1
|
Li T, Ge G, Zhang H, Wang R, Liu Y, Zhang Q, Yue Z, Ma W, Li W, Zhang J, Yang H, Wang P, Zhao J, Fang Y, Xie Q, Wang M, Li Y, Zhu H, Li H. HM-3-HSA exhibits potent anti-angiogenesis and antitumor activity in hepatocellular carcinoma. Eur J Pharm Sci 2021; 167:106017. [PMID: 34555448 DOI: 10.1016/j.ejps.2021.106017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
HM-3-HSA is an antitumor fusion protein which improved the pharmacokinetics of HM-3. Previous studies reported that HM-3-HSA enhanced antitumor activity of HM-3 in melanoma cells. However, the efficacy and the mechanism of HM-3-HSA in hepatocellular carcinoma, especially its effect on tumor angiogenesis, have not been elucidated. Herein, we showed that HM-3-HSA significantly inhibited the H22 and SMMC-7721 tumor xenografts growth and tumor angiogenesis in vivo, indicating the antitumor activity exerted by HM-3-HSA was closely corrected with its potency on tumor angiogenesis. To investigate the anti-angiogenic mechanism, we evaluated the efficacy of HM-3-HSA in HUVECs in vitro. The results showed that multiple steps of tumor angiogenesis, including endothelial cell proliferation, migration, invasion and tube formation, were substantially inhibited by HM-3-HSA. Mechanism investigations revealed that HM-3-HSA could bind HUVECs via integrin αvβ3 and α5β1 and inhibited phosphorylation of the downstream protein kinases including FAK, Src and PI3 K. Our study was the first to report the activity of HM-3-HSA against hepatocellular carcinoma and tumor angiogenesis as well as the underlying mechanism by which HM-3-HSA to exert its anti-angiogenic activity.
Collapse
Affiliation(s)
- Ting Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guangfei Ge
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hanzi Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruyue Wang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yiyao Liu
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qian Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaorong Yue
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuli Ma
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Peiya Wang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jiang Zhao
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yanhao Fang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Qinjian Xie
- Gansu Crops Hospital of CAPF, Lanzhou, China
| | - Meizhu Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Zhu
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Hongyu Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Gong LJ, Wang XY, Yao XD, Wu X, Gu WY. CircESRP1 inhibits clear cell renal cell carcinoma progression through the CTCF-mediated positive feedback loop. Cell Death Dis 2021; 12:1081. [PMID: 34775467 PMCID: PMC8590696 DOI: 10.1038/s41419-021-04366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Circular RNA (circRNA), a closed continuous loop formed by back-splicing, has been confirmed to be implicated in a variety of human diseases including cancers. However, the underlying molecular mechanism of circRNA regulating the progression of renal cell carcinoma (RCC) remains largely unclear. In the present study, we identified a novel circular RNA, circESRP1, that derived from the ESRP1 gene locus at 8q22.1 exons. Lower expression of circESRP1 was found in clear cell RCC (ccRCC) tissues and cell lines. Besides, circESRP1 expression level showed inversely correlated with the advanced tumor size, TNM stage and distant metastasis of ccRCC. The expression level of circESRP1 exhibited a positive correlation with CTCF protein but negatively correlated with miR-3942 in 79 ccRCC tissues. In vivo experiments, we found that overexpression of circESRP1 effectively repressed xenograft tumor growth and inhibited c-Myc-mediated EMT progression. CircESRP1 acted as a sponge to competitively bind with miR-3942 as confirmed through RNA pull-down, RIP and dual-luciferase reporter assays. Moreover, CTCF, a downstream target of miR-3942, was validated to specifically promote the circESRP1 transcript expression and regulated by circESRP1/miR-3942 pathway to form a positive feedback loop. We also revealed that the circESRP1/miR-3942/CTCF feedback loop regulated the ccRCC cell functions via c-Myc mediated EMT process. This study provides a novel regulatory model of circRNA via forming a positive-feedback loop that perpetuates the circESRP1/miR-3942/CTCF axis, suggesting that this signaling may serve as a novel target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No 37 Guoxue Alley, 610041, Chengdu, Sichuan, China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China.
| |
Collapse
|
3
|
Zhao Y, Luo Q, Mo J, Li J, Ye D, Ao Z, Chen L, Liu J. Metformin in combination with JS-K inhibits growth of renal cell carcinoma cells via reactive oxygen species activation and inducing DNA breaks. J Cancer 2020; 11:3701-3712. [PMID: 32328174 PMCID: PMC7171495 DOI: 10.7150/jca.36372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin (MET) is taken as a principal medication for remedying Type 2 diabetes mellitus. Its anti-tumor effect has been reported increasingly, but the precise mechanism of it remains unclear. This study aims to explore the efficacy of MET and MET combined with nitric oxide donor prodrug JS-K on the proliferation, apoptosis, and DNA damage in human renal cell carcinoma (RCC) cells, and investigate the possible molecular mechanism involved. The cell proliferation was tested through methyl-tetrazolium assay and cell apoptosis was ascertained by flow cytometry. The dihydroethidium and JC-1 fluorescent methods were used to detect Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm), respectively. Proteins associated with apoptosis and DNA damage were evaluated by Western blotting. Results showed that MET and JS-K could suppress cell growth, and the inhibition concentration 50 of treatment with MET combined with JS-K (MET + JS-K) showed more toxicity than individual agents on RCC cells. This augmented toxicity was associated with intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential alteration, and induced DNA breaks. The results of Western blotting showed that the expression level of pro-apoptotic proteins, such as Bax, Bak, caspase-3, and caspase-9, was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated after treatment using MET alone and MET + JS-K, correspondingly. Moreover, MET + JS-K inhibited the expression of cellular PCNA and Rad51, and immunofluorescence analysis of γH2AX proved that MET + JS-K enhanced DNA damage. In summary, the results of this research indicated that MET and JS-K inhibited RCC cell growth by activating ROS, targeting mitochondria-dependent apoptotic pathways, and inducing DNA breaks.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qiuming Luo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianwei Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhixian Ao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lixin Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
4
|
Oliveira RDC, Ivanovic RF, Leite KRM, Viana NI, Pimenta RCA, Junior JP, Guimarães VR, Morais DR, Abe DK, Nesrallah AJ, Srougi M, Nahas W, Reis ST. Expression of micro-RNAs and genes related to angiogenesis in ccRCC and associations with tumor characteristics. BMC Urol 2017; 17:113. [PMID: 29202733 PMCID: PMC5715647 DOI: 10.1186/s12894-017-0306-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer in adults. Our aim is to evaluate genes and miRNAs expression profiles involved with angiogenesis and tumor characteristics in ccRCC. METHODS The expression levels of miRNAs miR-99a, 99b, 100; 199a; 106a; 106b; 29a; 29b; 29c; 126; 200a, 200b and their respective target genes: mTOR, HIF1-α, VHL, PDGF, VEGF, VEGFR1 and VEGFR2 were analyzed using qRT-PCR in tumor tissue samples from 56 patients with ccRCC. Five samples of benign renal tissue were utilized as control. The expression levels of miRNAs and genes were related to tumor size, Fuhrman nuclear grade and microvascular invasion. RESULTS miR99a was overexpressed in most samples and its target gene mTOR was underexpressed, this also occurs for miRNAs 106a, 106b, and their target gene VHL. An increase in miR-200b was correlated with high-risk tumors (p = 0.01) while miR-126 overexpression was associated with Fuhrman's low grade (p = 0.03). CONCLUSIONS Our results show that in ccRCC there are changes in miRNAs expression affecting gene expression that could be important in determining the aggressiveness of this lethal neoplasia.
Collapse
Affiliation(s)
- Rita de Cássia Oliveira
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Renato Fidelis Ivanovic
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Nayara Izabel Viana
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Ruan César Aparecido Pimenta
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - José Pontes Junior
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil.,Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Vanessa Ribeiro Guimarães
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Denis Reis Morais
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Daniel Kanda Abe
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - Adriano João Nesrallah
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Sabrina Thalita Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, 01246-903, Brazil.
| |
Collapse
|
5
|
Ding J, Wang C, Chang X. Establishment of a bioluminescent Renca cell line for renal carcinoma research. Int Urol Nephrol 2017; 50:55-61. [PMID: 28975469 DOI: 10.1007/s11255-017-1707-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Luciferase modification of tumour cells enables early and non-invasive imaging to detect tumour growth in situ and could provide sensitive and effective detection of carcinoma during research and therapy. METHODS Renca cells, a murine renal carcinoma cell line, were infected with lentivirus expressing luciferase to obtain Renca-luc. The proliferation, invasion, and migration of Renca and Renca-luc cell lines were compared using colorimetric, Boyden chamber, and wound-healing assays. Orthotopic tumour models were established in BALB/c mice using Renca and Renca-luc cells, and tumour growth in vivo was detected using bioluminescence imaging and magnetic resonance imaging (MRI). RESULTS Intensity of luciferase signals from Renca-luc was positively correlated with cell number. Bioluminescence signal was detected 1 day after the establishment of the renal carcinoma model using Renca-luc and was significantly increased after 7 days. Tumour size at 7 days following the establishment of renal carcinoma models using Renca and Renca-luc was determined using MRI. The presence of renal model tumours was confirmed by histological staining. The expression of luciferase did not affect Renca cell characteristics in vitro or tumour growth in vivo. CONCLUSION Luciferase labelling could provide a sensitive and non-invasive evaluation method for immunological and tumour therapy of renal carcinomas.
Collapse
Affiliation(s)
- Jie Ding
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, #87 Dingjiaqiao Road, Nanjing, 210009, China.
| | - Chao Wang
- Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, #2 Sipailou, Nanjing, 210096, China
| | - Xiaofeng Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, #87 Dingjiaqiao Road, Nanjing, 210009, China.,Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, #321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
6
|
Yue D, Wang Y, Sun Y, Niu Y, Chang C. C1QBP Regulates YBX1 to Suppress the Androgen Receptor (AR)-Enhanced RCC Cell Invasion. Neoplasia 2017; 19:135-144. [PMID: 28107702 PMCID: PMC5247285 DOI: 10.1016/j.neo.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Early studies suggested that the androgen receptor (AR) might play important roles to promote the renal cell carcinoma (RCC) progression; however, the detailed mechanisms remain unclear. Here we demonstrated the higher YBX1 expression with lower C1QBP expression in human RCC clinical tissues, and the intensity of C1QBP was negatively correlated with the YBX1 nuclear expression. Mechanism dissection found C1QBP could interact with YBX1 to suppress the YBX1 activation via altering the YBX1 phosphorylation and nuclear translocation in RCC cells. The consequences of such suppression of YBX1 might then result in suppressing the RCC cell migration and invasion that involved altering the AR-modulated MMP9 signals. Interruption of this newly identified C1QBP→YBX1→AR→MMP9-suppressed RCC cell invasion pathway via targeting YBX1 or AR partially reversed the RCC cell invasion. Importantly, results from in vivo mouse model with orthotopic implantation of RCC OSRC2 cells into the left renal capsule also confirmed in vitro cell line studies showing targeting YBX1 could suppress RCC cell invasion via regulation of AR/MMP9 signals. Collectively, these data suggest that C1QBP could regulate YBX1 to suppress the AR-enhanced RCC cell invasion. Targeting this newly identified C1QBP/YBX1/AR/MMP9 signal pathway may provide a new potential therapy to better suppress RCC metastasis.
Collapse
Affiliation(s)
- Dan Yue
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yong Wang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
7
|
Hirbod-Mobarakeh A, Gordan HA, Zahiri Z, Mirshahvalad M, Hosseinverdi S, Rini BI, Rezaei N. Specific immunotherapy in renal cancer: a systematic review. Ther Adv Urol 2016; 9:45-58. [PMID: 28203287 DOI: 10.1177/1756287216681246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Renal cell cancer (RCC) is the tenth most common malignancy in adults. In recent years, several approaches of active and passive immunotherapy have been studied extensively in clinical trials of patients with RCC. The aim of this systematic review was to assess the clinical efficacy of various approaches of specific immunotherapy in patients with RCC. METHODS We searched Medline, Scopus, CENTRAL, TRIP, DART, OpenGrey and ProQuest without any language filter through to 9 October 2015. One author reviewed search results for irrelevant and duplicate studies and two other authors independently extracted data from the studies. We collated study findings and calculated a weighted treatment effect across studies using Review Manager (version 5.3. Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration). RESULTS We identified 14 controlled studies with 4013 RCC patients after excluding irrelevant and duplicate studies from 11,319 references retrieved from a literature search. Overall, five autologous tumor cell vaccines, one peptide-based vaccine, one virus-based vaccine and one dendritic cell (DC)-based vaccine were studied in nine controlled studies of active specific immunotherapies. A total of three passive immunotherapies including autologous cytokine-induced killer (CIK) cells, auto lymphocyte therapy (ALT) and autologous lymphokine-activated killer (LAK) cells were studied in four controlled studies. The clinical efficacy of tumor lysate-pulsed DCs, with CIK cells was studied in one controlled trial concurrently. The overall quality of studies was fair. Meta-analysis of seven studies showed that patients undergoing specific immunotherapy had significantly higher overall survival (OS) than those in the control group [hazard ratio (HR) = 0.72; 95% confidence interval (CI) = 0.58-0.89, p = 0.003]. In addition, a meta-analysis of four studies showed that there was a significant difference in progression-free survival (PFS) between patients undergoing specific immunotherapy and patients in control groups (HR = 0.86; 95% CI = 0.73-1, p = 0.05). CONCLUSIONS Results of this systematic review suggest that some specific immunotherapies such as Reniale, ACHN-IL-2, Newcastle disease virus (NDV) virus-infected autologous tumor cells, ALT and CIK treatment could be beneficiary for the treatment of patients with RCC.
Collapse
Affiliation(s)
- Armin Hirbod-Mobarakeh
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesam Addin Gordan
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Zahiri
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Mirshahvalad
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Hosseinverdi
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Brian I Rini
- Department of Solid Tumor Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr Qarib Street, Keshavarz Boulevard, Tehran 14194, Iran
| |
Collapse
|
8
|
Serrano-Oviedo L, Giménez-Bachs JM, Nam-Cha SY, Cimas FJ, García-Cano J, Sánchez-Prieto R, Salinas-Sánchez AS. Implication of VHL, ERK5, and HIF-1alpha in clear cell renal cell carcinoma: Molecular basis. Urol Oncol 2016; 35:114.e15-114.e22. [PMID: 27836247 DOI: 10.1016/j.urolonc.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the expression status of several proteins related to VHL gene function and its relationship with common clinicopathological parameters. MATERIAL AND METHODS Observational, analytical, cross-sectional study with 50 patients diagnosed with clear cell renal cell carcinoma. The study analyzed VHL mutations and hypermethylation as well as protein expression of VHL, CA-IX, HIF-1alpha, VEGF, ERK1/2, and ERK5, relating them to clinical variables. A bivariate and multivariate descriptive logistical regression analysis was performed, using the presence of metastasis at diagnosis as dependent variable. RESULTS The study identified 13 (26%) VHL mutations related to nuclear grade (P = 0.036). VHL hypermethylation was found in 20% of cases. VHL expression was associated with the presence of mutations (P = 0.013), and the absence of expression was associated with nuclear grade and the presence of metastasis (P<0.05). HIF-1alpha was negative in only 5 cases. Vascular endothelial growth factor (VEGF) was positive in 31 of 47 cases and was associated with Fuhrman nuclear grade, presence of metastasis, and stage (P<0.05). ERK5 expression was increased in 58% of cases and associated with the presence of metastasis and more advanced stages (P<0.05). In the logistic regression analysis, the only variable remaining in the model was VEGF expression (P = 0.014). CONCLUSIONS VEGF has prognostic value in clear cell renal cell carcinoma, and ERK5 may be a new prognostic marker in this type of tumor owing to its relationship with metastasis and more advanced stages.
Collapse
Affiliation(s)
- Leticia Serrano-Oviedo
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Giménez-Bachs
- Servicio de Urología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | - Syongh Y Nam-Cha
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
9
|
Chen Y, Sun Y, Rao Q, Xu H, Li L, Chang C. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status. Oncotarget 2016; 6:31203-15. [PMID: 26304926 PMCID: PMC4741598 DOI: 10.18632/oncotarget.4522] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/23/2015] [Indexed: 12/18/2022] Open
Abstract
Mutational inactivation of the VHL tumor suppressor plays key roles in the development of renal cell carcinoma (RCC), and mutated VHL-mediated VEGF induction has become the main target for the current RCC therapy. Here we identified a signal pathway of VEGF induction by androgen receptor (AR)/miRNA-145 as a new target to suppress RCC progression. Mechanism dissection revealed that AR might function through binding to the androgen receptor element (ARE) located on the promoter region of miRNA-145 to suppress p53's ability to induce expression of miRNA-145 that normally suppresses expression of HIF2α/VEGF/MMP9/CCND1. Suppressing AR with AR-shRNA or introducing exogenous miRNA-145 mimic can attenuate RCC progression independent of VHL status. MiR-145 mimic in preclinical RCC orthotopic xenograft mouse model revealed its efficacy in suppression of RCC progression. These results together identified signals by AR-suppressed miRNA-145 as a key player in the RCC progression via regulating HIF2α/VEGF/MMP9/CCND1 expression levels. Blockade of the newly identified signal by AR inhibition or miRNA-145 mimics has promising therapeutic benefit to suppress RCC progression.
Collapse
Affiliation(s)
- Yuan Chen
- Sex Hormone Research Center, Department of Urology, Tongji Medical College/Hospital, Huazhong University of Science and Technology, Wuhan, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Qun Rao
- Department of Gynaecology and Obstetrics, Tongji Medical College/Hospital, Huazhong University of Science and Technology, Wuhan, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hua Xu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lei Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology and Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Xiong F, Liu K, Zhang F, Sha K, Wang X, Guo X, Huang N. MiR-204 inhibits the proliferation and invasion of renal cell carcinoma by inhibiting RAB22A expression. Oncol Rep 2016; 35:3000-8. [PMID: 26883716 DOI: 10.3892/or.2016.4624] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
While miR-204 expression may be linked to renal cell carcinoma (RCC) progression, the detailed mechanisms remain unclear. In the present study, we demonstrated that miR-204 was differentially expressed in RCC tissues when compared with surrounding normal kidney tissues. Ectopic overexpression of miR-204 in human RCC cells suppressed cell proliferation and invasion in vitro and in vivo. Mechanism dissection revealed that miR-204 may function through RAB22A signals to inhibit RCC proliferation and invasion. Overexpression of RAB22A by oe-RAB22A was able to partially reverse the miR-204-mediated suppression of RCC tumor progression. Together, these results revealed that miR-204 suppressed RCC proliferation and invasion by directly targeting the RAB22A gene. Targeting newly identified RAB22A with miR-204 may aid in the suppression of RCC proliferation and invasion.
Collapse
Affiliation(s)
- Feng Xiong
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Keyun Liu
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fumei Zhang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Kaihui Sha
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xinyuan Wang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Guo
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Huang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Abstract
Metformin is well-known as an anti-diabetic drug, but it seems to possess anti-cancerous properties as well. Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved regulator of the cellular response to the presence of low energy in all eukaryotic cells. It is considered a key sensor of the balance of cellular ATP and AMP concentrations. LKB1 serine/threonine kinase is a divergent yet evolutionarily well-conserved kinase, biochemically sufficient to activate AMPK in vitro and genetically required for AMPK activation. Because of this potent connection to AMPK, LKB1 may act as a central regulator of metabolism in vivo. Once activated, AMP kinase phosphorylates the transcriptional activator TorC2, thereby blocking its nuclear translocation and inhibiting the expression of genes involved in gluconeogenesis. Data suggest that LKB1/AMPK signaling plays a role in protection from apoptosis, specifically in response to agents that increase the cellular AMP/ATP ratio. Active AMPK signaling offers a protective effect by providing the cell with time to reverse the aberrantly high ratio of AMP/ATP. If unable to reverse this ratio, the cell will eventually undergo cell death. These observations offer the provocative suggestion of a potential therapeutic window in which LKB1-deficient tumor cells may be acutely sensitive to AMP analogues or sensitized to cell death by other stimuli when treated in combination with agents that increase the AMP/ATP ratio. LKB1 therefore is a classical tumor suppressor. AMPK is a direct LKB1 substrate. A consequence of AMPK activation by LKB1 is the inhibition of the mammalian target of rapamycin (mTOR) C1 pathway. Metformin's anti-cancerous properties have been demonstrated in various cancer cells in vitro, such as lung, pancreatic, colon, ovarian, breast, prostate, renal cancer cells, melanoma, and even in acute lymphoblastic leukemia cells. To test metformin's action in vivo, mice were implanted with transformed mammary epithelial cells and treated with three cycles of metformin and with the anthracycline doxorubicin. When combined with doxorubicin, metformin wiped out tumors and prevented recurrence. Metformin alone had no effect, and doxorubicin as a single agent initially shrank tumors, but they regrew later. Virtually no cancer stem cells were recovered immediately after treatment and the complete response was sustained for nearly two months. Further studies are needed to assess the anti-cancerous potentials of metformin in vivo. This article reviews the current knowledge on the actions of LKB1/AMPK and the effectiveness of metformin in cancer, specifically in diabetes patients.
Collapse
Affiliation(s)
- Natalia G Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | | | - Christos Kazazis
- Honorary Lecturer, School of Medicine, University of Leicester, University Rd, Leicester, LE1 9HN, UK
| |
Collapse
|
12
|
Rajandram R, Bennett N, Morais C, Johnson D, Gobe G. Renal cell carcinoma: Resistance to therapy, role of apoptosis, and the prognostic and therapeutic target potential of TRAF proteins. Med Hypotheses 2012; 78:330-6. [DOI: 10.1016/j.mehy.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/17/2011] [Accepted: 11/13/2011] [Indexed: 12/25/2022]
|
13
|
|
14
|
Woodard J, Joshi S, Viollet B, Hay N, Platanias LC. AMPK as a therapeutic target in renal cell carcinoma. Cancer Biol Ther 2010; 10:1168-77. [PMID: 20948309 DOI: 10.4161/cbt.10.11.13629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AMPK is a cellular energy sensor that negatively regulates the mTOR signaling pathway. As mTOR plays critical roles in cell growth and tumorigenesis of renal cell carcinoma (RCC), we examined whether exogenous induction of AMPK activity exhibits inhibitory effects on growth and survival of renal cell carcinoma cells. Activation of AMPK by AICAR resulted in potent suppressive effects on RCC growth, while combinations of AICAR with statins were potent inducers of apoptosis in such cells. The effects of AICAR resulted from inhibition of mTOR and its effectors, resulting from induction of AMPK activity. Similar results on RCC cell growth were obtained when combinations of metformin with statins were examined. Importantly, studies to examine the effects of AICAR or metformin, alone or in combinations with statins, on anchorage-independent growth demonstrated potent suppressive effects on RCC tumorigenicity in vitro. Altogether, our studies demonstrate that AMPK plays critical regulatory roles in the regulation of growth of RCC cells and raise the prospect of future use of AMPK activators in the treatment of renal cell carcinoma in humans.
Collapse
Affiliation(s)
- Jennifer Woodard
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
15
|
Frederiks WM, Bosch KS, Hoeben KA, van Marle J, Langbein S. Renal cell carcinoma and oxidative stress: The lack of peroxisomes. Acta Histochem 2010; 112:364-71. [PMID: 19500819 DOI: 10.1016/j.acthis.2009.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/28/2022]
Abstract
Oxidative stress plays an important role in carcinogenesis because of induction of DNA damage and its effects on intracellular signal transduction pathways. Here, we investigated the relationship between the defence against oxidative stress and human renal cell carcinoma that originates from proximal tubular epithelium. Oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase (G6PD) activity is a diagnostic tool for the detection of carcinomas. Its mechanism is based on high G6PD activity, reduced superoxide dismutase activity and reduced numbers of peroxisomes in the cancer cells. Five out of the 8 renal carcinomas studied here demonstrated oxygen insensitivity. These carcinomas showed high G6PD activity, whereas the other 3 carcinomas contained lower G6PD activity and were oxygen sensitive like non-cancer cells. Oxygen insensitivity did not correlate with tumour grade, staging or presence of metastases. Electron microscopy and immunofluorescence of catalase showed large numbers of peroxisomes in epithelial cells of proximal tubules of normal human kidney, whereas these organelles were completely absent in cancer cells of all carcinomas. As a consequence of the absence of peroxisomes in cancer cells, fatty acid metabolism is disturbed in addition to the altered glucose metabolism that is generally observed in cancer cells. Therefore, therapeutic approaches should focus on metabolism in addition to other strategies targeting signal transduction and angiogenesis.
Collapse
Affiliation(s)
- Wilma M Frederiks
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Buchner A, Pohla H, Willimsky G, Frankenberger B, Frank R, Baur-Melnyk A, Siebels M, Stief CG, Hofstetter A, Kopp J, Pezzutto A, Blankenstein T, Oberneder R, Schendel DJ. Phase 1 trial of allogeneic gene-modified tumor cell vaccine RCC-26/CD80/IL-2 in patients with metastatic renal cell carcinoma. Hum Gene Ther 2010; 21:285-97. [PMID: 19788391 DOI: 10.1089/hum.2008.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Preclinical studies showed that the allogeneic tumor cell line RCC-26 displayed natural immunogenic potential that was enhanced through expression of CD80 costimulatory molecules and secretion of interleukin-2. Here we report the study of RCC-26/CD80/IL-2 cells in a phase 1 vaccine trial of renal cell carcinoma patients with metastatic disease (mRCC). Fifteen patients of the HLA-A*0201 allotype, with at least one metastatic lesion, were included. Irradiated vaccine cells were applied in increasing doses of 2.5, 10, and 40 x 10(6) cells over 22 weeks. Primary study parameters included safety and toxicity. Sequential blood samples were analyzed by interferon-gamma enzyme-linked immunospot assays to detect tumor antigen-associated (TAA) effector cells. The vaccine was well tolerated and the designated vaccination course was completed in 9 of 15 patients. Neither vaccine-induced autoimmunity nor systemic side effects were observed. Delayed-type hypersensitivity skin reactions were detected in 11 of 12 evaluated patients and were particularly strong in patients with prolonged survival. In parallel, vaccine-induced immune responses against vaccine or overexpressed TAA were detected in 9 of 12 evaluated patients. No tumor regressions occurred according to RECIST (Response Evaluation Criteria in Solid Tumors) criteria; however, median time to progression was 5.3 months and median survival was 15.6 months, indicating substantial disease stabilization. We conclude that vaccine use was safe and feasible in mRCC. Clinical benefits were limited in these patients with advanced disease; however, immune monitoring revealed vaccine-induced responses against multiple TAAs in the majority of study participants. These results suggest that this vaccine could be useful in combination therapies and/or minimal residual disease.
Collapse
Affiliation(s)
- Alexander Buchner
- Department of Urology, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lichtenfels R, Dressler SP, Zobawa M, Recktenwald CV, Ackermann A, Atkins D, Kersten M, Hesse A, Puttkammer M, Lottspeich F, Seliger B. Systematic comparative protein expression profiling of clear cell renal cell carcinoma: a pilot study based on the separation of tissue specimens by two-dimensional gel electrophoresis. Mol Cell Proteomics 2009; 8:2827-42. [PMID: 19752005 DOI: 10.1074/mcp.m900168-mcp200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteome-based technologies represent powerful tools for the analysis of protein expression profiles, including the identification of potential cancer candidate biomarkers. Thus, here we provide a comprehensive protein expression map for clear cell renal cell carcinoma established by systematic comparative two-dimensional gel electrophoresis-based protein expression profiling of 16 paired tissue systems comprising clear cell renal cell carcinoma lesions and corresponding tumor-adjacent renal epithelium using overlapping narrow pH gradients. This approach led to the mapping of 348 distinct spots corresponding to 248 different protein identities. By implementing restriction criteria concerning their detection frequency and overall regulation mode, 28 up- and 56 down-regulated single target spots were considered as potential candidate biomarkers. Based on their gene ontology information, these differentially expressed proteins were classified into distinct functional groups and according to their cellular distribution. Moreover, three representative members of this group, namely calbindin, gelsolin, and heart fatty acid-binding protein, were selected, and their expression pattern was analyzed by immunohistochemistry using tissue microarrays. Thus, this pilot study provides a significant update of the current renal cell carcinoma map and defines a number of differentially expressed proteins, but both their potential as candidate biomarkers and clinical relevance has to be further explored in tissues and for body fluids like serum and urine.
Collapse
Affiliation(s)
- Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Campbell L, Nuttall R, Griffiths D, Gumbleton M. Activated extracellular signal-regulated kinase is an independent prognostic factor in clinically confined renal cell carcinoma. Cancer 2009; 115:3457-67. [PMID: 19526593 DOI: 10.1002/cncr.24389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK) promotes proliferation, metastasis, and poor survival in cancers of the breast, lung, and liver. Advanced localized renal cell carcinoma (RCC) is extraordinarily treatment resistant and has high recurrence rates despite surgery. Limited data exist regarding the prognostic significance of activated (phosphorylated) ERK in RCC. The authors hypothesized that activated ERK (pERK) promotes disease progression and metastasis in localized RCC and may be of value as a biomarker to predict disease recurrence. METHODS The expression profile of pERK was examined by immunocytochemistry using a tissue microarray constructed from 174 drug treatment-naive patients who had undergone radical nephrectomy for localized RCC. Levels of tumor-cell specific pERK were scored and correlated with clinicopathologic parameters of RCC and disease-free survival. RESULTS Immunostaining for pERK was present in 36% of all RCCs, with a predominance found in the clear cell histologic subtype. High expression was associated with increased tumor size, increased TNM stage, and vascular invasion. Patients with pERK-positive tumors had a mean disease-free survival of 4.19 years, compared with 6.38 years for patients with pERK-negative tumors (P<.001). Cox regression models revealed pERK to be a significant independent predictor of disease-free survival, with a hazards score of 2.9 (P<.001), a value similar to tumor grade (hazards ratio, 3.01; P<.001). CONCLUSIONS Expression of pERK is an independent prognostic factor in RCC that is associated with advanced and aggressive pathologic features of renal tumors and predicts the onset of metastasis in patients with localized disease.
Collapse
Affiliation(s)
- Lee Campbell
- Welsh School Of Pharmacy, Department of Pathology, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
19
|
Petrella BL, Brinckerhoff CE. PTEN suppression of YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-cell carcinoma. Cancer Biol Ther 2009; 8:1389-401. [PMID: 19483472 DOI: 10.4161/cbt.8.14.8880] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite recent advances in cancer therapies, metastatic renal cell carcinoma (RCC) remains difficult to treat. Most RCCs result from inactivation of the von Hippel Lindau (VHL) tumor suppressor, leading to stable expression of Hypoxia-Inducible Factor-alpha (HIF-1alpha, -2alpha, -3alpha) and the induction of downstream target genes, including those responsible for angiogenesis and metastasis. While VHL is inactivated in the majority of RCC cases, expression of the PTEN tumor suppressor is reduced in about 30% of cases. PTEN functions to antagonize PI3K/Akt/mTOR signaling, thereby controlling cell growth and survival. Activation of PI3K/Akt/mTOR leads to increased HIF-1alpha expression in certain cancer cells, supporting the rationale of using mTOR inhibitors as anti-cancer agents. Notably, HIF-2alpha, rather than HIF-1alpha, has been shown to play a critical role in renal tumorigenesis. To investigate whether HIF-2alpha is similarly regulated by the PI3K pathway in VHL(-/-)RCC cells, we manipulated PI3K signaling using PTEN overexpression and siRNA knockdown studies and pharmacologic inhibition of PI3K or Akt. Our data support a novel role for wild-type PTEN in promoting HIF-2alpha activity in VHL null RCC cells. This mechanism is unique to the cellular environment in which HIF-2alpha expression is deregulated, resulting from the loss of VHL function. Our data show that PTEN induces HIF-2alpha transcriptional activity by inhibiting expression of Yin Yang 1 (YY1), which acts as a novel corepressor of HIF-2alpha. Further, PTEN suppression of YY1 is mediated through antagonism of PI3K signaling. We conclude that wild-type PTEN relieves the repressive nature of YY1 at certain HIF-2alpha target promoters and that this mechanism may promote early renal tumorigenesis resulting from VHL inactivation by increasing HIF-2alpha activity.
Collapse
Affiliation(s)
- Brenda L Petrella
- Department of Medicine, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
20
|
Singhal SS, Singhal J, Yadav S, Sahu M, Awasthi YC, Awasthi S. RLIP76: a target for kidney cancer therapy. Cancer Res 2009; 69:4244-51. [PMID: 19417134 DOI: 10.1158/0008-5472.can-08-3521] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RLIP76 is a multifunctional transporter protein that serves as an energy-dependent efflux mechanism for endogenously generated toxic metabolites as well as exogenous toxins, including chemotherapy drugs. Our recent studies in cultured cells, syngeneic animal tumor model, and in xenograft model have shown that RLIP76 serves a major cancer-specific antiapoptotic role in a wide variety of histologic types of cancer, including leukemia, melanoma, colon, lung, prostate, and ovarian cancer. Results of present studies in cell culture and xenograft model of Caki-2 cells show that RLIP76 is an important anticancer for kidney cancer because inhibition of RLIP76 function by antibody or its depletion by small interfering RNA or antisense DNA caused marked and sustained regression of established human kidney xenografts of Caki-2 cells in nude mouse.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Gimenez SE, Secasan C, Raman JD. Prognostic markers and targeted therapies for renal cell carcinoma. Future Oncol 2009; 5:197-205. [PMID: 19284378 DOI: 10.2217/14796694.5.2.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Management of advanced renal cell carcinoma remains a persistent clinical challenge with high morbidity and mortality for a large proportion of patients. Until recently, available medical immunotherapy regimens yielded a therapeutic response in only 20% of patients. Advances in the understanding of molecular mechanisms of renal cell carcinoma have led to a rapidly expanding body of work exploring biomarkers for the disease and targeted therapeutics. We review current investigations into biomarkers and novel therapies for renal cell carcinoma, discuss the concept of anticancer vaccines, and propose a novel target for anticancer vaccine development.
Collapse
Affiliation(s)
- S Elena Gimenez
- James Buchanan Brady Foundation, Department of Urology, Weill Medical College of Cornell University, NY, USA
| | | | | |
Collapse
|
22
|
Zini L, Capitanio U, Perrotte P, Jeldres C, Shariat SF, Arjane P, Widmer H, Montorsi F, Patard JJ, Karakiewicz PI. Population-based assessment of survival after cytoreductive nephrectomy versus no surgery in patients with metastatic renal cell carcinoma. Urology 2008; 73:342-6. [PMID: 19041122 DOI: 10.1016/j.urology.2008.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine the population-based survival rates of patients with metastatic renal cell carcinoma (RCC) treated with cytoreductive nephrectomy (CNT) and compare them with those of patients treated without surgery. METHODS Of the 43,143 patients with RCC identified in the 1988-2004 Surveillance, Epidemiology, and End Results database, 5372 had metastatic RCC. Of those, 2447 were treated with CNT (45.5%) and 2925 (54.5%) were not. Univariable and multivariable Cox regression models, as well as matched and unmatched Kaplan-Meier survival analyses, were used. The covariates consisted of age, sex, tumor size, and year of diagnosis. RESULTS The 1-, 2-, 5-, and 10-year overall survival rate of the patients treated with CNT was 53.6%, 36.3%, 19.4%, and 12.7% compared with 18.5%, 7.4%, 2.3%, and 1.2% for the no-surgery patients, respectively. The corresponding cancer-specific survival rates were 58.1%, 40.8%, 24.3%, and 18.8% and 24.4%, 11.0%, 4.1%, and 2.9% for the same patient groups. On multivariate analysis, independent predictor status was recorded for treatment type, tumor size, and patient age (all P <.001). Also, relative to CNT, the no-surgery group had a 2.5-fold greater rate of overall and cancer-specific mortality (P <.001). In the matched analyses, virtually the same effect was recorded (hazard ratio 2.6, P <.001). CONCLUSION The results of our study have shown that CNT significantly improves the survival of patients with metastatic RCC.
Collapse
Affiliation(s)
- Laurent Zini
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sinha S, Cao Y, Dutta S, Wang E, Mukhopadhyay D. VEGF neutralizing antibody increases the therapeutic efficacy of vinorelbine for renal cell carcinoma. J Cell Mol Med 2008; 14:647-58. [PMID: 19017359 PMCID: PMC2992850 DOI: 10.1111/j.1582-4934.2008.00578.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Renal cell carcinoma (RCC) is currently one of the most treatment-resistant malignancies and affects approximately three in 10,000 people. The impact of this disease produces about 31,000 new cases in the United States per year; and 12,000 people in the United States alone die from RCC annually. Although several treatment strategies have been investigated for RCC, this cancer continues to be a therapeutic challenge. For this reason, the aim of our study is to develop a more effective combinational therapy to treat advanced RCC. We examined the effect of vinorelbine on the signalling pathways of two human renal cancer cell lines (A498 and 786-O) and also examined the in vivo effect of vinorelbine treatment alone and vinorelbine in combination with the anti-VEGF antibody 2C3 on A498 and 786-O tumour growth in nude mice. Tumour angiogenesis was measured by vWF staining, and apoptosis was determined by the TUNEL assay. We observed a significant tumour growth inhibition when using a combinational therapy of anti-VEGF antibody 2C3 and vinorelbine in both A498 and 786-O tumour-bearing mice. The results suggest a breakthrough treatment for advanced RCC.
Collapse
Affiliation(s)
- Sutapa Sinha
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
24
|
Woodard J, Sassano A, Hay N, Platanias LC. Statin-dependent suppression of the Akt/mammalian target of rapamycin signaling cascade and programmed cell death 4 up-regulation in renal cell carcinoma. Clin Cancer Res 2008; 14:4640-9. [PMID: 18628479 DOI: 10.1158/1078-0432.ccr-07-5232] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Statins are pharmacologic inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase with potent regulatory effects on cholesterol biosynthesis in vitro and in vivo. There is accumulating evidence that, beyond their cholesterol-lowering properties, statins inhibit cell proliferation and promote apoptosis of malignant cells in vitro, but the mechanisms by which they generate such responses remain to be defined. EXPERIMENTAL DESIGN Combinations of experimental approaches were used, including immunoblotting and cell proliferation and apoptosis assays. RESULTS We provide evidence that fluvastatin is a potent inducer of apoptosis and suppresses proliferation of renal cell carcinoma (RCC) cells in vitro. Such effects are mediated by direct targeting of the Akt/mammalian target of rapamycin (mTOR) pathway, as evidenced by the suppression of phosphorylation/activation of Akt, resulting in inhibition of its downstream effectors, mTOR and p70 S6 kinase. In addition, fluvastatin blocks the mTOR-dependent phosphorylation/deactivation of the translational repressor eukaryotic initiation factor 4E (eIF4E)-binding protein, leading to the formation of eIF4E-binding protein-eIF4E complexes that suppress initiation of cap-dependent mRNA translation. Importantly, inhibition of p70 S6 kinase activity by fluvastatin results in the up-regulation of expression of programmed cell death 4 (PDCD4), a tumor suppressor protein with inhibitory effects on the translation initiation factor eIF4A, suggesting a mechanism for the generation of antitumor responses. CONCLUSIONS Altogether, our findings establish that fluvastatin exhibits potent anti-RCC activities via inhibitory effects on the Akt/mTOR pathway and raise the possibility that combinations of statins and Akt inhibitors may be of future therapeutic value in the treatment of RCC.
Collapse
Affiliation(s)
- Jennifer Woodard
- Robert H. Lurie Comprehensive Cancer Center , Northwestern University Medical School, Chicago, Illinois, USA
| | | | | | | |
Collapse
|