhancing startle responses during EW. All sex conditions showed an enhanced startle response during EW following administration of the higher dose of estradiol compared to control animals. Estradiol did not alter seizure thresholds in control animals. However, it was anticonvulsant for males at 3 days EW, females and OVX at 1 day EW. CONCLUSIONS Observed sex differences in the startle reactivity during EW were consistent with earlier findings comparing EW seizure risk in male and female rats. Responses of OVX suggested that both hormones and differences in brain structures between males and females have a role in these sex differences. Our findings add weight to recommendations that treatment of alcohol withdrawal in humans should consider hormonal status as well as withdrawal time.
Collapse
Affiliation(s)
- William Reilly
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID, USA
| | | | | |
Collapse
|
12
|
Comparison of ethanol locomotor sensitization in adolescent and adult DBA/2J mice. Psychopharmacology (Berl) 2008; 197:361-70. [PMID: 18157521 PMCID: PMC2531208 DOI: 10.1007/s00213-007-1038-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE The mammalian adolescent period is characterized by enhanced vulnerability to drug-induced neuroadaptations. Epidemiological evidence indicates that individuals who start drinking alcohol during adolescence are four times more likely to develop alcohol dependence in adulthood, but little is known about the adaptive mechanism(s) that may underlie this observation. Behavioral sensitization in rodents is a model of neurobehavioral plasticity that occurs following repeated drug exposure and may underlie components of addiction. OBJECTIVES The goal of this study was to determine if adolescent mice are differentially sensitive to ethanol-induced locomotor sensitization as compared to adults. MATERIALS AND METHODS Adolescent and adult DBA/2J mice were treated with saline or ethanol (1.0, 1.5, 2.0, 2.5 g/kg) for 7, 11, or 15 days and tested for acute and sensitized locomotor activity. Blood ethanol clearance (BEC) was also assessed 10, 60, and 180 min following treatment with ethanol 2 g/kg. RESULTS Adolescent mice were more sensitive than adult mice to the acute locomotor activating effects of ethanol. However, adolescent mice were less sensitive than adult mice to locomotor sensitization, as only the highest dose of ethanol (2.5 g/kg) induced sensitization in the adolescent mice, while lower doses of ethanol elicited sensitization in the adult mice. The differential response to ethanol sensitization was not related to duration of treatment or differential BEC. CONCLUSIONS These results indicate that adolescent mice are less sensitive to ethanol sensitization, and this blunted behavioral response in adolescents might reflect differential ethanol-induced neurobehavioral adaptations.
Collapse
|
13
|
Chester JA, Barrenha GD. Acoustic startle at baseline and during acute alcohol withdrawal in replicate mouse lines selectively bred for high or low alcohol preference. Alcohol Clin Exp Res 2007; 31:1633-44. [PMID: 17850641 DOI: 10.1111/j.1530-0277.2007.00462.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous data in both rat and mouse genetic models suggest that there is a genetic relationship between acute alcohol withdrawal responses and innate alcohol drinking behavior. The purpose of the present study was to examine whether acute alcohol withdrawal responses, as measured by acoustic startle and prepulse inhibition (PPI) of acoustic startle, may be genetically related to innate differences in alcohol preference in 2 mouse lines selectively bred for high (HAP1 and HAP2) or low (LAP1 and LAP2) alcohol preference. Line differences in startle responses at baseline, prior to alcohol or saline treatment, were also measured. METHODS Alcohol-naive, male and female HAP1 (n = 35) and LAP1 (n = 32) and HAP2 (n = 43) and LAP2 (n = 40) mice were tested under baseline conditions and during withdrawal from a single injection of 4.0 g/kg alcohol or equal volume of saline at 4, 8, and 12 hours post-injection. RESULTS On most trial types, baseline startle responses and PPI were greater in both HAP lines than in both LAP lines, and startle responses were greater in males than in females. During acute alcohol withdrawal, both male LAP lines, and LAP1 females, showed reduced startle responses at the 4-hour time point during acute alcohol withdrawal. In contrast, both HAP1 males and females showed a trend toward enhanced startle at 4 hours in withdrawal. No clear differences in PPI during withdrawal were evident. CONCLUSIONS These findings indicate good evidence for a genetic relationship between greater baseline acoustic startle responses and PPI and high alcohol preference. Modest support for a genetic correlation between low alcohol preference and reduced startle responses at 4 hours in withdrawal was found in male mice. The suppression in acoustic startle during acute alcohol withdrawal in male LAP lines but not in male HAP lines suggests that a genetic propensity toward low alcohol preference may be related to greater sensitivity to alcohol as measured by acoustic startle responses during acute alcohol withdrawal.
Collapse
Affiliation(s)
- Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-2081, USA.
| | | |
Collapse
|
14
|
Czachowski CL, Prutzman S, DeLory MJ. Volume and dose effects of experimenter-administered ethanol preloads on ethanol seeking and self-administration. Alcohol 2006; 40:35-40. [PMID: 17157718 PMCID: PMC1762125 DOI: 10.1016/j.alcohol.2006.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
The present experiment used a behavioral model developed to separate the initial behavior required to obtain access to ethanol (appetitive responding or lever presses) from the actual self-administration (consummatory responding or intake) to test the hypothesis that these responses are under the control of different behavioral/physiological processes, and therefore differentially affected by an ethanol priming dose. In male, Long Evans rats, "preload" volume (0.5 and 2.0ml) and dose (approximately 10%, 25%, and 50% of the total normally consumed in nontreatment sessions translating to 0.1, 0.25, and 0.5g/kg) of ethanol were varied and administered by the experimenter via oral gavage prior to an operant session. Overall, there were no priming effects, or increases, in ethanol-reinforced responding resulting from the ethanol preloads. The findings showed that the low preload volume produced linear, dose-dependent decreases in both intake and seeking. However, while the high volume also produced a linear dose-dependent decrease in ethanol seeking, there was a decrease in intake at every dose. That is, ethanol seeking was insensitive to preload volume, while intake was affected in a dose-dependent manner except at the lowest dose when preload volume did play a role in intake regulation. These findings indicate that "fullness" and pharmacological cues differentially impact the appetitive and consummatory behaviors reinforced by ethanol solutions, with intake being more sensitive to preload volume and seeking being more sensitive to preload pharmacology.
Collapse
Affiliation(s)
- Cristine L Czachowski
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Box G-BH, Providence, RI 02912, USA.
| | | | | |
Collapse
|
15
|
Zhou FC, Sahr RN, Sari Y, Behbahani K. Glutamate and dopamine synaptic terminals in extended amygdala after 14-week chronic alcohol drinking in inbred alcohol-preferring rats. Alcohol 2006; 39:39-49. [PMID: 16938628 DOI: 10.1016/j.alcohol.2006.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/18/2006] [Accepted: 06/22/2006] [Indexed: 11/20/2022]
Abstract
Alcohol has been shown to affect glutamate (GLU) and dopamine (DA) release and their correlated receptors in the key reward center--extended amygdala--which includes the shell of nucleus accumbens (sNAc) and central nucleus of amygdala (cAmg). It is unclear to date whether there is an alteration in the number of presynaptic GLU/DA nerve terminals. In this study, we investigated the number of GLU and DA terminals in the extended amygdala of alcohol-preferring (P) rats that chronically drank ethanol. P rats have a propensity to drink ethanol to intoxication and develop an alcohol dependency. The P rats were divided into (1) Water group given ad libitum chow and water for 14 weeks; (2) Continuous alcohol group (C-Alc) given ad libitum chow and choice of 15 or 30% (v/v) ethanol or water for 14 weeks; and (3) Repeated deprivation (RD-Alc) group given the same choice of ethanol or water for 6 weeks, followed by a twice repeated cycle of 2 weeks without ethanol followed by 2 weeks with ethanol. Two subpopulations of GLU terminals were labeled by immunostaining for the vesicular GLU transporter 1 (vGLUT1) and vesicular GLU transporter 2 (vGLUT2). DA terminals were labeled by immunostaining for tyrosine hydroxylase (TH). The GLU and DA immunostained (im) varicosities were quantified and analyzed using stereological methods. We found that chronic alcohol did not alter the number of TH-im terminals in the extended amygdala in either the C-Alc or RD-Alc drinking paradigms. Thus, the increases in extracellular levels of DA previously reported following chronic alcohol are likely due to a change in the efficiency of DA release rather than a change in the number of DA terminals. The number of vGLUT1-im terminals was also unchanged in the extended amygdala; however, the number of vGLUT2-im terminals, which represent the greater population of GLU terminals, was increased in the sNAc of the RD-Alc group compared to the Water group. Chronic alcohol is known to affect GLU release, and our findings indicate that repeated alcohol deprivation may preferentially increase GLU terminals in the sNAc bearing the vGLUT2, which are primarily afferents from the thalamus. Our results further indicate that repeated deprivation of alcohol can change the ratio of GLU to DA innervation in the sNAc, a key region of the reward circuitry.
Collapse
Affiliation(s)
- Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|