1
|
Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-Drug Conjugates for the Treatment of HER2-Positive Breast Cancer. Genes (Basel) 2022; 13:2065. [PMID: 36360302 PMCID: PMC9691220 DOI: 10.3390/genes13112065] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase is overexpressed in 20-30% of breast cancers and is associated with poor prognosis and worse overall patient survival. Most women with HER2-positive breast cancer receive neoadjuvant chemotherapy plus HER2-targeted therapies. The development of HER2-directed therapeutics is an important advancement in targeting invasive breast cancer. Despite the efficacy of anti-HER2 monoclonal antibodies, they are still being combined with adjuvant chemotherapy to improve overall patient outcomes. Recently, significant progress has been made towards the development of a class of therapeutics known as antibody-drug conjugates (ADCs), which leverage the high specificity of HER2-targeted monoclonal antibodies with the potent cytotoxic effects of various small molecules, such as tubulin inhibitors and topoisomerase inhibitors. To date, two HER2-targeting ADCs have been approved by the FDA for the treatment of HER2-positive breast cancer: Ado-trastuzumab emtansine (T-DM1; Kadcyla®) and fam-trastuzumab deruxtecan-nxki (T-Dxd; Enhertu®). Kadcyla and Enhertu are approved for use as a second-line treatment after trastuzumab-taxane-based therapy in patients with HER2-positive breast cancer. The success of ADCs in the treatment of HER2-positive breast cancer provides novel therapeutic advancements in the management of the disease. In this review, we discuss the basic biology of HER2, its downstream signaling pathways, currently available anti-HER2 therapeutic modalities and their mechanisms of action, and the latest clinical and safety characteristics of ADCs used for the treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Wake Forest Graduate School of Biomedical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sara G. Manore
- Wake Forest Graduate School of Biomedical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Angelina T. Regua
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R162, 6431 Fannin Street, Houston, TX 77030, USA
| | - Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, MSE R162, 6431 Fannin Street, Houston, TX 77030, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
2
|
Smith AE, Ferraro E, Safonov A, Morales CB, Lahuerta EJA, Li Q, Kulick A, Ross D, Solit DB, de Stanchina E, Reis-Filho J, Rosen N, Arribas J, Razavi P, Chandarlapaty S. HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat Commun 2021; 12:6667. [PMID: 34795269 PMCID: PMC8602441 DOI: 10.1038/s41467-021-27093-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of HER2 in HER2-amplified breast cancer has been remarkably successful clinically, as demonstrated by the efficacy of HER-kinase inhibitors and HER2-antibody treatments. Whilst resistance to HER2 inhibition is common in the metastatic setting, the specific programs downstream of HER2 driving resistance are not established. Through genomic profiling of 733 HER2-amplified breast cancers, we identify enrichment of somatic alterations that promote MEK/ERK signaling in metastatic tumors with shortened progression-free survival on anti-HER2 therapy. These mutations, including NF1 loss and ERBB2 activating mutations, are sufficient to mediate resistance to FDA-approved HER2 kinase inhibitors including tucatinib and neratinib. Moreover, resistant tumors lose AKT dependence while undergoing a dramatic sensitization to MEK/ERK inhibition. Mechanistically, this driver pathway switch is a result of MEK-dependent activation of CDK2 kinase. These results establish genetic activation of MAPK as a recurrent mechanism of anti-HER2 therapy resistance that may be effectively combated with MEK/ERK inhibitors.
Collapse
Affiliation(s)
- Alison E Smith
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emanuela Ferraro
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anton Safonov
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Qing Li
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Amanda Kulick
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jorge Reis-Filho
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Geneste A, Duong MN, Molina L, Conilh L, Beaumel S, Cleret A, Chettab K, Lachat M, Jordheim LP, Matera EL, Dumontet C. Adipocyte-conditioned medium induces resistance of breast cancer cells to lapatinib. BMC Pharmacol Toxicol 2020; 21:61. [PMID: 32795383 PMCID: PMC7427918 DOI: 10.1186/s40360-020-00436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background The existence of a cross-talk between peritumoral adipocytes and cancer cells has been increasingly investigated. Several studies have shown that these adipocytes protect tumor cells from the effect of anticancer agents. Methods To investigate a potential protective effect of adipocyte-conditioned medium on HER2 positive breast cancer cells exposed to tyrosine kinase inhibitors (TKI) such as lapatinib, we analyzed the sensitivity of HER2 positive breast cancer models in vitro and in vivo on SCID mice in the presence or absence of adipocytes or adipocyte-conditioned medium. Results Conditioned medium from differentiated adipocytes reduced the in vitro sensitivity of the HER2+ cell lines BT474 and SKBR3 to TKI. Particularly, conditioned medium abrogated P27 induction in tumor cells by lapatinib but this was observed only when conditioned medium was present during exposure to lapatinib. In addition, resistance was induced with adipocytes derived from murine NIH3T3 or human hMAD cells but not with fibroblasts or preadipocytes. In vivo studies demonstrated that the contact of the tumors with adipose tissue reduced sensitivity to lapatinib. Soluble factors involved in this resistance were found to be thermolabile. Pharmacological modulation of lipolysis in adipocytes during preparation of conditioned media showed that various lipolysis inhibitors abolished the protective effect of conditioned media on tumor cells, suggesting a role for adipocyte lipolysis in the induction of resistance of tumor cells to TKI. Conclusions Overall, our results suggest that contact of tumor cells with proximal adipose tissue induces resistance to anti HER2 small molecule inhibitors through the production of soluble thermolabile factors, and that this effect can be abrogated using lipolysis inhibitors.
Collapse
Affiliation(s)
- A Geneste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M N Duong
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - L Molina
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - L Conilh
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - S Beaumel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - A Cleret
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - K Chettab
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M Lachat
- Hospices Civils de Lyon, Banque de tissus et cellules, 5 place d'Arsonval, 69003, Lyon, France
| | - L P Jordheim
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - E L Matera
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - C Dumontet
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.,Hospices Civils de Lyon, Services d'Hématologie, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| |
Collapse
|
4
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
5
|
Wahdan-Alaswad R, Liu B, Thor AD. Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:179-198. [PMID: 35582612 PMCID: PMC9090587 DOI: 10.20517/cdr.2019.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Approximately 20% of invasive breast cancers have upregulation/gene amplification of the oncogene human epidermal growth factor receptor-2 (HER2/ErbB2). Of these, some also express steroid receptors (the so-called Luminal B subtype), whereas others do not (the HER2 subtype). HER2 abnormal breast cancers are associated with a worse prognosis, chemotherapy resistance, and sensitivity to selected anti-HER2 targeted therapeutics. Transcriptional data from over 3000 invasive breast cancers suggest that this approach is overly simplistic; rather, the upregulation of HER2 expression resulting from gene amplification is a driver event that causes major transcriptional changes involving numerous genes and pathways in breast cancer cells. Most notably, this includes a shift from estrogenic dependence to regulatory controls driven by other nuclear receptors, particularly the androgen receptor. We discuss members of the HER receptor tyrosine kinase family, heterodimer formation, and downstream signaling, with a focus on HER2 associated pathology in breast carcinogenesis. The development and application of anti-HER2 drugs, including selected clinical trials, are discussed. In light of the many excellent reviews in the clinical literature, our emphasis is on recently developed and successful strategies to overcome targeted therapy resistance. These include combining anti-HER2 agents with programmed cell death-1 ligand or cyclin-dependent kinase 4/6 inhibitors, targeting crosstalk between HER2 and other nuclear receptors, lipid/cholesterol synthesis to inhibit receptor tyrosine kinase activation, and metformin, a broadly inhibitory drug. We seek to facilitate a better understanding of new approaches to overcome anti-HER2 drug resistance and encourage exploration of two other therapeutic interventions that may be clinically useful for HER+ invasive breast cancer patients.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| |
Collapse
|
6
|
Abstract
Castration-resistant prostate cancer (CRPC) remains incurable despite the approval of several new treatments. Identification of new biomarkers and therapeutic targets to enable personalization of CRPC therapy, with the aim of maximizing therapeutic responses and minimizing toxicity in patients, is urgently needed. Prostate cancer progression and therapeutic resistance are frequently driven by aberrantly activated kinase signalling pathways that are amenable to pharmacological inhibition. Personalized phosphoproteomics, which enables the analysis of signalling networks in individual tumours, is a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets. Several technologies for global and targeted phosphoproteomic analysis exist, each with its own strengths and shortcomings. Global discovery phosphoproteomics is predominantly conducted using liquid chromatography-tandem mass spectrometry coupled with data-dependent or data-independent acquisition technologies. Multiplexed targeted phosphoproteomics can be divided into platforms based on mass spectrometry or antibodies, including selected or parallel reaction monitoring and triggered by offset, multiplexed, accurate mass, high-resolution, absolute quantification (known as TOMAHAQ) or forward-phase or reverse-phase protein arrays, respectively. Several obstacles still need to be overcome before the full potential of phosphoproteomics can be realized in routine clinical practice, but a future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized CRPC management through improved biomarkers and targeted treatments.
Collapse
|
7
|
Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: Current knowledge, new research directions and therapeutic perspectives. Crit Rev Oncol Hematol 2019; 139:53-66. [DOI: 10.1016/j.critrevonc.2019.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/19/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
|
8
|
Sidhanth C, Manasa P, Krishnapriya S, Sneha S, Bindhya S, Nagare R, Garg M, Ganesan T. A systematic understanding of signaling by ErbB2 in cancer using phosphoproteomics. Biochem Cell Biol 2018; 96:295-305. [DOI: 10.1139/bcb-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ErbB2 is an important receptor tyrosine kinase and a member of the ErbB family. Although it does not have a specific ligand, it transmits signals downstream by heterodimerization with other receptors in the family. It plays a major role in a variety of cellular responses like proliferation, differentiation, and adhesion. ErbB2 is amplified at the DNA level in breast cancer (20%–30%) and gastric cancer (10%–20%), and trastuzumab is effective as a therapeutic antibody. This review is a critical analysis of the currently published data on the signaling pathways of ErbB2 and the interacting proteins. It also focuses on the techniques that are currently available to evaluate the entire phosphoproteome following activation of ErbB2. Identification of new and relevant phosphoproteins can not only serve as new therapeutic targets but also as a surrogate marker in patients to assess the activity of compounds that inhibit ErbB2. Overall, such analysis will improve understanding of signaling by ErbB2.
Collapse
Affiliation(s)
- C. Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - P. Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Sneha
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - R.P. Nagare
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - M. Garg
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - T.S. Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| |
Collapse
|
9
|
Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R, Zhang F, Dong D, Shao J, Zhou Y. Lapatinib Inhibits Breast Cancer Cell Proliferation by Influencing PKM2 Expression. Technol Cancer Res Treat 2018; 17:1533034617749418. [PMID: 29343208 PMCID: PMC5784572 DOI: 10.1177/1533034617749418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Pyruvate kinase type M2, which is expressed in multiple tumor cell types and plays a key role in aerobic glycolysis, also has nonglycolytic functions and can regulate transcription and cell proliferation. The results of this study show that epidermal growth factor receptor activation induces pyruvate kinase type M2 nuclear translocation. To further determine the relationship between pyruvate kinase type M2 and epidermal growth factor receptor, we analyzed pathological data from mammary glands and performed epidermal growth factor receptor/human epidermal growth factor receptor 2 knockdown to reveal that pyruvate kinase type M2 is associated with epidermal growth factor receptor and human epidermal growth factor receptor 2. Lapatinib is a small molecule epidermal growth factor receptor tyrosine kinase inhibitor that can inhibit epidermal growth factor receptor and human epidermal growth factor receptor 2, though its effect on pyruvate kinase type M2 remains elusive. Accordingly, we performed Western blotting and reverse transcription polymerase chain reaction and analyzed pathological data from mammary glands, with results suggesting that lapatinib inhibits pyruvate kinase type M2 expression. We further found that the antitumor drug lapatinib inhibits breast cancer cell proliferation by influencing pyruvate kinase type M2 expression, as based on Cell Counting Kit-8 analyses and pyruvate kinase type M2 overexpression experiments. Signal transducer and activator of transcription 3, which is a transcription factor-associated cell proliferation and the only transcription factor that interacts with pyruvate kinase type M2, we performed pyruvate kinase type M2 knockdown experiments in Human breast cancer cells MDA-MB-231 and Human breast cancer cells SK-BR-3 cell lines and examined the effect on levels of Signal transducer and activator of transcription 3 and phosphorylated Signal transducer and activator of transcription 3. The results indicate that pyruvate kinase type M2 regulates Signal transducer and activator of transcription 3 and phospho-Stat3 (Tyr705) expression. Together with previous reports, our findings show that lapatinib inhibits breast cancer cell proliferation by influencing pyruvate kinase type M2 expression, which results in a reduction in both Signal transducer and activator of transcription 3 and phosphorylated Signal transducer and activator of transcription 3.
Collapse
Affiliation(s)
- Mingxiu Guan
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin Baodi Affiliated Hospital of Tianjin Medical University, Baodi District, Tianjin, China
| | - Yingna Tong
- Department of Clinical Laboratory, Tianjin Children’s Hospital, Beichen District, Tianjin, China
| | - Minghua Guan
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Xiaobin Liu
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Ruifang Niu
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Fei Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Jie Shao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Hexi District, Tianjin, China
| |
Collapse
|
10
|
|
11
|
Zhao M, Howard EW, Parris AB, Guo Z, Zhao Q, Ma Z, Xing Y, Liu B, Edgerton SM, Thor AD, Yang X. Activation of cancerous inhibitor of PP2A (CIP2A) contributes to lapatinib resistance through induction of CIP2A-Akt feedback loop in ErbB2-positive breast cancer cells. Oncotarget 2017; 8:58847-58864. [PMID: 28938602 PMCID: PMC5601698 DOI: 10.18632/oncotarget.19375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
Lapatinib, a small molecule ErbB2/EGFR inhibitor, is FDA-approved for the treatment of metastatic ErbB2-overexpressing breast cancer; however, lapatinib resistance is an emerging clinical challenge. Understanding the molecular mechanisms of lapatinib-mediated anti-cancer activities and identifying relevant resistance factors are of pivotal significance. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified oncoprotein that is overexpressed in breast cancer. Our study investigated the role of CIP2A in the anti-cancer efficacy of lapatinib in ErbB2-overexpressing breast cancer cells. We found that lapatinib concurrently downregulated CIP2A and receptor tyrosine kinase signaling in ErbB2-overexpressing SKBR3 and 78617 cells; however, these effects were attenuated in lapatinib-resistant (LR) cells. CIP2A overexpression rendered SKBR3 and 78617 cells resistant to lapatinib-induced apoptosis and growth inhibition. Conversely, CIP2A knockdown via lentiviral shRNA enhanced cell sensitivity to lapatinib-induced growth inhibition and apoptosis. Results also suggested that lapatinib downregulated CIP2A through regulation of protein stability. We further demonstrated that lapatinib-induced CIP2A downregulation can be recapitulated by LY294002, suggesting that Akt mediates CIP2A upregulation. Importantly, lapatinib induced differential CIP2A downregulation between parental BT474 and BT474/LR cell lines. Moreover, CIP2A shRNA knockdown significantly sensitized the BT474/LR cells to lapatinib. Collectively, our results demonstrate that CIP2A is a molecular target and resistance factor of lapatinib with a critical role in lapatinib-induced cellular responses, including the inhibition of the CIP2A-Akt feedback loop. Further investigation of lapatinib-mediated CIP2A regulation will advance our understanding of lapatinib-associated anti-tumor activities and drug resistance.
Collapse
Affiliation(s)
- Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Zhiying Guo
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA.,Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Ying Xing
- Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Edgerton
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann D Thor
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA.,College of Medicine, Henan University of Sciences and Technology, Luoyang, Henan, P.R. China
| |
Collapse
|
12
|
Shi H, Zhang W, Zhi Q, Jiang M. Lapatinib resistance in HER2+ cancers: latest findings and new concepts on molecular mechanisms. Tumour Biol 2016; 37:15411–15431. [PMID: 27726101 DOI: 10.1007/s13277-016-5467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
In the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients. It remains a major clinical challenge to target the oncogenic pathways with drugs having low resistance. Multiple pathways are involved in the occurrence of lapatinib resistance, including the pathways of receptor tyrosine kinase, non-receptor tyrosine kinase, autophagy, apoptosis, microRNA, cancer stem cell, tumor metabolism, cell cycle, and heat shock protein. Moreover, understanding the relationship among these mechanisms may contribute to future tumor combination therapies. Therefore, it is of urgent necessity to elucidate the precise mechanisms of lapatinib resistance and improve the therapeutic use of this agent in clinic. The present review, in the hope of providing further scientific support for molecular targeted therapies in HER2+ cancers, discusses about the latest findings and new concepts on molecular mechanisms underlying lapatinib resistance.
Collapse
Affiliation(s)
- Huiping Shi
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu Province, 215131, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
13
|
Duchnowska R, Wysocki PJ, Korski K, Czartoryska-Arłukowicz B, Niwińska A, Orlikowska M, Radecka B, Studziński M, Demlova R, Ziółkowska B, Merdalska M, Hajac Ł, Myśliwiec P, Zuziak D, Dębska-Szmich S, Lang I, Foszczyńska-Kłoda M, Karczmarek-Borowska B, Żawrocki A, Kowalczyk A, Biernat W, Jassem J. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget 2016; 7:550-64. [PMID: 26623720 PMCID: PMC4808017 DOI: 10.18632/oncotarget.6375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
Molecular mechanisms of lapatinib resistance in breast cancer are not well understood. The aim of this study was to correlate expression of selected proteins involved in ErbB family signaling pathways with clinical efficacy of lapatinib. Study group included 270 HER2-positive advanced breast cancer patients treated with lapatinib and capecitabine. Immunohistochemical expression of phosphorylated adenosine monophosphate-activated protein (p-AMPK), mitogen-activated protein kinase (p-MAPK), phospho (p)-p70S6K, cyclin E, phosphatase and tensin homolog were analyzed in primary breast cancer samples. The best discriminative value for progression-free survival (PFS) was established for each biomarker and subjected to multivariate analysis. At least one biomarker was determined in 199 patients. Expression of p-p70S6K was independently associated with longer (HR 0.45; 95% CI: 0.25–0.81; p = 0.009), and cyclin E with shorter PFS (HR 1.83; 95% CI: 1.06–3.14; p = 0.029). Expression of p-MAPK (HR 1.61; 95% CI 1.13–2.29; p = 0.009) and cyclin E (HR 2.99; 95% CI: 1.29–6.94; p = 0.011) was correlated with shorter, and expression of estrogen receptor (HR 0.65; 95% CI 0.43–0.98; p = 0.041) with longer overall survival. Expression of p-AMPK negatively impacted response to treatment (HR 3.31; 95% CI 1.48–7.44; p = 0.004) and disease control (HR 3.07; 95% CI 1.25–7.58; p = 0.015). In conclusion: the efficacy of lapatinib seems to be associated with the activity of downstream signaling pathways – AMPK/mTOR and Ras/Raf/MAPK. Further research is warranted to assess the clinical utility of these data and to determine a potential role of combining lapatinib with MAPK pathway inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Niwińska
- The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | - Istvan Lang
- Department of Medical Oncology, National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev 2015; 41:877-83. [PMID: 26276735 DOI: 10.1016/j.ctrv.2015.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
Targeted therapies have been approved for various malignancies but the acquisition of resistance remains a substantial challenge in the clinical management of advanced cancers. Twenty-five per cent of breast cancers overexpress ErbB2/HER2, which confers a more aggressive phenotype and is associated with a poor prognosis. HER2-targeting therapies (trastuzumab, pertuzumab, TDM1 and lapatinib) are available, but a significant fraction of HER2-positive breast cancers eventually relapse or progress. This suggests that acquired or intrinsic resistance enables escape from HER2 inhibition. This review focuses on mechanisms of intrinsic/acquired resistance to lapatinib identified in preclinical and clinical studies. A better understanding of these mechanisms could lead to novel predictive markers of lapatinib response and to novel therapeutic strategies for breast cancer patients.
Collapse
|
15
|
Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2015; 5:8306-16. [PMID: 25246709 PMCID: PMC4226684 DOI: 10.18632/oncotarget.2059] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred through ACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Juan Gumuzio
- Fundación Inbiomed, San Sebastián, Gipuzkoa Spain
| | | | - Olatz Leis
- StemTek Therapeutics, Bilbao, Biscay Spain
| | | | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| |
Collapse
|
16
|
Exploring mechanisms of acquired resistance to HER2 (human epidermal growth factor receptor 2)-targeted therapies in breast cancer. Biochem Soc Trans 2015; 42:822-30. [PMID: 25109964 DOI: 10.1042/bst20140109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HER2 (human epidermal growth factor receptor 2)-targeted therapy in breast cancer is one of the earliest and arguably most successful examples of the modern class of targeted drugs. Initially identified in the 1980s, the observation that HER2 acts as an independent predictor of poor prognosis in the 20% of breast cancer cases carrying a gene amplification or protein overexpression cemented its place at the forefront of research in this field. The outlook for patients with HER2-positive breast cancer has been revolutionized by the introduction of HER2-targeted agents, such as trastuzumab and lapatinib, yet resistance is frequently encountered and multiple different resistance mechanisms have been identified. We have explored resistance to a novel pan-HER inhibitor, AZD8931, and we examine mechanisms of resistance common to trastuzumab, lapatinib and AZD8931, and discuss the current problems associated with translating the wealth of pre-clinical data into clinical benefit.
Collapse
|
17
|
Park JH, Ryu MH, Park YS, Park SR, Na YS, Rhoo BY, Kang YK. Successful control of heavily pretreated metastatic gastric cancer with the mTOR inhibitor everolimus (RAD001) in a patient with PIK3CA mutation and pS6 overexpression. BMC Cancer 2015; 15:119. [PMID: 25886409 PMCID: PMC4374284 DOI: 10.1186/s12885-015-1139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Everolimus (RAD001) is an orally administered mTOR inhibitor that is well known for its antitumor efficacy and that has been approved for the treatment of several solid tumors, including renal cell carcinoma. In gastric cancer (GC), despite previous preclinical and phase I/II studies suggesting the promising efficacy of everolimus in previously treated AGC, more recent trials revealed that only certain subsets of patients might benefit from treatment with everolimus. Case presentation A 26-year-old man with metastatic gastric cancer with multiple liver lesions was treated with everolimus after failure of 1st-line and 2nd-line chemotherapy. A durable partial response was achieved for over 2 years. After progression from initial everolimus treatment, sequential cytotoxic chemotherapies were tried but failed rapidly. Everolimus was re-tried as salvage chemotherapy (re-treatment), and the patient achieved stable disease for 1 year until his death. Subsequent mutational analysis and immunohistochemical (IHC) staining with the tumor tissues just before re-treatment with everolimus revealed a PIK3CA hotspot mutation and pS6 overexpression in the primary tumor. After two cycles of everolimus re-treatment, the overexpression of pS6 became nearly absent in follow-up IHC staining. Conclusions Everolimus monotherapy was satisfactory in a patient with refractory metastatic GC harboring PIK3CA and pS6 aberrations. These molecular alterations might be potential biomarkers that can predict the treatment response of everolimus, particularly in the terms of durable disease control. This case suggests and emphasizes that close evaluation of biomarkers in tumor tissue may be essential for identifying highly favorable groups among various subpopulations with AGC.
Collapse
Affiliation(s)
- Ji Hyun Park
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Min-Hee Ryu
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Sook Ryun Park
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Young-Soon Na
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Baek-Yeol Rhoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Yoon-Koo Kang
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| |
Collapse
|
18
|
Dudley E, Bond AE. Phosphoproteomic Techniques and Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:25-69. [DOI: 10.1016/b978-0-12-800453-1.00002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Urruticoechea A, Martin-Castillo B, Menendez JA. Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget 2013; 3:1600-14. [PMID: 23307622 PMCID: PMC3681498 DOI: 10.18632/oncotarget.742] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The autophagic process, which can facilitate breast cancer resistance to endocrine, cytotoxic,
and molecularly targeted agents, is mainly regulated at the post-translational level. Although
recent studies have suggested a possible transcriptome regulation of the autophagic genes, little is
known about either the analysis tools that can be applied or the functional importance of putative
candidate genes emerging from autophagy-dedicated transcriptome studies. In this context, we
evaluated whether the constitutive activation of the autophagy machinery, as revealed by a
transcriptome analysis using an autophagy-focused polymerase chain reaction (PCR) array, might allow
for the identification of novel autophagy-specific biomarkers for intrinsic (primary) resistance to
HER2-targeted therapies. Quantitative real-time PCR (qRT-PCR)-based profiling of 84 genes involved
in autophagy revealed that, when compared to trastuzumab-sensitive SKBR3 cells, the positive
regulator of autophagic vesicle formation ATG12 (autophagy-related gene 12) was the
most differentially up-regulated gene in JIMT1 cells, a model of intrinsic cross-resistance to
trastuzumab and other HER1/2-targeting drugs. An analysis of the transcriptional status of
ATG12 in > 50 breast cancer cell lines suggested that the
ATG12 transcript is commonly upregulated in trastuzumab-unresponsive
HER2-overexpressing breast cancer cells. A lentiviral-delivered small hairpin RNA stable knockdown
of the ATG12 gene fully suppressed the refractoriness of JIMT1 cells to
trastuzumab, erlotinib, gefitinib, and lapatinib in vitro. ATG12 silencing
significantly reduced JIMT1 tumor growth induced by subcutaneous injection in nude mice. Remarkably,
the outgrowth of trastuzumab-unresponsive tumors was prevented completely when trastuzumab treatment
was administered in an ATG12-silenced genetic background. We demonstrate for the
first time the usefulness of low-density, autophagy-dedicated qRT-PCR-based platforms for monitoring
primary resistance to HER2-targeted therapies by transcriptionally screening the autophagy
interactome. The degree of predictive accuracy warrants further investigation in the clinical
situation.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology-Girona, ICO-Girona
| | | | | | | | | | | | | |
Collapse
|
20
|
Mohd Sharial MSN, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann Oncol 2012; 23:3007-3016. [PMID: 22865781 PMCID: PMC3501233 DOI: 10.1093/annonc/mds200] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Approximately 15%-23% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2), which leads to the activation of signaling pathways that stimulate cell proliferation and survival. HER2-targeted therapy has substantially improved outcomes in patients with HER2-positive breast cancer. However, both de novo and acquired resistance are observed. DESIGN A literature search was performed to identify proposed mechanisms of resistance to HER2-targeted therapy and identified novel targets in clinical development for treating HER2-resistant disease. RESULTS Proposed HER2-resistance mechanisms include impediments to HER2-inhibitor binding, signaling through alternative pathways, upregulation of signaling pathways downstream of HER2, and failure to elicit an appropriate immune response. Although continuing HER2 inhibition beyond progression may provide an additional clinical benefit, the availability of novel therapies targeting different mechanisms of action could improve outcomes. The developmental strategy with the most available data is targeting the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) pathway. The oral mTOR inhibitor everolimus has shown promising activity in combination with chemotherapy and trastuzumab in trastuzumab-refractory, advanced breast cancer. CONCLUSIONS Non-HER2-targeted therapy is a promising means of overcoming resistance to HER2-targeted treatment. Ongoing clinical studies will provide additional information on the efficacy and safety of novel targeted therapies in HER2-resistant advanced breast cancer.
Collapse
Affiliation(s)
- M S N Mohd Sharial
- Department of Medical Oncology, Beaumont Hospital, Dublin; Our Lady of Lourdes Hospital, Drogheda
| | - J Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - B T Hennessy
- Department of Medical Oncology, Beaumont Hospital, Dublin; Our Lady of Lourdes Hospital, Drogheda.
| |
Collapse
|
21
|
Jegg AM, Ward TM, Iorns E, Hoe N, Zhou J, Liu X, Singh S, Landgraf R, Pegram MD. PI3K independent activation of mTORC1 as a target in lapatinib-resistant ERBB2+ breast cancer cells. Breast Cancer Res Treat 2012; 136:683-92. [DOI: 10.1007/s10549-012-2252-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 01/05/2023]
|
22
|
Lage H. Proteomic approaches for investigation of therapy resistance in cancer. Proteomics Clin Appl 2012; 3:883-911. [PMID: 21136994 DOI: 10.1002/prca.200800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to anticancer therapy is a major obstacle for successful management of patients in oncology. Although in the past, various biological mechanisms involved in therapy resistance, in particular multidrug resistance, have been identified, cancer patients did not really benefit. The mechanisms include the enhanced activity of drug extrusion pumps, modulation of cellular death pathways, alteration and repair of target molecules and various other mechanisms. Together they build a complex network mediating an individual therapy-resistant phenotype. The improved description of this multifactorial network should be useful for prediction of treatment response and would allow to design an individual-tailored therapy regiment. Proteome analyzing technologies appear as powerful tools for identifying new factors and protein expression profiles associated with anticancer therapy resistance. In the last years, the application of proteomic techniques identified multiple new factors or protein expression signatures in drug-resistant cell models and cancerous tissues. However, the functional role and the clinical impact of these findings are not yet clarified. So far, none of the proteomic data were useful for the development of improved diagnostic tests, for prediction of individual therapy response or for development of updated chemosensitizers. Here, the previous therapy resistance-related proteome data and future perspectives will be discussed.
Collapse
Affiliation(s)
- Hermann Lage
- Institute of Pathology, Charité Campus Mitte, Berlin, Germany.
| |
Collapse
|
23
|
Imami K, Sugiyama N, Imamura H, Wakabayashi M, Tomita M, Taniguchi M, Ueno T, Toi M, Ishihama Y. Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 2012; 11:1741-57. [PMID: 22964224 DOI: 10.1074/mcp.m112.019919] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lapatinib is a clinically potent kinase inhibitor for breast cancer patients because of its outstanding selectivity for epidermal growth factor receptor (EGFR) and EGFR2 (also known as HER2). However, there is only limited information about the in vivo effects of lapatinib on EGFR/HER2 and downstream signaling targets. Here, we profiled the lapatinib-induced time- and dose-dependent phosphorylation dynamics in SKBR3 breast cancer cells by means of quantitative phosphoproteomics. Among 4953 identified phosphopeptides from 1548 proteins, a small proportion (5-7%) was regulated at least twofold by 1-10 μm lapatinib. We obtained a comprehensive phosphorylation map of 21 sites on EGFR/HER2, including nine novel sites on HER2. Among them, serine/threonine phosphosites located in a small region of HER2 (amino acid residues 1049-1083) were up-regulated by the drug, whereas all other sites were down-regulated. We show that cAMP-dependent protein kinase is involved in phosphorylation of this particular region of HER2 and regulates HER2 tyrosine kinase activity. Computational analyses of quantitative phosphoproteome data indicated for the first time that protein-protein networks related to cytoskeletal organization and transcriptional/translational regulation, such as RNP complexes (i.e. hnRNP, snRNP, telomerase, ribosome), are linked to EGFR/HER2 signaling networks. To our knowledge, this is the first report to profile the temporal response of phosphorylation dynamics to a kinase inhibitor. The results provide new insights into EGFR/HER2 regulation through region-specific phosphorylation, as well as a global view of the cellular signaling networks associated with the anti-breast cancer action of lapatinib.
Collapse
Affiliation(s)
- Koshi Imami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chu C, Noël-Hudson MS, Boige V, Goéré D, Marion S, Polrot M, Bigot L, Gonin P, Farinotti R, Bonhomme-Faivre L. Therapeutic efficiency of everolimus and lapatinib in xenograft model of human colorectal carcinoma with KRAS mutation. Fundam Clin Pharmacol 2012; 27:434-42. [PMID: 22458846 DOI: 10.1111/j.1472-8206.2012.01035.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
KRAS mutation is a negative predictive prognostic factor during metastatic colorectal cancer treatment with antiepidermal growth factor receptor antibodies. For affected patients, new therapeutics must be explored. Our objective was to study efficacy of two drugs with different mechanisms of action, everolimus (mTOR inhibitor) and lapatinib (tyrosine kinase inhibitor), in a mouse xenograft model. We chose a model obtained after engraftment of a tumor originating from a human tumor collection. The patient was affected by a metastasis colorectal carcinoma resistant to cetuximab with KRAS mutation. From a previous study in mice, we know that everolimus is a P-glycoprotein (P-gp) substrate and that a lapatinib pretreatment increases significantly (2.6-fold) everolimus AUC by inhibiting its intestinal P-gp efflux. We hence tested the effect of these drugs alone or combined. Mice bearing the xenografts were divided in four groups: control, lapatinib, everolimus, and L/E group (L/E: 2 days of lapatinib 200 mg/kg and then 3 days of everolimus 1 mg/kg). Tumor volumes and treatment toxicities were evaluated. Sixteen days after treatment initiation, the group L/E was the first one in which tumor volume average was significantly lower than the one of control group (193 ± 90 vs. 395 ± 171 mm(3) ; P = 0.0025). After 4 weeks of treatment, inhibition of tumor growth in lapatinib, everolimus, and L/E groups reached, respectively, 49, 53, and 57%. Each drug showed significant antitumor activity. Only moderate hematologic toxicity signs were observed. These results lead to new perspectives for new oral drugs in metastatic KRAS-mutated colorectal cancer resistant to standard chemotherapy.
Collapse
Affiliation(s)
- Céline Chu
- Laboratory of Pharmacology, Hôpital Paul Brousse, 14 Avenue Paul Vaillant-Couturier, 94800 Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In the past years, several agents targeting signaling proteins critical for breast cancer growth and dissemination entered clinical evaluation. They include drugs directed against the HER/ErbB family of receptor tyrosine kinases, especially HER2; several downstream signal transducers; and proteins involved in tumor angiogenesis and dissemination. Unfortunately, resistance to targeted agents is a quite common feature, and understanding of the molecular mechanisms predicting response or failure has become a crucial issue to optimize treatment and select patients who are the best candidates to respond. The neoadjuvant setting offers unique opportunities allowing tumor sampling and search for molecular determinants of response. A variety of tumor and host factors may account for the onset of resistance. Major progress has been made in the understanding of the mechanisms involved in the primary and acquired resistance to targeted agents, especially the anti-HER2 drugs, which play a pivotal role in the weaponry against breast cancer.
Collapse
Affiliation(s)
- Giampaolo Tortora
- Oncologia Medica, Dipartimento di Medicina, Università di Verona, Policlinico Borgo Roma, Verona 37134, Italy.
| |
Collapse
|
26
|
Węsierska-Gądek J, Kramer MP. The impact of multi-targeted cyclin-dependent kinase inhibition in breast cancer cells: clinical implications. Expert Opin Investig Drugs 2011; 20:1611-28. [PMID: 22017180 DOI: 10.1517/13543784.2011.628985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The progression of the mammalian cell cycle is driven by the transient activation of complexes consisting of cyclins and cyclin-dependent kinases (CDKs). Loss of control over the cell cycle results in accelerated cell division and malignant transformation and can be caused by the upregulation of cyclins, the aberrant activation of CDKs or the inactivation of cellular CDK inhibitors. For these reasons, cell cycle regulators are regarded as very promising therapeutic targets for the treatment of human malignancies. AREAS COVERED This review covers the structures and anti-breast cancer activity of selected pharmacological pan-specific CDK inhibitors. Multi-targeted CDK inhibitors affect CDKs involved in the regulation of both cell cycle progression and transcriptional control. The inhibition of CDK7/CDK9 has a serious impact on the activity of RNA polymerase II; when its carboxy-terminal domain is unphosphorylated, it is unable to recruit the cofactors required for transcriptional elongation, resulting in a global transcriptional block. Multi-targeted inhibition of CDKs represses anti-apoptotic proteins and thus promotes the induction of apoptosis. Moreover, the inhibition of CDK7 in estrogen receptor (ER)-positive breast cancer cells prevents activating phosphorylation of ER-α. EXPERT OPINION These diverse modes of action make multi-targeted CDK inhibitors promising drugs for the treatment of breast cancers.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Borschkegasse 8a, 1090 Vienna, Austria.
| | | |
Collapse
|
27
|
Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Torres-Garcia VZ, Sauri-Nadal T, Barco SD, Lopez-Bonet E, Brunet J, Martin-Castillo B, Menendez JA. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies. Biochem Biophys Res Commun 2011; 407:412-9. [PMID: 21402055 DOI: 10.1016/j.bbrc.2011.03.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 12/24/2022]
Abstract
Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC₅₀ values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naïve SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ~ 4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ~10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may be extremely helpful to design successful combinatorial strategies aimed to circumvent the occurrence of de novo resistance to HER2-directed drugs using survivin antagonists.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oliveras-Ferraros C, Massaguer Vall-Llovera A, Carrion Salip D, Vazquez-Martin A, Cufí S, Queralt B, Martin-Castillo B, Brunet J, de Llorens R, Menendez JA. Evolution of the predictive markers amphiregulin and epiregulin mRNAs during long-term cetuximab treatment of KRAS wild-type tumor cells. Invest New Drugs 2010; 30:846-52. [PMID: 21161326 DOI: 10.1007/s10637-010-9612-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/30/2010] [Indexed: 01/05/2023]
Abstract
Molecular mechanisms other than activating KRAS mutations should underlie the occurrence of weaker versus stronger responses to cetuximab (CTX) in EGFR-dependent carcinomas with either an intact KRAS signaling or in which KRAS mutations do not predict CTX efficacy. We hypothesized that KRAS wild-type (WT) tumor cell-line models chronically adapted to grow in the presence of CTX could be interrogated to establish if the positive predictive value of the mRNAs coding for the EGFR ligands amphiregulin (AR) and epiregulin (EPI) could be significantly altered during and/or after treatment with CTX. Gene expression analyses using real-time (kinetic) RT-PCR were performed to monitor the transcriptional evolution of EGFR ligands EGF, TGFα, AR, BTC, EPI, NRG and HB-EGF in experimental modes induced to exhibit acquired resistance to the mono-HER1 inhibitor CTX, the mono-HER2 inhibitor trastuzumab (Tzb) or the dual HER1/HER2 inhibitor lapatinib (LPT). Gene expression signatures for EGFR ligands distinctively related to the occurrence of unresponsiveness to CTX, Tzb or LPT, with minimal overlap between them. CTX's molecular functioning largely depended on the overproduction of the mRNAs coding for the EGFR ligands AR and EPI. Thus, a dramatic down-regulation of AR/EPI mRNA expression occurred upon loss of CTX efficacy in EGFR-positive tumor cells with an intact regulation of RAS signaling. Unlike KRAS mutations, which are informative of unresponsiveness to CTX solely in mCRC, our hypothesis-generating data suggest that expression status of AR and EPI mRNAs might be evaluated as dynamic predictors of response in KRAS WT patients receiving any CTX-based therapy.
Collapse
|
29
|
Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Del Barco S, Martin-Castillo B, Menendez JA. Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth. J Cell Physiol 2010; 226:52-7. [PMID: 20658522 DOI: 10.1002/jcp.22333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ultimate biological and clinical meaning of shed HER2 extracellular domain (ECD) has remained largely unclear until recently. Oversecretion of soluble HER2 ECD has been shown to inhibit growth of HER2-overexpressing cancer cells by promoting HER2 ECD dimerization with HER transmembrane receptors thus impairing their cross-tyrosine phosphorylation and decreasing their activation status. HER2-targeted drugs capable to enhance the occurrence of basal HER2 ECD shedding but simultaneously preventing formation of truncated cell membrane-bound HER2 intracellular fragment, which exhibits an undesirable constitutive kinase activity, might be extremely efficient at managing HER2-positive cancer disease. The dual HER1/HER2 Tyrosine Kinase inhibitor lapatinib, which works intracellularly and directly targets the TK domain of HER2, drastically augments basal shedding of HER2 ECD to inhibit HER2-driven cancer cell growth. Lapatinib treatment significantly augments the concentration of the inactive (unphosphorylated) form of HER2 protein at the tumor cell membrane and promotes an exacerbated HER2 ECD shedding to the extracellular milieu of HER2-overexpressing cancer cells. Exacerbated sensitivity of trastuzumab-resistant cancer cells, which contain nearly undetectable levels of soluble HER2 ECD when compared with trastuzumab-sensitive parental cells to lapatinib-induced cell growth inhibition, takes place when lapatinib treatment fully restores high levels of basal HER2 ECD shedding. The dramatic augmentation of HER2 ECD shedding that occurs upon treatment of with lapatinib is fully suppressed in lapatinib-refractory HER2-positive cells. These findings, altogether, may provide crucial insights concerning clinical studies aimed to accurately describe HER2 ECD as a potential predictor of response or resistance to the HER2-targeted drugs trastuzumab and lapatinib.
Collapse
|
30
|
Akar U, Ozpolat B, Mehta K, Lopez-Berestein G, Zhang D, Ueno NT, Hortobagyi GN, Arun B. Targeting p70S6K prevented lung metastasis in a breast cancer xenograft model. Mol Cancer Ther 2010; 9:1180-7. [PMID: 20423989 DOI: 10.1158/1535-7163.mct-09-1025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Overexpression of p70S6K in breast cancer patients is associated with aggressive disease and poor prognosis. Recent studies showed that patients with breast cancer with increased p70S6K phosphorylation had poor survival and increased metastasis. The purpose of our study was to determine whether knockdown of p70S6K would inhibit cell growth, invasion, and metastasis in breast cancer. We therefore stably knocked down p70S6K expression in MDA-231, a highly metastatic breast cancer cell line, using a lentiviral short hairpin RNA (shRNA) based approach. Inhibition of p70S6K led to inhibition of cell growth, migration, and invasion in vitro. To determine the role of p70S6K in breast cancer tumorigenesis and metastasis, we used an MDA-231 orthotopic and metastatic animal model. In the orthotopic model, mice injected with MDA-231-p70S6K shRNA cells developed significantly smaller tumors than control mice injected with MDA-231 control shRNA cells (P < 0.01). No metastasis was observed in the p70S6K downregulated group, whereas lung metastasis was detected in all mice in the control group. To determine the role of p70S6K on growth and invasion, we tested downstream signaling targets by Western blot analysis. Knockdown of p70S6K inhibited phosphorylation of focal adhesion kinase, tissue transglutaminase 2, and cyclin D1 proteins, which promote cell growth, survival, and invasion. In addition, downregulation of p70S6K induced expression of PDCD4, a tumor-suppressor protein. In conclusion, we showed that p70S6K plays an important role in metastasis by regulating key proteins like cyclin D1, PDCD4, focal adhesion kinase, E-cadherin, beta-catenin, and tissue transglutaminase 2, which are essential for cell attachment, survival, invasion, and metastasis in breast cancer.
Collapse
Affiliation(s)
- Ugur Akar
- Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tamborini E, Virdis E, Negri T, Orsenigo M, Brich S, Conca E, Gronchi A, Stacchiotti S, Manenti G, Casali PG, Pierotti MA, Pilotti S. Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordomas. Neuro Oncol 2010; 12:776-89. [PMID: 20164240 DOI: 10.1093/neuonc/noq003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously demonstrated that chordomas express activated platelet-derived growth factor receptor (PDGFRB) and that treatment with imatinib, which is capable of switching off the activation of various receptor tyrosine kinases (RTKs) including PDGFRB, benefits a number of patients. The aim of this study was to identify the possible presence of other activated RTKs and their downstream signaling effectors. Cryopreserved material from 22 naïve sporadic chordomas was investigated for the presence of activated RTKs and their cognate ligands and downstream signaling effectors by means of human phospho-RTK antibody arrays, Western blotting, and molecular analysis; immunohistochemistry and fluorescence in situ hybridization were used to analyze the corresponding formalin-fixed and paraffin-embedded samples. We detected activated PDGFRB, FLT3, and colony stimulating factor 1 receptor (CSF1R) of the PDGFR family and highly phosphorylated EGFR, HER2/neu, and (to a lesser extent) HER4 of the EGFR family. The detection of PDGFRB/PDGFB confirmed our previous data. The presence of activated EGFR was paralleled by the finding of high levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha) and PDGFB co-expression and PDGFRB co-immunoprecipitation. Of the downstream effectors, the PI3K/AKT and RAS/MAPK pathways were both activated, thus leading to the phosphorylation of mammalian target of rapamycin (mTOR) and 4E-BP1 among the regulators involved in translational control. Taken together, our results (i) provide a rationale for tailored treatments targeting upstream activated receptors, including the PDGFR and EGFR families; (ii) support the idea that a combination of upstream antagonists and mTOR inhibitors enhances the control of tumor growth; and (iii) indicate that the 4E-BP1/eIF4E pathway is a major regulator of protein synthesis in chordoma.
Collapse
Affiliation(s)
- Elena Tamborini
- Experimental Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Tumori Milano, Via G. Venezian 1, 20133 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohistochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the analytical techniques currently being used to evaluate PTMs.
Collapse
Affiliation(s)
- Hongjun Jin
- Cell Biology and Biochemistry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, 902 Battelle Blvd, Richland, WA 99352
| | | |
Collapse
|
33
|
Vázquez-Martín A, Oliveras-Ferraros C, del Barco S, Martín-Castillo B, Menéndez JA. mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb®). Clin Transl Oncol 2009; 11:455-9. [DOI: 10.1007/s12094-009-0384-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yip AYS, Ong EYY, Chow LWC. Novel therapeutic strategy for breast cancer: mammalian target of rapamycin inhibition. Expert Opin Drug Discov 2009; 4:457-66. [PMID: 23485044 DOI: 10.1517/17460440902824792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) plays a central role in regulating cellular protein synthesis. Dysregulation of mTOR signaling pathway is strongly associated with tumorigenesis, angiogenesis, tumor progression and drug resistance. Inhibition of mTOR might not only promote cell cycle arrest, but also sensitize resistant cancer cells to chemotherapeutic and other targeted agents. OBJECTIVE To review and summarize the mechanism of mTOR on regulation of protein synthesis and latest clinical data, and to discuss the novel therapeutic strategy for the use of mTOR inhibitors in the treatment of breast cancer. METHODS A review of published literatures and conference abstracts obtained from MEDLINE, American Society of Clinical Oncology Meeting and San Antonio Breast Cancer Symposia proceedings for results of previous preclinical and latest clinical studies of mTOR inhibition in breast cancer was performed. CONCLUSIONS mTOR inhibitors seemed to be potentially useful for the treatment of breast cancer with acceptable safety profile. The challenge remains the identification of suitable candidates with different phenotypes. More structured studies incorporating molecular, clinical and translational research need to be initiated. Future research on mTOR inhibitors for breast cancer should focus on the evaluation of optimal schedule, patient selection and combination strategies to maximize the use of this new class of targeted agents.
Collapse
|
35
|
Vazquez-Martin A, Oliveras-Ferraros C, del Barco S, Martin-Castillo B, Menendez JA. The antidiabetic drug metformin: a pharmaceutical AMPK activator to overcome breast cancer resistance to HER2 inhibitors while decreasing risk of cardiomyopathy. Ann Oncol 2009; 20:592-5. [PMID: 19153119 DOI: 10.1093/annonc/mdn758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
36
|
Lam PB, Burga LN, Wu BP, Hofstatter EW, Lu KP, Wulf GM. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Mol Cancer 2008; 7:91. [PMID: 19077306 PMCID: PMC2632646 DOI: 10.1186/1476-4598-7-91] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 12/15/2008] [Indexed: 01/12/2023] Open
Abstract
Overexpression of HER-2/Neu occurs in about 25–30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself.
Collapse
Affiliation(s)
- Prudence B Lam
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, NRB 1030c, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Corkery B, O’Donovan N, Crown J. Targeted treatment of advanced and metastaticbreast cancer with lapatinib. Onco Targets Ther 2008; 1:21-34. [PMID: 21127749 PMCID: PMC2994213 DOI: 10.2147/ott.s3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Improved molecular understanding of breast cancer in recent years has led to the discovery of important drug targets such as HER-2 and EGFR. Lapatinib is a potent dual inhibitor of HER-2 and EGFR. Preclinical and phase I studies have shown activity with lapatinib in a number of cancers, including breast cancer, and the drug is well tolerated. The main known drug interactions are with paclitaxel and irinotecan. The most significant side-effects of lapatinib are diarrhea and adverse skin events. Rates of cardiotoxicity compare favorably with trastuzumab, a monoclonal antibody against HER-2. This paper focuses on lapatinib in advanced and metastatic breast cancer, which remains an important therapeutic challenge. Phase II and III studies show activity as monotherapy, and in combination with chemotherapy or hormonal agents. Results from these studies suggest that the main benefit from lapatinib is in the HER-2 positive breast cancer population. Combinations of lapatinib and trastuzumab are also being studied and show encouraging results, particularly in trastuzumab-refractory metastatic breast cancer. Lapatinib may have a specific role in treating HER-2 positive CNS metastases. The role of lapatinib as neoadjuvant therapy and in early breast cancer is also being evaluated.
Collapse
Affiliation(s)
- Brendan Corkery
- St. Vincent’s University Hospital, Dublin, Ireland
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Norma O’Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- St. Vincent’s University Hospital, Dublin, Ireland
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|