1
|
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, Gao Q, Kang PF. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med 2023; 195:219-230. [PMID: 36587924 DOI: 10.1016/j.freeradbiomed.2022.12.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3KTyr458, p-AKTSer473, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Ying Zou
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei-Jie Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ning-Ning Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng-Yu Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Xian
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
2
|
Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6190504. [PMID: 27829984 PMCID: PMC5088338 DOI: 10.1155/2016/6190504] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.
Collapse
|
3
|
McCarthy ET, Zhou J, Eckert R, Genochio D, Sharma R, Oni O, De A, Srivastava T, Sharma R, Savin VJ, Sharma M. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE. Prostaglandins Other Lipid Mediat 2014; 116-117:88-98. [PMID: 25447342 DOI: 10.1016/j.prostaglandins.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/22/2022]
Abstract
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.
Collapse
Affiliation(s)
- Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianping Zhou
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Ryan Eckert
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - David Genochio
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Rishi Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Olurinde Oni
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Alok De
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Tarak Srivastava
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States; Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States
| | - Ram Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States.
| |
Collapse
|
4
|
Li DW, Liu ZQ, Chen W, Yao M, Li GR. Association of glycogen synthase kinase-3β with Parkinson's disease (review). Mol Med Rep 2014; 9:2043-50. [PMID: 24681994 PMCID: PMC4055480 DOI: 10.3892/mmr.2014.2080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a pleiotropic serine/threonine protein kinase found in almost all eukaryotes. It is structurally highly conserved and has been identified as a multifaceted enzyme affecting a wide range of biological functions, including gene expression and cellular processes. There are two closely related isoforms of GSK-3; GSK-3α and GSK-3β. The latter appears to play crucial roles in regulating the pathogenesis of diverse diseases, including neurodegenerative disease. The present review focuses on the involvement of this protein in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by the gradually progressive and selective loss of dopaminergic neurons, and by intracellular inclusions known as Lewy bodies (LBs) expressed in surviving neurons of the substantia nigra (SN). GSK-3β is involved in multiple signaling pathways and has several phosphorylation targets. Numerous apoptotic conditions can be facilitated by the GSK-3β signaling pathways. Studies have shown that GSK-3β inhibition protects the dopaminergic neurons from various stress-induced injuries, indicating the involvement of GSK-3β in PD pathogenesis. However, the underlying mechanisms of the protective effect of GSK-3β inhibition on dopaminergic neurons in PD is not completely understood. Multiple pathological events have been recognized to be responsible for the loss of dopaminergic neurons in PD, including mitochondrial dysfunction, oxidative stress, protein aggregation and neuroinflammation. The present review stresses the regulatory roles of GSK-3β in these events and in dopaminergic neuron degeneration, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective therapeutic target for PD.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Zhi-Qiang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Chen
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yao
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Xu J, Hao Z, Gou X, Tian W, Jin Y, Cui S, Guo J, Sun Y, Wang Y, Xu Z. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc Res Tech 2013; 76:612-7. [PMID: 23580478 DOI: 10.1002/jemt.22207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/18/2013] [Accepted: 03/03/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although several methods have been used to detect the intracellular reactive oxygen species (ROS) generation, it is still difficult to determine where ROS generate from. This study aimed to demonstrate whether ROS generate from mitochondria during oxidative stress induced mitochondria damage in cardiac H9c2 cells by laser scanning confocal microscopy (LSCM). METHODS Cardiac H9c2 cells were exposed to H2 O2 (1200μM) to induce mitochondrial oxidant damage. Mitochondrial membrane potential (ΔΨm) was measured by staining cells with tetramethylrhodamine ethyl ester (TMRE); ROS generation was measured by staining cells with dichlorodihydrofluorescein diacetate (H2 DCFDA). RESULTS A rapid/transient ROS burst from mitochondria was induced in cardiac cells treated with H2 O2 compared with the control group, suggesting that mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells. Meanwhile, the TMRE fluorescence intensity of mitochondria which had produced a great deal of ROS decreased significantly, indicating that the burst of ROS induces the loss of ΔΨm. In addition, the structure of mitochondria was damaged seriously after ROS burst. However, we also demonstrated that the TMRE fluorescence intensity might be affected by H2 DCFDA. CONCLUSIONS Mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells and these findings provide a new method to observe whether ROS generate from mitochondria by LSCM. However, these observations also suggested that it is inaccurate to test the fluorescence intensities of cells stained with two or more different fluorescent dyes which should be paid more attention to.
Collapse
Affiliation(s)
- Jingman Xu
- Heart Institute, Medical Experimental Research Center, Hebei United University, Tangshan, Hebei, 063000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Walker RK, Cousins VM, Umoh NA, Jeffress MA, Taghipour D, Al-Rubaiee M, Haddad GE. The good, the bad, and the ugly with alcohol use and abuse on the heart. Alcohol Clin Exp Res 2013; 37:1253-60. [PMID: 23527963 DOI: 10.1111/acer.12109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/11/2012] [Indexed: 01/30/2023]
Abstract
Since its advent, alcohol has been utilized throughout history socially, for rituals, worship, and for its therapeutic, antibacterial, and analgesic properties. In moderation, alcohol consumption and its use are generally viewed as clinically beneficial. Excessive alcohol consumption on the other hand has been recognized as having several adverse implications. Excessive use increases the risk of liver and heart disease, metabolic disturbances, nutritional deficiencies, certain cancers, brain damage, dementia, neuropathy, as well as other facets of morbidity and mortality. This review targets the sequelae of alcohol consumption on the heart, specifically on myocardial contractility, calcium channel signaling, and intracellular signaling pathways. With the incidence of alcohol-induced cardiac abnormalities being higher than previously thought, it is of increasing importance to elucidate the mechanisms behind them. Here, the cardiac effects of alcohol were not discussed in isolation but in conjunction with other important factors, such as high- and low-density lipoprotein levels and vascular dilatory influences. We explore these mechanisms, in particular, the oxidative stress as the major contributor, as well as pathways that may prove to be cardioprotective. As such, we demonstrate the involvement of nuclear factor (erythroid-derived 2)-like 2 (NFE2L2/NRF2) as well as AKT that act as regulators of oxidative balance during oxidative stress responses. Thus, alcohol consumption may confer a cardioprotective effect when used in moderation through an AKT/NRF2-dependent mechanism.
Collapse
Affiliation(s)
- Robin K Walker
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Onishi A, Miyamae M, Inoue H, Kaneda K, Okusa C, Inamura Y, Shiomi M, Koshinuma S, Momota Y, Figueredo VM. Sevoflurane confers additive cardioprotection to ethanol preconditioning associated with enhanced phosphorylation of glycogen synthase kinase-3β and inhibition of mitochondrial permeability transition pore opening. J Cardiothorac Vasc Anesth 2012; 27:916-24. [PMID: 23266287 DOI: 10.1053/j.jvca.2012.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purposes of this study were to investigate whether sevoflurane (SEVO) enhances moderate-dose ethanol (EtOH) preconditioning and whether this additional cardioprotection is associated with glycogen synthase kinase-3β (GSK-3β), protein kinase B (Akt), mammalian target of rapamycin (mTOR), 70-kDa ribosomal s6 kinase-1 (p70s6K), and/or mitochondrial permeability transition pore (MPTP) opening. DESIGN In vitro study using an isolated heart Langendorff preparation. SETTING University research laboratory. PARTICIPANTS Male guinea pigs (n = 170). INTERVENTIONS Isolated perfused guinea pig hearts underwent 30-minute ischemia and 120-minute reperfusion (control). The EtOH group received 5% EtOH in the drinking water for 8 weeks. Anesthetic preconditioning was elicited by a 10-minute exposure to 2% SEVO in EtOH (EtOH + SEVO group) or non-EtOH (SEVO group) hearts. The inhibition of GSK-3β phosphorylation and mTOR was achieved with LY294002 and rapamycin, respectively. GSK-3β, Akt, mTOR, and p70s6K expressions were determined by western blot. Calcium-induced MPTP opening was assessed in isolated calcein-loaded mitochondria. MEASUREMENTS AND MAIN RESULTS After ischemia-reperfusion, the EtOH, SEVO, and EtOH + SEVO groups had higher left ventricular developed pressure recovery and lower end-diastolic pressure versus the control group. Infarct size was smaller in the EtOH and SEVO groups versus control and even smaller in the EtOH + SEVO group. Phosphorylation of GSK-3β and Akt, but not mTOR and p70s6K, was increased in the EtOH and SEVO groups. Phosphorylation of GSK-3β, but not mTOR and p70s6K, was further increased in the EtOH + SEVO group. The EtOH and SEVO groups exhibited a smaller calcium-induced MPTP opening, and the EtOH + SEVO presented an even smaller MPTP opening. CONCLUSIONS SEVO and chronic EtOH preconditioning offer additive cardioprotection. This effect is associated with an increased GSK-3β phosphorylation and an inhibition of MPTP opening.
Collapse
Affiliation(s)
- Anna Onishi
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Astragaloside IV inhibits oxidative stress-induced mitochondrial permeability transition pore opening by inactivating GSK-3β via nitric oxide in H9c2 cardiac cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:935738. [PMID: 23050041 PMCID: PMC3463196 DOI: 10.1155/2012/935738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023]
Abstract
Objective. This study aimed to investigate whether astragaloside IV modulates the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β) in H9c2 cells. Methods. H9c2 cells were exposed to astragaloside IV for 20 min. GSK-3β (Ser9), Akt (Ser473), and VASP (Ser239) activities were determined with western blot. The mPTP opening was evaluated by measuring mitochondrial membrane potential (ΔΨm). Nitric oxide (NO) generation was measured by 4-amino-5-methylamino-2′, 7′-difluorofluorescein (DAF-FM) diacetate. Fluorescence images were obtained with confocal microscopy. Results. Astragaloside IV significantly enhanced GSK-3β phosphorylation and prevented H2O2-induced loss of ΔΨm. These effects of astragaloside IV were reversed by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the NO sensitive guanylyl cyclase selective inhibitor ODQ, and the PKG inhibitor KT5823. Astragaloside IV activated Akt and PKG. Astragaloside IV was also shown to increase NO production, an effect that was reversed by L-NAME and LY294002. Astragaloside IV applied at reperfusion reduced cell death caused by simulated ischemia/reperfusion, indicating that astragaloside IV can prevent reperfusion injury. Conclusions. These data suggest that astragaloside IV prevents the mPTP opening and reperfusion injury by inactivating GSK-3β through the NO/cGMP/PKG signaling pathway. NOS is responsible for NO generation and is activated by the PI3K/Akt pathway.
Collapse
|
9
|
Azarashvili TS, Odinokova IV, Krestinina OV, Baburina YL, Grachev DE, Teplova VV, Holmuhamedov EL. Role of phosphorylation of porin (VDAC) in regulation of mitochondrial outer membrane under normal conditions and alcohol intoxication. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Barrès V, Ouellet V, Lafontaine J, Tonin PN, Provencher DM, Mes-Masson AM. An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Mol Cancer 2010; 9:272. [PMID: 20942967 PMCID: PMC2964620 DOI: 10.1186/1476-4598-9-272] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/13/2010] [Indexed: 12/03/2022] Open
Abstract
Background We previously identified that Ran protein, a member of the Ras GTPase family, is highly expressed in high grade and high stage serous epithelial ovarian cancers, and that its overexpression is associated with a poor prognosis. Ran is known to contribute to both nucleocytoplasmic transport and cell cycle progression, but its role in ovarian cancer is not well defined. Results Using a lentivirus-based tetracycline-inducible shRNA approach, we show that downregulation of Ran expression in aggressive ovarian cancer cell lines affects cellular proliferation by inducing a caspase-3 associated apoptosis. Using a xenograft tumor assay, we demonstrate that depletion of Ran results in decreased tumorigenesis, and eventual tumor formation is associated with tumor cells that express Ran protein. Conclusion Our results suggest a role for Ran in ovarian cancer cell survival and tumorigenicity and suggest that this critical GTPase may be suitable as a therapeutic target.
Collapse
Affiliation(s)
- Véronique Barrès
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal,1560 Sherbrooke Est, Montreal H2L 4M1, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Luo J. Lithium-mediated protection against ethanol neurotoxicity. Front Neurosci 2010; 4:41. [PMID: 20661453 PMCID: PMC2907128 DOI: 10.3389/fnins.2010.00041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022] Open
Abstract
Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar) disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD) are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3) which has recently been identified as a mediator of ethanol neurotoxicity. Lithium's neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.
Collapse
Affiliation(s)
- Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine Lexington, KY, USA
| |
Collapse
|
12
|
Abstract
Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase, responds to various cellular stresses. GSK3beta is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3beta in the CNS is affected by ethanol. GSK3beta inhibition provides protection against ethanol neurotoxicity, whereas high GSK3beta activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3beta is a converging signaling point that mediates some of ethanol's neurotoxic effects.
Collapse
|
13
|
Petit-Paitel A, Brau F, Cazareth J, Chabry J. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One 2009; 4:e5491. [PMID: 19430525 PMCID: PMC2675062 DOI: 10.1371/journal.pone.0005491] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/14/2009] [Indexed: 11/18/2022] Open
Abstract
Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death.
Collapse
Affiliation(s)
- Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6097, Valbonne, France.
| | | | | | | |
Collapse
|