1
|
Akkapinyo C, Lieberzeit PA, Wolschann P, Poo-Arporn RP. CA 15-3-specific molecularly imprinted polymer nanoparticles-based voltammetric sensor for breast cancer monitoring. Talanta 2025; 288:127746. [PMID: 39961246 DOI: 10.1016/j.talanta.2025.127746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Cancer antigen 15-3 (CA 15-3) is a critical biomarker for breast cancer, used to monitor disease severity and recurrence. Furthermore, its detection can be beneficial in post-operative treatment. Thus, biosensors that can track CA 15-3 levels in patients would provide useful data for disease monitoring. This study proposed molecularly imprinted polymer nanoparticles (nanoMIPs) specific for CA 15-3 detection; furthermore, the synthesized nanoMIPs were combined with an electrochemical sensor for breast cancer monitoring. The CA 15-3-specific nanoMIPs were generated via solid-phase synthesis. For sensor fabrication, a screen-printed carbon electrode (SPCE) was decorated with multi-walled carbon nanotubes and Au nanoparticles to improve the sensitivity. 4-aminothiophenol (4-ATP) enabled linking the synthesized CA 15-3-specific nanoMIPs to the electrode via the reaction with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Characterizations via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and the electrochemical method suggested the successful modification of the SPCE surface. Square wave voltammetry (SWV) was used to evaluate the sensor's performance in detecting CA 15-3. The sensor exhibited a wide detection range from 1 to 100 U/mL of CA 15-3 and a limit of detection (LOD) of 0.14 U/mL. The detection range covered the reference level (30 U/mL) of CA 15-3, allowing for distinguishing between healthy people and patients. The sensor allowed for the accurate and reliable determination of CA 15-3 concentrations in serum samples after pretreatment. In addition, the proposed sensor offers advantages in terms of easy fabrication and detection, low costs, and disposability. Therefore, it could serve as an alternative device for breast cancer monitoring.
Collapse
Affiliation(s)
- Chutimon Akkapinyo
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Peter A Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
2
|
Guedes AR, Soares JP, Cunha R, Silva AM, Gaivão I. DNA damage of peripheral blood lymphocytes as a dual biomarker: Diagnostic and treatment response in woman breast cancer patients. Cancer Biomark 2025; 42:18758592241308748. [PMID: 40109217 DOI: 10.1177/18758592241308748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundBreast cancer is the leading malignancy among women and the lack of ideal early biomarkers hampers diagnosis and treatment monitoring. Genomic instability, central to breast cancer development, makes DNA damage a potential biomarker for these purposes.ObjectiveThis study aims to evaluate the predictive value of DNA damage for diagnosis, and treatment monitoring in breast cancer, with CA 15-3, a conventional cancer biomarker, included for comparison to assess the added value of DNA damage measurement.MethodsDNA damage was measured in peripheral blood lymphocytes of 58 breast cancer patients, and 31 healthy controls, employing comet assay, both before and after treatment. Serum CA 15-3 levels were assessed at the same time points for comparison.ResultsDNA damage levels were significantly higher in cancer patients compared to healthy controls, with the most elevated levels observed in patients with advanced-stage disease, irrespective of age, sex, lifestyle, or genetic status. Post-treatment assessments showed a significant rise in DNA damage. In comparison, CA 15-3 showed less consistent relevance for diagnostic and monitoring.ConclusionsThis study underscores the greater potential of DNA damage as a consistent and reliable biomarker for breast cancer, with CA 15-3 providing complementary but less consistent data for clinical decision-making.
Collapse
Affiliation(s)
- Ana Rita Guedes
- Animal and Veterinary Research Center (CECAV) and Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), UTAD, Vila Real, Portugal
- Department of Biology and Environment (DeBA) and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - Jorge Pinto Soares
- Research Centre of Sports, Health, and Human Development (CIDES), UTAD, Vila Real, Portugal
| | - Renato Cunha
- Local Health Unit of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Amélia Maria Silva
- Department of Biology and Environment (DeBA) and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - Isabel Gaivão
- Animal and Veterinary Research Center (CECAV) and Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), UTAD, Vila Real, Portugal
| |
Collapse
|
3
|
Oliveira D, Romaguera Barcelay Y, Moreira FTC. An electrochemically synthesized molecularly imprinted polymer for highly selective detection of breast cancer biomarker CA 15-3: a promising point-of-care biosensor. RSC Adv 2024; 14:15347-15357. [PMID: 38741963 PMCID: PMC11089526 DOI: 10.1039/d4ra02051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a molecularly imprinted polymer film (MIP) was prepared on the surface of a disposable carbon screen-printed electrode (C-SPE) using (3-acrylamidopropyl)trimethylammonium chloride (AMPTMA) as a functional monomer and the cancer biomarker carbohydrate antigen 15-3 (CA 15-3) as a template. The MIP was synthesized by in situ electropolymerization (ELP) of the AMPTMA monomer in the presence of the CA 15-3 protein on the C-SPE surface. The target was subsequently removed from the polymer matrix by the action of proteinase K, resulting in imprinted cavities with a high affinity for CA 15-3. Electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the different phases of the sensor assembly. Chemical and morphological analysis was performed using RAMAN and scanning electron microscopy (SEM). CA 15-3 was successfully detected in a wide working range from 0.001 U mL-1 to 100 U mL-1 with a correlation coefficient (R2) of 0.994 in 20 min. The MIP sensor showed minimal interference with other cancer proteins (CEA and CA 125). Overall, the developed device provides a rapid, sensitive, and cost-effective response in the detection of CA 15-3. Importantly, this comprehensive approach appears suitable for point-of-care (PoC) use, particularly in a clinical context.
Collapse
Affiliation(s)
- Daniela Oliveira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto R. Dr António Bernardino de Almeida, 431 4249-015 Porto Portugal
- CEMMPRE, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima - Pólo II 3030-790 Coimbra Portugal
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto Porto Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho Braga Portugal
| | - Yonny Romaguera Barcelay
- CEMMPRE, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima - Pólo II 3030-790 Coimbra Portugal
| | - Felismina T C Moreira
- CIETI - LabRISE-School of Engineering, Polytechnic of Porto R. Dr António Bernardino de Almeida, 431 4249-015 Porto Portugal
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto Porto Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho Braga Portugal
| |
Collapse
|
4
|
de Jong E, Kocer A. Current Methods for Identifying Plasma Membrane Proteins as Cancer Biomarkers. MEMBRANES 2023; 13:409. [PMID: 37103836 PMCID: PMC10142483 DOI: 10.3390/membranes13040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane proteins are a special class of biomolecules present on the cellular membrane. They provide the transport of ions, small molecules, and water in response to internal and external signals, define a cell's immunological identity, and facilitate intra- and intercellular communication. Since they are vital to almost all cellular functions, their mutants, or aberrant expression is linked to many diseases, including cancer, where they are a part of cancer cell-specific molecular signatures and phenotypes. In addition, their surface-exposed domains make them exciting biomarkers for targeting by imaging agents and drugs. This review looks at the challenges in identifying cancer-related cell membrane proteins and the current methodologies that solve most of the challenges. We classified the methodologies as biased, i.e., search cells for the presence of already known membrane proteins. Second, we discuss the unbiased methods that can identify proteins without prior knowledge of what they are. Finally, we discuss the potential impact of membrane proteins on the early detection and treatment of cancer.
Collapse
|
5
|
Oktaviyanti IK, Ali DS, Awadh SA, Opulencia MJC, Yusupov S, Dias R, Alsaikhan F, Mohammed MM, Sharma H, Mustafa YF, Saleh MM. RETRACTED ARTICLE: Recent advances on applications of immunosensing systems based on nanomaterials for CA15-3 breast cancer biomarker detection. Anal Bioanal Chem 2023; 415:367. [PMID: 35641643 DOI: 10.1007/s00216-022-04150-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Ika Kustiyah Oktaviyanti
- Department of Pathology & Anatomy, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Diyar Salahuddin Ali
- Chemistry Department, College of Science, Salahaddin University, Erbil, 44002, Iraq
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | | | - Shukhrat Yusupov
- Department of Pediatric Surgical Diseases, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan
| | - Rui Dias
- School of Business and Administration, Polytechnic Institute of Setúbal, Portugal and CEFAGE-UE, IIFA, University of Évora, Évora, Portugal
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mais Mahmood Mohammed
- Department of Medical Laboratory Techniques, Medical Technology College, Al-Farahidi University, Baghdad, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Al anbar, Iraq.
| |
Collapse
|
6
|
Rebelo TS, Ribeiro JA, Sales MGF, Pereira CM. Electrochemical immunosensor for detection of CA 15-3 biomarker in point-of-care. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Ribeiro JA, Sales MGF, Pereira CM. Electrochemistry-Assisted Surface Plasmon Resonance Biosensor for Detection of CA 15-3. Anal Chem 2021; 93:7815-7824. [PMID: 34038085 DOI: 10.1021/acs.analchem.0c05367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this work, we describe an innovative methodology based on combined surface plasmon resonance (SPR) and electrochemical responses (eSPR) in the same immunoassay for screening CA 15-3 cancer biomarker with high sensitivity (and selectivity), in a very simple, label-free, accurate, and fully automated manner. Detection was achieved by performing two simple steps. In the first step, direct SPR was used to monitor CA 15-3 interaction with surface immobilized antibody. Two linear response ranges were obtained and the detection limit achieved is poor (LOD of 21 U mL-1). However, in the second detection step, electrochemical measurements at the SPR gold surface were performed to measure the decrease of redox probe peak current upon antigen-antibody interaction, providing a suitable amplification strategy to lower detection levels of CA 15-3 (LOD of 0.0998 U mL-1), without the need of additional complex and/or expensive amplification steps to enhance the sensitivity. Moreover, selectivity studies were performed against other common cancer biomarkers and the results showed that the eSPR immunosensor is selective for the CA 15-3 protein. Finally, the clinical applicability of the developed eSPR biosensing methodology was successfully applied to detect CA 15-3 in human serum samples at clinically relevant levels due to the high sensitivity of electrochemical readout. The same concept may be further extended to other proteins of interest.
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP - Chemistry Research Center, Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Maria Goreti F Sales
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.,Centre of Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carlos M Pereira
- CIQUP - Chemistry Research Center, Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Rebelo TSCR, Costa R, Brandão ATSC, Silva AF, Sales MGF, Pereira CM. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal Chim Acta 2019; 1082:126-135. [PMID: 31472701 DOI: 10.1016/j.aca.2019.07.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Considering the high incidence level and mortality rate of ovarian cancer, particularly among the European female population, the carbohydrate antigen 125 (CA-125) was selected as the protein target for this study for the development of a MIP-based biosensor. This work presents the development of molecular imprinting polymers (MIPs) on gold electrode surface for CA-125 biomarker recognition. The preparation of the CA-125 imprinting was obtained by electropolymerization of pyrrole (Py) monomer in a gold electrode using cyclic voltammetry (CV) in order to obtain highly selective materials with great molecular recognition capability. The quantification of CA-125 biomarker was made through the comparison of two methods: electrochemical (square wave voltammetry -SWV) and optical transduction (surface plasmon resonance -SPR). SWV has been widely used in biological molecules analysis since it is a fast and sensitive technique. In turn, SPR is a non-destructive optical technique that provides high-quality analytical data of CA-125 biomarker interactions with MIP. Several analytical parameters, such as sensitivity, linear response interval, and detection limit were determined to proceed to the performance evaluation of the electrochemical and optical transduction used in the development of the CA-125 biosensor. The biosensor based in the electrochemical transduction was the one that presented the best analytical parameters, yielding a good selectivity and a detection limit (LOD) of 0.01 U/mL, providing a linear concentration range between 0.01 and 500 U/mL. This electrochemical biosensor was selected for the study and it was successfully applied in the CA-125 analysis in artificial serum samples with recovery rates ranging from 91 to 105% with an average relative error of 5.8%.
Collapse
Affiliation(s)
- Tânia S C R Rebelo
- Centro de Investigação Em Química da Universidade Do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal; BioMark/ISEP, Instituto Superior de Engenharia Do Porto, Porto, Portugal
| | - Renata Costa
- Centro de Investigação Em Química da Universidade Do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Ana T S C Brandão
- Centro de Investigação Em Química da Universidade Do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - A Fernando Silva
- Centro de Investigação Em Química da Universidade Do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - M Goreti F Sales
- BioMark/ISEP, Instituto Superior de Engenharia Do Porto, Porto, Portugal
| | - Carlos M Pereira
- Centro de Investigação Em Química da Universidade Do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Ribeiro J, Pereira C, Silva A, Sales MF. Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor. Biosens Bioelectron 2018; 109:246-254. [DOI: 10.1016/j.bios.2018.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022]
|
10
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
11
|
Li H, Munzar JD, Ng A, Juncker D. A versatile snap chip for high-density sub-nanoliter chip-to-chip reagent transfer. Sci Rep 2015; 5:11688. [PMID: 26148566 PMCID: PMC4493572 DOI: 10.1038/srep11688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
The coordinated delivery of minute amounts of different reagents is important for microfluidics and microarrays, but is dependent on advanced equipment such as microarrayers. Previously, we developed the snap chip for the direct transfer of reagents, thus realizing fluidic operations by only manipulating microscope slides. However, owing to the misalignment between arrays spotted on different slides, millimeter spacing was needed between spots and the array density was limited. In this work, we have developed a novel double transfer method and have transferred 625 spots cm(-2), corresponding to >10000 spots for a standard microscope slide. A user-friendly snapping system was manufactured to make liquid handling straightforward. Misalignment, which for direct transfer ranged from 150-250 μm, was reduced to <40 μm for double transfer. The snap chip was used to quantify 50 proteins in 16 samples simultaneously, yielding limits of detection in the pg/mL range for 35 proteins. The versatility of the snap chip is illustrated with a 4-plex homogenous enzyme inhibition assay analyzing 128 conditions with precise timing. The versatility and high density of the snap chip with double transfer allows for the development of high throughput reagent transfer protocols compatible with a variety of applications.
Collapse
Affiliation(s)
- Huiyan Li
- Biomedical Engineering Department, McGill University, Montréal, QC, H3A 0G1, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, H3A 0G1, Canada
| | - Jeffrey D. Munzar
- Biomedical Engineering Department, McGill University, Montréal, QC, H3A 0G1, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, H3A 0G1, Canada
| | - Andy Ng
- Biomedical Engineering Department, McGill University, Montréal, QC, H3A 0G1, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, H3A 0G1, Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, Montréal, QC, H3A 0G1, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, H3A 0G1, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 0G1, Canada
| |
Collapse
|
12
|
Jackson K, Sauter E. Identification and Validation of Breast Cancer Biomarkers. BIOMARKER VALIDATION 2015:147-162. [DOI: 10.1002/9783527680658.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Autoantibodies to tailor-made panels of tumor-associated antigens in breast carcinoma. JOURNAL OF ONCOLOGY 2011; 2011:982425. [PMID: 21423545 PMCID: PMC3056218 DOI: 10.1155/2011/982425] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
Abstract
Autoantibodies (AAbs) to tumor-associated antigens (TAAs) have been identified in the sera of cancer patients. In a previous review published in this journal, we have focused on recent knowledge related to circulating AAbs to individual TAAs in breast carcinoma. This review will focus on recent knowledge related to AAb assays to tailor-made panels of TAAs in breast carcinoma. So far, AAb assays to the following tailor-made panels of TAAs have been assessed in breast carcinoma: (1) p53, c-myc, HER2, NY-ESO-1, BRCA2, and MUC1, (2) IMP1, p62, Koc, p53, c-MYC, cyclin B1, and survivin, (3) PPIA, PRDX2, FKBP52, HSP-60, and MUC1, (4) MUC1, HER2, p53, and IGFBP2, (5) p53, HER2, IGFBP-2, and TOPO2α, (6) survivin and livin, (7) ASB-9, SERAC1, and RELT, and (8) p16, p53, and c-myc. Assessment of serum AAbs to a tailor-made panel of TAAs provides better sensitivity to diagnosis of breast carcinoma than measuring serum AAbs to a single TAA. Nevertheless, measurement of serum AAbs to a panel of TAAs for screening and early diagnosis of breast carcinoma is still investigational and should be carried out along with traditional diagnostic studies.
Collapse
|
14
|
Autoantibodies to tumor-associated antigens in breast carcinoma. JOURNAL OF ONCOLOGY 2010; 2010:264926. [PMID: 21113302 PMCID: PMC2989457 DOI: 10.1155/2010/264926] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/04/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Autoantibodies (AAbs) to tumor-associated antigens (TAAs) have been identified in the circulation of patients with cancer. This paper will focus on recent knowledge related to circulating AAbs to TAAs in breast carcinoma. So far, the following TAAs have been identified to elicit circulating AAbs in breast carcinoma: p53, MUC-1, heat shock proteins (HSP-27, HSP-60, and HSP-90), HER2/neu/c-erb B2, GIPC-1, c-myc, c-myb, cancer-testis antigens (NY-ESO-1), BRCA1, BRCA2, endostatin, lipophilin B, cyclin B1, cyclin D1, fibulin, insulin-like growth factor binding protein 2 (IGFBP-2), topoisomerase II alpha (TOPO2α), and cathepsin D. Measurement of serum AAbs to one specific TAA only is of little value for screening and early diagnosis of breast carcinoma; however, assessment of AAbs to a panel of TAAs may have promising diagnostic potential.
Collapse
|