1
|
Bröde P, Aerts JM, De Bruyne G, Mayor TS, Annaheim S, Fiala D, Kuklane K. A modelling framework for local thermal comfort assessment related to bicycle helmet use. J Therm Biol 2023; 112:103457. [PMID: 36796903 DOI: 10.1016/j.jtherbio.2022.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Thermal discomfort due to accumulated sweat increasing head skin wettedness may contribute to low wearing rates of bicycle helmets. Using curated data on human head sweating and helmet thermal properties, a modelling framework for the thermal comfort assessment of bicycle helmet use is proposed. Local sweat rates (LSR) at the head were predicted as the ratio to the gross sweat rate (GSR) of the whole body or by sudomotor sensitivity (SUD), the change in LSR per change in body core temperature (Δtre). Combining those local models with Δtre and GSR output from thermoregulation models, we simulated head sweating depending on the characteristics of the thermal environment, clothing, activity, and exposure duration. Local thermal comfort thresholds for head skin wettedness were derived in relation to thermal properties of bicycle helmets. The modelling framework was supplemented by regression equations predicting the wind-related reductions in thermal insulation and evaporative resistance of the headgear and boundary air layer, respectively. Comparing the predictions of local models coupled with different thermoregulation models to LSR measured at the frontal, lateral and medial head under bicycle helmet use revealed a large spread in LSR predictions predominantly determined by the local models and the considered head region. SUD tended to overestimate frontal LSR but performed better for lateral and medial head regions, whereas predictions by LSR/GSR ratios were lower and agreed better with measured frontal LSR. However, even for the best models root mean squared prediction errors exceeded experimental SD by 18-30%. From the high correlation (R > 0.9) of skin wettedness comfort thresholds with local sweating sensitivity reported for different body regions, we derived a threshold value of 0.37 for head skin wettedness. We illustrate the application of the modelling framework using a commuter-cycling scenario, and discuss its potential as well as the needs for further research.
Collapse
Affiliation(s)
- Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo)(1), Ardeystr. 67, 44139 Dortmund, Germany.
| | | | - Guido De Bruyne
- Department of Product Development, Faculty of Design Sciences, University of Antwerp, Belgium; Lazer Sport NV, Mechelen, Belgium
| | - Tiago Sotto Mayor
- Transport Phenomena Research Centre (CEFT), Engineering Faculty of Porto University, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Engineering Faculty of Porto University, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Dusan Fiala
- Ergonsim - Human Thermal Modelling, Messstetten, Germany
| | - Kalev Kuklane
- Netherlands Institute for Public Safety (NIPV), Zoetermeer, The Netherlands
| |
Collapse
|
2
|
Evaluating Outdoor Thermal Comfort Using a Mixed-Method to Improve the Environmental Quality of a University Campus. ENERGIES 2022. [DOI: 10.3390/en15041577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thermal comfort in cities is increasingly becoming a concern and comfortable places can be highly valuable for a variety of activities. Our investigation aims to explore how to improve the quality of cities by considering the relationship between microclimatic conditions, thermal sensation, and human preferences. The case study conducted in the open areas of Tallinn University of Technology (TalTech) campus, which is quite populated by visitors, staff, and students. We used a mixed-methods approach to assess outdoor thermal comfort, based on qualitative and quantitative findings of the relationships between the measured weather conditions and the results of thermal comfort assessment through the PET index and subjectively perceived thermal sensation. In the qualitative part, data was collected through semi-structured interviews. The main conclusions from the interviews were used to design a survey and the samples. Based on the results, it was possible to identify places that offer different levels of thermal comfort. Thus, the study helps to improve thermal comfort at the campus, which is one of the goals of the Green Transition project to make the campus fully sustainable. Moreover, the methodology is applicable in different urban areas to improve urban health and sustainability and create resilient urban environments.
Collapse
|
3
|
Zhang CK, Chen Y, Liang GJ, Wang XB, Zheng XH, Ding ST. Heat strain in chemical protective clothing in hot-humid environment: Effects of clothing thermal properties. JOURNAL OF CENTRAL SOUTH UNIVERSITY 2021; 28:3654-3665. [PMID: 34513130 PMCID: PMC8421241 DOI: 10.1007/s11771-021-4670-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Heat strain experienced by individuals wearing chemical protective clothing (CPC) is severe and dangerous especially in hot-humid environment. The development of material science and interdisciplinary studies including ergonomics, physiology and heat transfer is urgently required for the reduction of heat strain. The aim of this paper was to study the relationship among clothing thermal properties, physiological responses and environmental conditions. Three kinds of CPC were selected. Eight participants wore CPC and walked (4 km/h, two slopes with 5% and 10%) on a treadmill in an environment with (35±0.5) °C and RH of (60±5)%. Core temperature, mean skin temperature, heart rate, heat storage and tolerance time were recorded and analyzed. Physiological responses were significantly affected by the clothing thermal properties and activity intensity in hot-humid environment. The obtained results can help further development of heat strain model. New materials with lower evaporative resistance and less weight are necessary to release the heat strain in hot-humid environments.
Collapse
Affiliation(s)
- Chuan-kun Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191 China
| | - Ying Chen
- Beijing Institute of Fashion Technology, Beijing, 100029 China
| | - Guo-jie Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191 China
| | - Xin-bo Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191 China
| | - Xiao-hui Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191 China
| | - Song-tao Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191 China
| |
Collapse
|
4
|
The Effects of the Dynamic Thermophysical Properties of Clothing and the Walking Speed Input Parameter on the Heat Strain of a Human Body Predicted by the PHS Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186475. [PMID: 32899522 PMCID: PMC7558563 DOI: 10.3390/ijerph17186475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
Abstract
The prediction accuracy of the Predicted Heat Strain (PHS) model is affected by the correction approaches of static thermophysical properties of clothing considering the pumping effects of wind and body movement. In this study, a comparison of different correction algorithms for three types of clothing and their influence on the heat strain predicted by the PHS model was carried out with experimental data obtained from the literature. Results show that the dynamic insulation values calculated by ISO 9920 corrections are larger than those obtained by ISO 7933 when the static insulation values are higher than 0.4 clo, but when the static values are lower than 0.4 clo, it varies contrarily. The dynamic evaporative resistance values calculated with ISO 9920 equations are larger than those with ISO 7933. The prediction accuracy of the PHS model with ISO 9920 corrections and the addition of the walking speed input parameter can be improved for normal clothing (NC) in a hot environment and high clothing insulation. For specialized, insulating, cold weather clothing (SC), ISO 7933 corrections with an added walking speed input parameter to the PHS model have a good prediction precision.
Collapse
|
5
|
Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The thermal environment map in street canyon is derived by using GIS building data and more detailed calculation, and its effectiveness is considered for implementing extreme high temperature measures. The influence of mean radiant temperature (MRT) is more dominant than the wind velocity on the distribution of standard new effective temperature (SET*) on the typical summer day in street canyon in the urban area of Kobe city, and the solar radiation shading is more effective in suppressing the rise of SET* in the daytime than improving the land coverage. The following strategy of extreme high temperature measures is derived by considering the thermal environment map in street canyon. Pedestrians may find the shaded places on the north-south road until 10:00 a.m. and after 3:00 p.m., due to the eastern building’s shade in the morning and the western building’s shade in the afternoon.
Collapse
|
6
|
Fifty Years of PMV Model: Reliability, Implementation and Design of Software for Its Calculation. ATMOSPHERE 2019. [DOI: 10.3390/atmos11010049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In most countries, PMV is the reference index for the assessment of thermal comfort conditions in mechanically conditioned environments. It is also the basis to settle input values of the operative temperature for heating and cooling load calculations, sizing of equipment, and energy calculations according to EN 16798-1 and 16798-2 Standards. Over the years, great effort has been spent to study the reliability of PMV, whereas few investigations were addressed to its calculation. To study this issue, the most significant apps devoted to its calculation have been compared with a reference software compliant with EN ISO 7730 and the well-known ASHRAE Thermal Comfort Tool. It has been revealed that only few apps consider all six variables responsible for the thermal comfort. Relative air velocity is not considered by ASHRAE Thermal Comfort Tool and, finally, the correction of basic insulation values due to body movements introduced by EN ISO 7730 and EN ISO 9920 Standards has only been considered in one case. This implies that most software and apps for the calculation of PMV index should be used with special care, especially by unexperienced users. This applies to both research and application fields.
Collapse
|
7
|
Thermal Perception in Mild Climate: Adaptive Thermal Models for Schools. SUSTAINABILITY 2019. [DOI: 10.3390/su11143948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A comprehensive assessment of indoor environmental conditions is performed on a representative sample of classrooms in schools across southern Spain (Mediterranean climate) to evaluate the thermal comfort level, thermal perception and preference, and the relationship with HVAC systems, with a comparison of seasons and personal clothing. Almost fifty classrooms were studied and around one thousand pool-surveys distributed among their occupants, aged 12 to 17. These measurements were performed during spring, autumn, and winter, considered the most representative periods of use for schools. A new proposed protocol has been developed for the collection and subsequent analysis of data, applying thermal comfort indicators and using the most frequent predictive models, rational (RTC) and adaptive (ATC), for comparison. Cooling is not provided in any of the rooms and natural ventilation is found in most of the spaces during midseasons. Despite the existence of a general heating service in almost all classrooms in the cold period, the use of mechanical ventilation is limited. Heating did not usually provide standard set-point temperatures. However, this did not lead to widespread complaints, as occupants perceive the thermal environment as neutral—varying greatly between users—and show a preference for slightly colder environments. Comparison of these thermal comfort votes and the thermal comfort indicators used showed a better fit of thermal preference over thermal sensation and more reliable results when using regional ATC indicators than the ASHRAE adaptive model. This highlights the significance of inhabitants’ actual thermal perception. These findings provide useful insight for a more accurate design of this type of building, as well as a suitable tool for the improvement of existing spaces, improving the conditions for both comfort and wellbeing in these spaces, as well as providing a better fit of energy use for actual comfort conditions.
Collapse
|
8
|
Models and Indicators to Assess Thermal Sensation Under Steady-state and Transient Conditions. ENERGIES 2019. [DOI: 10.3390/en12050841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The assessment of thermal sensation is the first stage of many studies aimed at addressing thermal comfort and at establishing the related criteria used in indoor and outdoor environments. The study of thermal sensation requires suitable modelling of the human body, taking into account the factors that affect the physiological and psychological reactions that occur under different environmental conditions. These aspects are becoming more and more relevant in the present context in which thermal sensation and thermal comfort are represented as objectives or constraints in a wider range of problems referring to the living environment. This paper first considers the models of the human body used in steady-state and transient conditions. Starting from the conceptual formulations of the heat balance equations, this paper follows the evolution occurred during the years to refine the models. This evolution is also marked by the availability of increasingly higher computational capability that enabled the researchers developing transient models with a growing level of detail and accuracy, and by the validation of the models through experimental studies that exploit advanced technologies. The paper then provides an overview of the indicators used to characterise the local and overall thermal sensation, indicating the relations with local and overall thermal comfort.
Collapse
|
9
|
The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate. SUSTAINABILITY 2019. [DOI: 10.3390/su11020328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The building industry is regarded a major contributor to climate change as energy consumption from buildings accounts for 40% of the total energy. The types of thermal comfort models used to predict the heating and cooling loads are critical to save energy in operative buildings and reduce greenhouse gas emissions (GHG). In this research, the internal air temperatures were recorded for over one year under the free floating mode with no heating or cooling, then the number of hours required for heating or cooling were calculated based on fixed sets of operative temperatures (18 °C–24 °C) and the adaptive thermal comfort model to estimate the number of hours per year required for cooling and heating to sustain the occupants’ thermal comfort for four full-scale housing test modules at the campus of the University of Newcastle, Australia. The adaptive thermal comfort model significantly reduced the time necessary for mechanical cooling and heating by more than half when compared with the constant thermostat setting used by the air-conditioning systems installed on the site. It was found that the air-conditioning system with operational temperature setups using the adaptive thermal comfort model at 80% acceptability limits required almost half the operating energy when compared with fixed sets of operating temperatures. This can be achieved by applying a broader range of acceptable temperature limits and using techniques that require minimal energy to sustain the occupants’ thermal comfort.
Collapse
|
10
|
Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings. SUSTAINABILITY 2018. [DOI: 10.3390/su10124670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-residential and more specifically office buildings are, nowadays, an integral part of the building stock and milestones of urban areas in most of the developed and developing countries all over the world. Compared to other building types, office buildings present some of the highest specific energy consumption rates. In the present study, a typical nine-story office is assessed for a number of different building integrated retrofitting measures. Measurements of indoor environmental conditions were used in order to validate the developed simulation model of the building in EnergyPlus. Then, a number of different building integration options for photovoltaic systems and shading options are examined, in order to evaluate the best option in terms of indoor air quality, thermal comfort and energy consumption. The amount of electricity produced can meet 65% of the building’s annual electricity requirements, while the shading options can reduce energy requirements by as much as 33%. Although this in not a value that can be dismissed easily, it becomes clear that further—and more deeply aiming—measures are needed, if the building is to achieve near zero energy status.
Collapse
|
11
|
|
12
|
Gao C, Kuklane K, Östergren PO, Kjellstrom T. Occupational heat stress assessment and protective strategies in the context of climate change. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:359-371. [PMID: 28444505 PMCID: PMC5854720 DOI: 10.1007/s00484-017-1352-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 05/19/2023]
Abstract
Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.
Collapse
Affiliation(s)
- Chuansi Gao
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden.
| | - Kalev Kuklane
- Thermal Environment Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Lund, Sweden
| | - Per-Olof Östergren
- Social Medicine and Global Health, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Tord Kjellstrom
- Centre for Technology Research and Innovation (CETRI Ltd), Lemesos, Cyprus
| |
Collapse
|
13
|
|