1
|
Yun J, Indorf AL. Optimizing intermittent dosing of oral small molecule inhibitors. J Oncol Pharm Pract 2025:10781552251327598. [PMID: 40116755 DOI: 10.1177/10781552251327598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
IntroductionWith recent expansion of oral small molecule inhibitors, the drug development studies need to provide insight into optimal dose selection for these agents with vastly different mechanism and pharmacokinetic considerations compared to our traditional chemotherapy agents. Currently there is one published meta-analysis that examines intermittent and alternative dosing of oral small molecule inhibitors and it is unclear what guidance is available for treatment personalization beyond package insert labeling for patients undergoing toxicities from treatment.MethodsA systematic review of oral small molecule inhibitors with intermittent dosing was conducted in the National Library of Medicine PubMed database. Studies were selected based on predefined inclusion/exclusion criteria. Data was extracted to summarize findings on available guidance for intermittent or alternative dosing of oral small molecule inhibitors. Studies were categorized based on food and drug administration (FDA) approved or non-FDA approved agents, and further characterized by comparison of different dosing schemas.ResultsFifty-five trials were included in the final review and data analysis. Thirty-three trials were phase 1 trials, 26 trials for FDA approved agents and 29 non-FDA approved agents. Most trials reported on agents used in solid tumors, particularly renal cell carcinoma, with most trials examining sunitinib. Of the 55 trials, 28 compared different dosing strategies with 26 of the 28 trials examining efficacy outcomes with 27 of the 28 trials examining safety outcomes.ConclusionsThis systematic review found limited guidance for clinicians in optimizing dosing for intermittently dosed oral small molecule inhibitors.
Collapse
Affiliation(s)
- Jina Yun
- Department of Pharmacy, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Amy Ly Indorf
- Department of Pharmacy, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Zhang X, Ren X, Zhu T, Zheng W, Shen C, Lu C. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for sunitinib. Front Pharmacol 2024; 15:1407709. [PMID: 39114350 PMCID: PMC11303340 DOI: 10.3389/fphar.2024.1407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sunitinib is approved for the treatment of metastatic renal cell carcinoma (mRCC), imatinib-resistant gastrointestinal stromal tumors (GIST), and advanced pancreatic neuroendocrine tumors (PNET). This study aims to investigate the safety profiles of sunitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Methods The individual case safety reports (ICSRs) on sunitinib from 2006 Q1 to 2024 Q1 were collected from the ASCII data packages in the Food and Drug Administration Adverse Event Reporting System (FAERS). After standardizing the data, a variety of disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) were employed to identify the potential safety signals of sunitinib-associated AEs. Results A total of 35,923 ICSRs of sunitinib as the "primary suspected" drug were identified within the reporting period. The search detected 276 disproportionate preferred terms (PTs). The most common AEs, including diarrhea, asthenia, decreased appetite, hypertension, and dysgeusia, were consistent with the drug label and clinical trials. Unexpected significant AEs, such as uveal melanocytic proliferation, salivary gland fistula, yellow skin, eyelash discoloration, scrotal inflammation, were detected. The median onset time of sunitinib-related AEs was 57 days (interquartile range [IQR]16-170 days), with most of the ICSRs developing within the first month (n = 4,582, 39.73%) after sunitinib therapy as initiated. Conclusion The results of our study were consistent with routine clinical observations, and some unexpected AEs signals were also identified for sunitinib, providing valuable evidence for the safe use of sunitinib in the real-world and contributing to the clinical monitoring and risk identification of sunitinib.
Collapse
Affiliation(s)
- Xusheng Zhang
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiuli Ren
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanjin Zheng
- Department of Pharmacology, Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Department of Pharmacology, Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengwu Shen
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuicui Lu
- Department of Pharmacology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
4
|
Zhang Y, Guo M, Wang L, Weng S, Xu H, Ren Y, Liu L, Guo C, Cheng Q, Luo P, Zhang J, Han X. A tumor-infiltrating immune cells-related pseudogenes signature based on machine-learning predicts outcomes and immunotherapy responses in ovarian cancer. Cell Signal 2023; 111:110879. [PMID: 37659727 DOI: 10.1016/j.cellsig.2023.110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Previous researches have provided evidence for the significant involvement of pseudogenes in immune-related functions across different types of cancer. However, the mechanisms by which pseudogenes regulate immunity in ovarian cancer (OV) and their potential impact on clinical outcomes remain unclear. To address this gap in knowledge, our study utilized a novel computational framework to analyze a total of 491 samples from three public datasets. We employed a combination of 10 machine-learning algorithms to construct a signature known as the tumor-infiltrating immune cells-related pseudogenes signature (TIICPS). The TIICPS, consisting of 12 pseudogenes, demonstrated independent prognostic value for overall survival, surpassing conventional clinical traits, 62 published signatures, and TP53 and BRCA mutation status in three cohorts. Patients with low TIICPS exhibited heightened immune-related pathways, intricate genomic alterations, substantial immune infiltration, and greater potential for immunotherapy efficacy. Consequently, TIICPS holds promise as a predictive tool for prognosis and immunotherapy response in ovarian cancer.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Manman Guo
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
5
|
Cai D, Liu T, Fang J, Liu Y. Molecular cluster mining of high-grade serous ovarian cancer via multi-omics data analysis aids precise medicine. J Cancer Res Clin Oncol 2023; 149:9151-9165. [PMID: 37178426 DOI: 10.1007/s00432-023-04831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE HGSOC is a kind of gynecological cancer with high mortality and strong heterogeneity. The study used multi-omics and multiple algorithms to identify novel molecular subtypes, which can help patients obtain more personalized treatments. METHODS Firstly, the consensus clustering result was obtained using a consensus ensemble of ten classical clustering algorithms, based on mRNA, lncRNA, DNA methylation, and mutation data. The difference in signaling pathways was evaluated using the single-sample gene set enrichment analysis (ssGSEA). Meanwhile, the relationship between genetic alteration, response to immunotherapy, drug sensitivity, prognosis, and subtypes was further analyzed. Finally, the reliability of the new subtype was verified in three external datasets. RESULTS Three molecular subtypes were identified. Immune desert subtype (CS1) had little enrichment in the immune microenvironment and metabolic pathways. Immune/non-stromal subtype (CS2) was enriched in the immune microenvironment and metabolism of polyamines. Immune/stromal subtype (CS3) not only enriched anti-tumor immune microenvironment characteristics but also enriched pro-tumor stroma characteristics, glycosaminoglycan metabolism, and sphingolipid metabolism. The CS2 had the best overall survival and the highest response rate to immunotherapy. The CS3 had the worst prognosis and the lowest response rate to immunotherapy but was more sensitive to PARP and VEGFR molecular-targeted therapy. The similar differences among three subtypes were successfully validated in three external cohorts. CONCLUSION We used ten clustering algorithms to comprehensively analyze four types of omics data, identified three biologically significant subtypes of HGSOC patients, and provided personalized treatment recommendations for each subtype. Our findings provided novel views into the HGSOC subtypes and could provide potential clinical treatment strategies.
Collapse
Affiliation(s)
- Daren Cai
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Tiantian Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Jingya Fang
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| | - Yingbo Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Gaitskell K, Rogozińska E, Platt S, Chen Y, Abd El Aziz M, Tattersall A, Morrison J. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer. Cochrane Database Syst Rev 2023; 4:CD007930. [PMID: 37185961 PMCID: PMC10111509 DOI: 10.1002/14651858.cd007930.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Many women, and other females, with epithelial ovarian cancer (EOC) develop resistance to conventional chemotherapy drugs. Drugs that inhibit angiogenesis (development of new blood vessels), essential for tumour growth, control cancer growth by denying blood supply to tumour nodules. OBJECTIVES To compare the effectiveness and toxicities of angiogenesis inhibitors for treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We identified randomised controlled trials (RCTs) by searching CENTRAL, MEDLINE and Embase (from 1990 to 30 September 2022). We searched clinical trials registers and contacted investigators of completed and ongoing trials for further information. SELECTION CRITERIA RCTs comparing angiogenesis inhibitors with standard chemotherapy, other types of anti-cancer treatment, other angiogenesis inhibitors with or without other treatments, or placebo/no treatment in a maintenance setting, in women with EOC. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Our outcomes were overall survival (OS), progression-free survival (PFS), quality of life (QoL), adverse events (grade 3 and above) and hypertension (grade 2 and above). MAIN RESULTS We identified 50 studies (14,836 participants) for inclusion (including five studies from the previous version of this review): 13 solely in females with newly-diagnosed EOC and 37 in females with recurrent EOC (nine studies in platinum-sensitive EOC; 19 in platinum-resistant EOC; nine with studies with mixed or unclear platinum sensitivity). The main results are presented below. Newly-diagnosed EOC Bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor (VEGF), given with chemotherapy and continued as maintenance, likely results in little to no difference in OS compared to chemotherapy alone (hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.88 to 1.07; 2 studies, 2776 participants; moderate-certainty evidence). Evidence is very uncertain for PFS (HR 0.82, 95% CI 0.64 to 1.05; 2 studies, 2746 participants; very low-certainty evidence), although the combination results in a slight reduction in global QoL (mean difference (MD) -6.4, 95% CI -8.86 to -3.94; 1 study, 890 participants; high-certainty evidence). The combination likely increases any adverse event (grade ≥ 3) (risk ratio (RR) 1.16, 95% CI 1.07 to 1.26; 1 study, 1485 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 2) (RR 4.27, 95% CI 3.25 to 5.60; 2 studies, 2707 participants; low-certainty evidence). Tyrosine kinase inhibitors (TKIs) to block VEGF receptors (VEGF-R), given with chemotherapy and continued as maintenance, likely result in little to no difference in OS (HR 0.99, 95% CI 0.84 to 1.17; 2 studies, 1451 participants; moderate-certainty evidence) and likely increase PFS slightly (HR 0.88, 95% CI 0.77 to 1.00; 2 studies, 2466 participants; moderate-certainty evidence). The combination likely reduces QoL slightly (MD -1.86, 95% CI -3.46 to -0.26; 1 study, 1340 participants; moderate-certainty evidence), but it increases any adverse event (grade ≥ 3) slightly (RR 1.31, 95% CI 1.11 to 1.55; 1 study, 188 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 3) (RR 6.49, 95% CI 2.02 to 20.87; 1 study, 1352 participants; low-certainty evidence). Recurrent EOC (platinum-sensitive) Moderate-certainty evidence from three studies (with 1564 participants) indicates that bevacizumab with chemotherapy, and continued as maintenance, likely results in little to no difference in OS (HR 0.90, 95% CI 0.79 to 1.02), but likely improves PFS (HR 0.56, 95% CI 0.50 to 0.63) compared to chemotherapy alone. The combination may result in little to no difference in QoL (MD 0.8, 95% CI -2.11 to 3.71; 1 study, 486 participants; low-certainty evidence), but it increases the rate of any adverse event (grade ≥ 3) slightly (RR 1.11, 1.07 to 1.16; 3 studies, 1538 participants; high-certainty evidence). Hypertension (grade ≥ 3) was more common in arms with bevacizumab (RR 5.82, 95% CI 3.84 to 8.83; 3 studies, 1538 participants). TKIs with chemotherapy may result in little to no difference in OS (HR 0.86, 95% CI 0.67 to 1.11; 1 study, 282 participants; low-certainty evidence), likely increase PFS (HR 0.56, 95% CI 0.44 to 0.72; 1 study, 282 participants; moderate-certainty evidence), and may have little to no effect on QoL (MD 6.1, 95% CI -0.96 to 13.16; 1 study, 146 participants; low-certainty evidence). Hypertension (grade ≥ 3) was more common with TKIs (RR 3.32, 95% CI 1.21 to 9.10). Recurrent EOC (platinum-resistant) Bevacizumab with chemotherapy and continued as maintenance increases OS (HR 0.73, 95% CI 0.61 to 0.88; 5 studies, 778 participants; high-certainty evidence) and likely results in a large increase in PFS (HR 0.49, 95% CI 0.42 to 0.58; 5 studies, 778 participants; moderate-certainty evidence). The combination may result in a large increase in hypertension (grade ≥ 2) (RR 3.11, 95% CI 1.83 to 5.27; 2 studies, 436 participants; low-certainty evidence). The rate of bowel fistula/perforation (grade ≥ 2) may be slightly higher with bevacizumab (RR 6.89, 95% CI 0.86 to 55.09; 2 studies, 436 participants). Evidence from eight studies suggest TKIs with chemotherapy likely result in little to no difference in OS (HR 0.85, 95% CI 0.68 to 1.08; 940 participants; moderate-certainty evidence), with low-certainty evidence that it may increase PFS (HR 0.70, 95% CI 0.55 to 0.89; 940 participants), and may result in little to no meaningful difference in QoL (MD ranged from -0.19 at 6 weeks to -3.40 at 4 months). The combination increases any adverse event (grade ≥ 3) slightly (RR 1.23, 95% CI 1.02 to 1.49; 3 studies, 402 participants; high-certainty evidence). The effect on bowel fistula/perforation rates is uncertain (RR 2.74, 95% CI 0.77 to 9.75; 5 studies, 557 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Bevacizumab likely improves both OS and PFS in platinum-resistant relapsed EOC. In platinum-sensitive relapsed disease, bevacizumab and TKIs probably improve PFS, but may or may not improve OS. The results for TKIs in platinum-resistant relapsed EOC are similar. The effects on OS or PFS in newly-diagnosed EOC are less certain, with a decrease in QoL and increase in adverse events. Overall adverse events and QoL data were more variably reported than were PFS data. There appears to be a role for anti-angiogenesis treatment, but given the additional treatment burden and economic costs of maintenance treatments, benefits and risks of anti-angiogenesis treatments should be carefully considered.
Collapse
Affiliation(s)
- Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Sarah Platt
- Obstetrics and Gynaecology, St Mary's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Department of Gynaecological Oncology, St. Michael's Hospital, Bristol, UK
| | - Yifan Chen
- Oxford Medical School, University of Oxford, Oxford, UK
| | | | | | - Jo Morrison
- Department of Gynaecological Oncology, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK
| |
Collapse
|
7
|
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S, Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol 2023; 14:1147717. [PMID: 36959862 PMCID: PMC10027942 DOI: 10.3389/fphar.2023.1147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.
Collapse
Affiliation(s)
- Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Fabrication of mesoporous silica nanoparticles for targeted delivery of sunitinib to ovarian cancer cells. BIOIMPACTS : BI 2023; 13:255-267. [PMID: 37431477 PMCID: PMC10329750 DOI: 10.34172/bi.2023.25298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNPs) are considered innovative multifunctional structures for targeted drug delivery owing to their outstanding physicochemical characteristics. METHODS MSNPs were fabricated using the sol-gel method, and polyethylene glycol-600 (PEG600) was used for MSNPs modification. Subsequently, sunitinib (SUN) was loaded into the MSNPs, MSNP-PEG and MSNP-PEG/SUN were grafted with mucin 16 (MUC16) aptamers. The nanosystems (NSs) were characterized using FT-IR, TEM, SEM, DLS, XRD, BJH, and BET. Furthermore, the biological impacts of MSNPs were evaluated on the ovarian cancer cells by MTT assay and flow cytometry analysis. RESULTS The results revealed that the MSNPs have a spherical shape with an average dimension, pore size, and surface area of 56.10 nm, 2.488 nm, and 148.08 m2g-1, respectively. The cell viability results showed higher toxicity of targeted MSNPs in MUC16 overexpressing OVCAR-3 cells as compared to the SK-OV-3 cells; that was further confirmed by the cellular uptake results. The cell cycle analysis exhibited that the induction of sub-G1 phase arrest mostly occurred in MSNP-PEG/SUN-MUC16 treated OVCAR-3 cells and MSNP-PEG/SUN treated SK-OV-3 cells. DAPI staining showed apoptosis induction upon exposure to targeted MSNP in MUC16 positive OVCAR-3 cells. CONCLUSION According to our results, the engineered NSs could be considered an effective multifunctional targeted drug delivery platform for the mucin 16 overexpressing cells.
Collapse
Affiliation(s)
- Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouria Savadi
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
9
|
Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Targeted Delivery of Sunitinib by MUC-1 Aptamer-Capped Magnetic Mesoporous Silica Nanoparticles. Molecules 2023; 28:molecules28010411. [PMID: 36615606 PMCID: PMC9824472 DOI: 10.3390/molecules28010411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| | - Pouria Savadi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (Di.S.T.A.Bi.F.), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| |
Collapse
|
10
|
Nugawela D, Gorringe KL. Targeted therapy for mucinous ovarian carcinoma: evidence from clinical trials. Int J Gynecol Cancer 2023; 33:102-108. [PMID: 36603894 PMCID: PMC9811085 DOI: 10.1136/ijgc-2022-003658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023] Open
Abstract
Mucinous ovarian carcinoma is a rare subtype of epithelial ovarian cancer. Despite being a chemoresistant tumour type, surgical resection and chemotherapy are still the current standard for management. This narrative review aims to explore the current evidence for targeted therapies in mucinous ovarian carcinoma. A review of the literature was performed to identify clinical trials and case reports of targeted therapy in patients with mucinous ovarian carcinoma. The databases and registers (PubMed, MEDLINE, Embase, Europe PMC, Cochrane Central Register of Clinical Trials, clinicaltrials.gov) were searched for articles published between January 2009 to June 2021 using keywords specific for mucinous ovarian carcinoma and targeted therapy. Records were screened and assessed for eligibility based on inclusion and exclusion criteria. From 684 records, 21 studies met the criteria to be included in the review. A total of 11 different targeted therapies were identified, each demonstrating varying degrees of clinical evidence supporting further investigation in patients with mucinous ovarian carcinoma. Targeted therapies identified in this review that warrant further investigations are bevacizumab, trastuzumab, nintedanib, AZD1775, sunitinib, cediranib and pazopanib. Many of the therapeutic agents may be investigated further in combination with other targeted therapies or chemotherapy. More clinical trials focusing on targeted therapy specifically in patients with mucinous ovarian cancer are required to inform clinical use. Multinational efforts are likely to be required to successfully conduct trials in this rare tumor type.
Collapse
Affiliation(s)
| | - Kylie L Gorringe
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Liu G, Feng Y, Li J, Deng T, Yin A, Yan L, Zheng M, Xiong Y, Li J, Huang Y, Zhang C, Huang H, Wan T, Huang Q, Lin A, Jiang J, Kong B, Liu J. A novel combination of niraparib and anlotinib in platinum-resistant ovarian cancer: Efficacy and safety results from the phase II, multi-center ANNIE study. EClinicalMedicine 2022; 54:101767. [PMID: 36583171 PMCID: PMC9793276 DOI: 10.1016/j.eclinm.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Patients with platinum-resistant recurrent ovarian cancer (PROC) face poor prognosis and limited treatment options. Single-agent antiangiogenics and poly (ADP-ribose) polymerase (PARP) inhibitors both show some activities in platinum-resistant diseases. The ANNIE study aimed to evaluate the efficacy and safety of the novel combination of the PARP inhibitor niraparib and the antiangiogenic anlotinib in patients with PROC. METHODS ANNIE is a multicentre, single-arm, phase 2 study (ClinicalTrials.gov identifier NCT04376073) conducted at three hospitals in China. Eligible patients had histologically confirmed epithelial ovarian, fallopian tube, or primary peritoneal cancer that recurred within 6 months of last platinum-based chemotherapy. Patients with prior PARP inhibitor exposure were excluded. The enrolled patients received oral niraparib 200 mg or 300 mg (baseline body weight-directed) once daily continuously and anlotinib 10 mg (12 mg before protocol amendment) once daily on days 1-14 of each 21-day cycle until disease progression or intolerable toxicity. The primary endpoint was objective response rate (ORR). FINDINGS Between May 22, 2020, and April 22, 2021, 40 patients were enrolled and treated. Thirty-six patients underwent post-baseline tumour assessments. By data cut-off (January 31, 2022), median follow-up was 15.4 months (95% CI 12.6-17.7). Intention-to-treat ORR was 50.0% (95% CI 33.8-66.2), including one complete response and 19 partial responses. Median (95% CI) progression-free survival and overall survival were 9.2 months (7.4-11.9) and 15.3 months (13.9-not evaluable), respectively. Drug-related, grade ≥3 TEAEs were reported in 26 (68%) patients. There were no treatment-related deaths. INTERPRETATION Niraparib plus anlotinib showed promising antitumour activity in patients with PROC. This oral combination warrants further investigation as a potential novel, convenient treatment option for patients with PROC. FUNDING Zai Lab (Shanghai) Co., Ltd; Jiangsu Chia Tai-Tianqing Pharmaceutical Co., Ltd; the National Natural Science Foundation of China (No. 82102783).
Collapse
Affiliation(s)
- Guochen Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yanling Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jing Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Ting Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Aijun Yin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, 250012, China
| | - Lei Yan
- The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630, China
| | - Min Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Ying Xiong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jundong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yongwen Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chuyao Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - He Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Ting Wan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qidan Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - An Lin
- Fujian Provincial Cancer Hospital, No. 91, Fengpanma Road, Fuma Road, Fuzhou, 350014, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, 250012, China
| | - Jihong Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
- Corresponding author. 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now? Biomedicines 2022; 10:biomedicines10092113. [PMID: 36140214 PMCID: PMC9495728 DOI: 10.3390/biomedicines10092113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker.
Collapse
|
13
|
Antiangiogenic Strategies in Epithelial Ovarian Cancer: Mechanism, Resistance, and Combination Therapy. JOURNAL OF ONCOLOGY 2022; 2022:4880355. [PMID: 35466318 PMCID: PMC9019437 DOI: 10.1155/2022/4880355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer and plays a crucial role in carcinogenesis and progression of epithelial ovarian cancer. Antiangiogenic agent is the first approved targeted agent in ovarian cancer. Anti-angiogenic agents mainly include agents target VEGF/VEGFR pathway, such as bevacizumab and agents target receptor tyrosine kinase, and non-VEGF/VEGFR targets of angiogenesis. Antiangiogenic agents demonstrate certain effects in ovarian cancer treatment either as monotherapy or combined with chemotherapy. Unfortunately, antiangiogenic agents, such as bevacizumab, integrated into the ovarian cancer treatment paradigm do not increase cures. Thus, the benefits of anti-angiogenic agents must be carefully weighed against the cost and associated toxicities. Antiangiogenic agents drug resistance and short of predictive biomarkers are main obstacles in ovarian cancer treatment. A combination of poly (ADP-ribose) polymerase inhibitors or immune checkpoint inhibitors might be great strategies to overcome resistance as well as enhance anti-tumor activity of anti-angiogenic drugs. Predictive biomarkers of antiangiogenic agents are in urgent need.
Collapse
|
14
|
Murphy AD, Morgan RD, Clamp AR, Jayson GC. The role of vascular endothelial growth factor inhibitors in the treatment of epithelial ovarian cancer. Br J Cancer 2022; 126:851-864. [PMID: 34716396 PMCID: PMC8927157 DOI: 10.1038/s41416-021-01605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 12/09/2022] Open
Abstract
Advanced epithelial ovarian, fallopian tube and primary peritoneal cancers (EOC) are a leading cause of gynaecological cancer-associated mortality and angiogenesis plays a key role in their growth. Vascular endothelial growth factor inhibitors (VEGFi) disrupt angiogenesis and improve the response rate, progression-free survival and in some cases, overall survival, when administered with and following cytotoxic chemotherapy, irrespective of the platinum sensitivity of EOC. Recent data have identified new indications for VEGFi in EOC: repeated exposure to VEGFi in the first- and then second-line treatment has sustained clinical efficacy; combinations of VEGFi with poly (ADP-ribose) polymerase inhibitors (PARPi) have proven effective as first-line or second-line maintenance regimens. However, recent trial data have not shown improved outcomes with combinations of VEGFi and immune checkpoint inhibitors. There remains a critical need to optimise patient selection for these effective yet somewhat toxic and expensive treatments. The search continues for validated biomarkers to optimise the use of VEGFi, of which the most promising at present is plasma Tie2. Based upon these studies, we propose a model of care incorporating VEGFi into the treatment of EOC, highlighting the need to change from the prescription of single courses of VEGFi, to allow use and re-use as clinically indicated.
Collapse
Affiliation(s)
| | - Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Emerging Importance of Tyrosine Kinase Inhibitors against Cancer: Quo Vadis to Cure? Int J Mol Sci 2021; 22:ijms222111659. [PMID: 34769090 PMCID: PMC8584061 DOI: 10.3390/ijms222111659] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.
Collapse
|
16
|
Cui Q, Hu Y, Ma D, Liu H. A Retrospective Observational Study of Anlotinib in Patients with Platinum-Resistant or Platinum-Refractory Epithelial Ovarian Cancer. Drug Des Devel Ther 2021; 15:339-347. [PMID: 33536747 PMCID: PMC7850384 DOI: 10.2147/dddt.s286529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Anlotinib, an oral small-molecular tyrosine kinase inhibitor (TKI) on tumor angiogenesis and growth, has a wide spectrum of inhibitory effects on targets such as vascular endothelial growth factor receptors 2/3 (VEGFR2/3), etc. The efficacy and safety of anlotinib in the treatment of platinum-resistant or platinum-refractory ovarian cancer were evaluated. Patients and Methods Patients with platinum-resistant or platinum-refractory ovarian cancer that treated with anlotinib in the Affiliated Cancer Hospital of Zhengzhou University from May 2018 to March 2020 were included. Medical records were reviewed in terms of objective response, survival outcomes, and safety. Results A total of 38 patients were analyzed. The median progression-free survival and the median overall survival were 7.7 months (95% CI: 6.7–8.7) and 16.5 months (95% CI: 13.3–19.7), respectively. About 17 patients received anlotinib monotherapy, and the median progression-free survival was 7.7 months (95% CI: 6.3–9.1). A total of 19 cases received anlotinib plus chemotherapy with a median progression-free survival of 8.0 months (95% CI: 4.8–11.2). A total of 2 cases received anlotinib plus anti-PD-1 antibody pembrolizumab, and 1 case had partial response, the other progressive disease. The objective response rate was 42.1% while the disease control rate was 86.8%. A total of 5 patients experienced dose reduction from 12 mg to 10 mg because of adverse effects. The most common adverse effects were hypertension (31.6%), fatigue (28.9%), anorexia (26.3%) and hand-foot syndrome (23.7%). No treatment-related deaths were recorded. Conclusion Anlotinib produced moderate improvements in progression-free survival and overall survival in patients with platinum-resistant or platinum-refractory ovarian cancer. It indicates that anlotinib maybe a new treatment option for patients with platinum-resistant or platinum-refractory ovarian cancer.
Collapse
Affiliation(s)
- Qingli Cui
- Department of Integrated Traditional and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yanhui Hu
- Department of Integrated Traditional and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Dongyang Ma
- Department of Integrated Traditional and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Huaimin Liu
- Department of Integrated Traditional and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
17
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
18
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
20
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
21
|
Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871:434-454. [PMID: 31034926 PMCID: PMC6528778 DOI: 10.1016/j.bbcan.2019.04.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The strategy of using existing drugs originally developed for one disease to treat other indications has found success across medical fields. Such drug repurposing promises faster access of drugs to patients while reducing costs in the long and difficult process of drug development. However, the number of existing drugs and diseases, together with the heterogeneity of patients and diseases, notably including cancers, can make repurposing time consuming and inefficient. The key question we address is how to efficiently repurpose an existing drug to treat a given indication. As drug efficacy remains the main bottleneck for overall success, we discuss the need for machine-learning computational methods in combination with specific phenotypic studies along with mechanistic studies, chemical genetics and omics assays to successfully predict disease-drug pairs. Such a pipeline could be particularly important to cancer patients who face heterogeneous, recurrent and metastatic disease and need fast and personalized treatments. Here we focus on drug repurposing for colorectal cancer and describe selected therapeutics already repositioned for its prevention and/or treatment as well as potential candidates. We consider this review as a selective compilation of approaches and methodologies, and argue how, taken together, they could bring drug repurposing to the next level.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland; Translational Research Center in Oncohaematology, University of Geneva, Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
22
|
Chan JK, Brady W, Monk BJ, Brown J, Shahin MS, Rose PG, Kim JH, Secord AA, Walker JL, Gershenson DM. A phase II evaluation of sunitinib in the treatment of persistent or recurrent clear cell ovarian carcinoma: An NRG Oncology/Gynecologic Oncology Group Study (GOG-254). Gynecol Oncol 2018; 150:247-252. [PMID: 29921512 DOI: 10.1016/j.ygyno.2018.05.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To determine the efficacy and tolerability of sunitinib in recurrent or persistent clear cell ovarian cancer patients. METHODS All patients had one or two prior regimens with measurable disease. Tumors were at least 50% clear cell histomorphology and negative for WT-1 antigen and estrogen receptor expression by immunohistochemistry. Sunitinib 50 mg per day for 4 weeks was administered in repeated 6-week cycles until disease progression or prohibitive toxicity. Primary end points were progression-free survival (PFS) at 6 months and clinical response. The study was designed to determine if the drug had a response rate of at least 20% or 6-month PFS of at least 25%. RESULTS Of 35 patients enrolled, 30 were treated and eligible (median age: 51, range: 27-73). Twenty-five (83%) were White, 4 (13%) Asian, and 1 (3%) unknown. The majority 28 (83%) patients, underwent ≤3 but 2 (7%) had 16 courses of study therapy. Five (16.7%) patients had PFS ≥6 months (90% CI: 6.8%-31.9%). Two (6.7%) patients had a partial or complete response (90% CI: 1.2%-19.5%). The median PFS was 2.7 months. The median overall survival was 12.8 months. The most common grade 3 adverse events were fatigue (4), hypertension (4), neutropenia (4), anemia (3), abdominal pain (3), and leukopenia (3). Grade 4-5 adverse events included: thrombocytopenia (5), anemia (2), acute kidney Injury (1), stroke (1), and allergic reaction (1). CONCLUSION Sunitinib demonstrated minimal activity in the second- and third-line treatment of persistent or recurrent clear cell ovarian carcinoma. ClinicalTrials.gov number, NCT00979992.
Collapse
Affiliation(s)
- John K Chan
- Division of Gynecologic Oncology, California Pacific-Palo Alto Medical Foundation, Sutter Research Institute, San Francisco, CA 94115, United States.
| | - William Brady
- NRG Oncology/Gynecologic Oncology Group Statistics & Data Center, Roswell Park Cancer Institute, Buffalo, NY 14263, United States.
| | - Bradley J Monk
- Division of Gynecologic Oncology, Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix, AZ 85016, United States.
| | - Jubilee Brown
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, TX 77230, United States.
| | - Mark S Shahin
- Department of Obstetrics & Gynecology, Abington Hospital-Jefferson Health, Abington, PA 19001, United States.
| | - Peter G Rose
- Department of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Jae-Hoon Kim
- Department of Gynecologic Oncology, Gangann Severence Hospital, Seoul 06273, Republic of Korea.
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC 27710, United States.
| | - Joan L Walker
- Department of Gynecologic Oncology, Oklahoma University, Stephenson Cancer Center, Oklahoma City, OK 73104, United States.
| | - David M Gershenson
- Department of GYN/ONC, Unit 1362, The University of Texas, MD Anderson Cancer Center, Houston, TX 77230, United States.
| |
Collapse
|
23
|
Miao M, Deng G, Luo S, Zhou J, Chen L, Yang J, He J, Li J, Yao J, Tan S, Tang J. A phase II study of apatinib in patients with recurrent epithelial ovarian cancer. Gynecol Oncol 2017; 148:286-290. [PMID: 29248198 DOI: 10.1016/j.ygyno.2017.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Antiangiogenic treatments have been implicated to play a major role in epithelial ovarian cancer (EOC). Apatinib, a novel oral antiangiogenic agent targeting vascular endothelial growth factor receptor (VEGFR2), is currently being studied in different tumor types and is already used in gastric adenocarcinoma. This study was performed to assess the efficacy and safety of apatinib in patients with recurrent, pretreated EOC. PATIENTS AND METHODS Patients with recurrent, platinum-resistant, pre-treated EOC who failed available standard chemotherapy were enrolled. Apatinib was administered as 500mg daily. Primary objective is the overall response rate (ORR) according to MASS criteria. Secondary objectives are progression free survival (PFS), overall survival (OS), disease control rate (DCR), safety and tolerability. The treatment duration is until disease progression or intolerability of apatinib. RESULTS 29 eligible patients were enrolled in this multicenter, open-label, single arm study and received apatinib for a median of 36.8weeks (range 13-64.8weeks). Median follow-up time was 12months. 28 patients were eligible for efficacy analysis. ORR is 41.4% (95% confidence interval (CI), 23.3%-59.4%). DCR is 68.9% (95% CI, 52.1%-85.8%). Median PFS is 5.1months (95% CI, 3.8m-6.5m). Median OS is 14.5months (95% CI, 12.4m-16.4m). The most common treatment-related adverse events (AEs) were hand-foot syndrome (51.7%), hypertension (34.6%), nausea and vomiting (31.0%). 3 patients had no significant toxicity. 9 patients experienced grade 3 treatment-related AEs. CONCLUSIONS Apatinib 500mg daily p.o. is a feasible treatment in patients with recurrent, platinum-resistant, pretreated EOC. Multi-center prospective studies enrolling more patients are needed.
Collapse
Affiliation(s)
- Mingming Miao
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Guanming Deng
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Sujuan Luo
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jiajia Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Le Chen
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jun Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jie He
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jing Yao
- Department of Obstetric Gynecology, First People's Hospital of Loudi, Loudi, PR China
| | - Shanmei Tan
- Department of Obstetric Gynecology, First People's Hospital of Huaihua, Huaihua, PR China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
24
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2017; 16:1337-1351. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
25
|
Vergote IB, Smith DC, Berger R, Kurzrock R, Vogelzang NJ, Sella A, Wheler J, Lee Y, Foster PG, Weitzman R, Buckanovich RJ. A phase 2 randomised discontinuation trial of cabozantinib in patients with ovarian carcinoma. Eur J Cancer 2017; 83:229-236. [DOI: 10.1016/j.ejca.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
|
26
|
Tomao F, Marchetti C, Romito A, Di Pinto A, Di Donato V, Capri O, Palaia I, Monti M, Muzii L, Benedetti Panici P. Overcoming platinum resistance in ovarian cancer treatment: from clinical practice to emerging chemical therapies. Expert Opin Pharmacother 2017; 18:1443-1455. [PMID: 28521614 DOI: 10.1080/14656566.2017.1328055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The objective of this review is to summarize results from clinical trials that tested cytotoxic drugs and target strategies for the treatment of platinum resistant (PR) recurrent ovarian cancer (ROC) with particular attention to Phase III and ongoing trials. Areas covered: Since platinum free interval (PFI) represents the most important predictive factor for response to platinum re-treatment in ROC, non-platinum regimens are conventionally considered the most appropriate approaches. Impressive progress has been made in recent decades, resulting in the identification of most effective cytotoxic agents and in the development of new target strategies. However, the efficacy of most of these drugs for the treatment of PR disease is still limited. Expert opinion: The most favorable benefit for the treatment of PR disease, has been described by the AURELIA trial that showed a 3.3 months increase in progression free survival (PFS) when bevacizumab was combined with non-platinum single agent chemotherapy in bevacizumab-naïve patients. Nevertheless, the use of novel agents is associated to important costs for just little gains in survival. Thus, in our opinion the economic evaluation, such as the incorporation of quality of life into the clinical studies is crucial for the development of future trials for PR-ROC.
Collapse
Affiliation(s)
- Federica Tomao
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Claudia Marchetti
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Alessia Romito
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Anna Di Pinto
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Violante Di Donato
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Oriana Capri
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Innocenza Palaia
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Marco Monti
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | - Ludovico Muzii
- a Department of Gynaecology and Obstetrics , "Sapienza" University of Rome , Rome , Italy
| | | |
Collapse
|
27
|
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8:591-605. [PMID: 28808589 PMCID: PMC5544473 DOI: 10.1016/j.jare.2017.06.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Recent strategies for the treatment of cancer, other than just tumor cell killing have been under intensive development, such as anti-angiogenic therapeutic approach. Angiogenesis inhibition is an important strategy for the treatment of solid tumors, which basically depends on cutting off the blood supply to tumor micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. The differential activation of angiogenesis between normal and tumor tissues makes this process an attractive strategic target for anti-tumor drug discovery. The principles of anti-angiogenic treatment for solid tumors were originally proposed in 1972, and ever since, it has become a putative target for therapies directed against solid tumors. In the early twenty first century, the FDA approved anti-angiogenic drugs, such as bevacizumab and sorafenib for the treatment of several solid tumors. Over the past two decades, researches have continued to improve the performance of anti-angiogenic drugs, describe their drug interaction potential, and uncover possible reasons for potential treatment resistance. Herein, we present an update to the pre-clinical and clinical situations of anti-angiogenic agents and discuss the most recent trends in this field.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Centre, Dokki, Giza, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Biomedical Research Section, Nawah Scientific, Mokkatam, Cairo, Egypt
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thikryat A Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
28
|
Lin CK, Bai MY, Hu TM, Wang YC, Chao TK, Weng SJ, Huang RL, Su PH, Lai HC. Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget 2016; 7:8993-9006. [PMID: 26848771 PMCID: PMC4891020 DOI: 10.18632/oncotarget.7113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer treatment remains a challenge and targeting cancer stem cells presents a promising strategy. Niclosamide is an “old” antihelminthic drug that uncouples mitochondria of intestinal parasites. Although recent studies demonstrated that niclosamide could be a potential anticancer agent, its poor water solubility needs to be overcome before further preclinical and clinical investigations can be conducted. Therefore, we evaluated a novel nanosuspension of niclosamide (nano-NI) for its effect against ovarian cancer. Nano-NI effectively inhibited the growth of ovarian cancer cells in which it induced a metabolic shift to glycolysis at a concentration of less than 3 μM in vitro and suppressed tumor growth without obvious toxicity at an oral dose of 100 mg/kg in vivo. In a pharmacokinetic study after oral administration, nano-NI showed rapid absorption (reaching the maximum plasma concentration within 5 min) and improved the bioavailability (the estimated bioavailability for oral nano-NI was 25%). In conclusion, nano-NI has the potential to be a new treatment modality for ovarian cancer and, therefore, further clinical trials are warranted.
Collapse
Affiliation(s)
- Chi-Kang Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Teh-Min Hu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Ju Weng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Alifrangis C, Thornton A, Fotopoulou C, Krell J, Gabra H. Response to sunitinib (Sutent) in chemotherapy refractory clear cell ovarian cancer. Gynecol Oncol Rep 2016; 18:42-44. [PMID: 27872893 PMCID: PMC5107646 DOI: 10.1016/j.gore.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/19/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022] Open
Abstract
•Case describes a response to sunitinib in clear cell ovarian cancer.•Discussion of unique molecular characteristics of clear cell ovarian cancers•Practical points regarding dosing and toxicity when using sunitinib discussed.
Collapse
Affiliation(s)
- C Alifrangis
- Dept. of Medical Oncology, Hammersmith Hospital, United Kingdom
| | - A Thornton
- Dept. of Medical Oncology, Hammersmith Hospital, United Kingdom
| | - C Fotopoulou
- Dept. of Gynaecology, Imperial College London, United Kingdom
| | - J Krell
- Dept. of Medical Oncology, Hammersmith Hospital, United Kingdom
- Division of Cancer, Imperial College London, United Kingdom
| | - H Gabra
- Dept. of Medical Oncology, Hammersmith Hospital, United Kingdom
- Division of Cancer, Imperial College London, United Kingdom
- Corresponding author at: Dept. of Medical Oncology, Hammersmith Hospital, Du Cane Road, W12 0HS London, United Kingdom.Dept. of Medical OncologyHammersmith HospitalDu Cane RoadLondonW12 0HSUnited Kingdom
| |
Collapse
|
30
|
Cimpean AM, Cobec IM, Ceaușu RA, Popescu R, Tudor A, Raica M. Platelet Derived Growth Factor BB: A "Must-have" Therapeutic Target "Redivivus" in Ovarian Cancer. Cancer Genomics Proteomics 2016; 13:511-517. [PMID: 27807074 PMCID: PMC5219925 DOI: 10.21873/cgp.20014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We aimed to validate PDGF-BB protein expression by RNAscope, a sensitive method for PDGF-BB mRNA evaluation on paraffin embedded (FFPE) specimens of ovarian tumors. MATERIALS AND METHODS Seventy-five FFPE ovarian cancer biopsies were assessed by immunohistochemistry followed by PDGF-BB mRNA RNAscope validation. RESULTS AND CONCLUSION Dual PDGF-BB expression in tumor and stromal cells have been observed, being highly suggestive for PDGF-BB mediated stromal-tumor cells reciprocal interaction in ovarian cancer (p=0.008). It seems that the nuclear expression of the PDGF-BB represents a negative prognostic factor in ovarian tumors. Being a controversial issue in the literature, PDGF-BB nuclear expression detected by immunohistochemistry was validated by RNAscope in situ hybridization. More than 65% of cases had PDGF-BB mRNA amplification, confirming immunohistochemical results. We herein validated PDGF-BB as a potential therapeutic and prognostic tool of ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ionut Marcel Cobec
- Department of Obstetrics and Gynecology, Diakonie Klinikum, Academic Hospital of the Heidelberg University, Schwäbisch Hall, Germany
| | - Raluca Amalia Ceaușu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology/ Cell and Molecular Biology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Tudor
- Department of Medical Informatics and Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
31
|
Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn 2016. [PMID: 27828713 DOI: 10.1080/14737159.2016.1259069]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
32
|
Abstract
INTRODUCTION Next-generation sequencing and advances in 'omics technology have rapidly increased our understanding of the molecular landscape of epithelial ovarian cancers. Areas covered: Once characterized only by histologic appearance and clinical behavior, we now understand many of the molecular phenotypes that underlie the different ovarian cancer subtypes. While the current approach to treatment involves standard cytotoxic therapies after cytoreductive surgery for all ovarian cancers regardless of histologic or molecular characteristics, focus has shifted beyond a 'one size fits all' approach to ovarian cancer. Expert commentary: Genomic profiling offers potentially 'actionable' opportunities for development of targeted therapies and a more individualized approach to treatment with concomitant improved outcomes and decreased toxicity.
Collapse
Affiliation(s)
- Rebecca A Previs
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil K Sood
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gordon B Mills
- b Department of Systems Biology , The University of Texas MD Anderson Cancer , Houston , TX , USA
| | - Shannon N Westin
- a Department of Gynecologic Oncology and Reproductive Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
33
|
Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Exp Neurol 2016; 283:129-41. [PMID: 27288242 DOI: 10.1016/j.expneurol.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Reham Helwa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG, Kotteas EA. The Emerging Role of Tyrosine Kinase Inhibitors in Ovarian Cancer Treatment: A Systematic Review. Cancer Invest 2016; 34:313-39. [PMID: 27486869 DOI: 10.1080/07357907.2016.1206117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present systematic review summarizes current evidence regarding the mechanisms of action, the efficacy, and the adverse effects of tyrosine kinase inhibitors (TKIs) in ovarian cancer patients. Phase II and III clinical trials were sought in the PubMed database and in the Clinical Trials.gov registry through September 30, 2015. Seventy-five clinical trials regarding TKIs targeting mainly vascular endothelial growth factor receptor, epidermal growth factor receptor, platelet-derived growth factor receptor, and sarcoma tyrosine kinase (Src) were yielded. The most promising results were noted with cediranib, nintedanib, and pazopanib. However, drawing universal conclusions about the potential integration of TKIs in ovarian cancer therapy remains elusive. Furthermore, emerging challenges and directions for the future research are critically discussed.
Collapse
Affiliation(s)
| | - George Fotopoulos
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| | | | - Elias A Kotteas
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| |
Collapse
|
35
|
Abstract
Among female-specific cancers worldwide, ovarian cancer is the leading cause of death from gynecologic malignancy in the western world. Despite radical surgery and initial high response rates to first-line chemotherapy, up to 70% of patients experience relapses with a median progression-free survival of 12-18 months. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. This review aims to assess current understanding of targeted therapy in ovarian cancer and evaluate the evidence for targeting growth-dependent mechanisms involved in its pathogenesis. Of the many targeted therapies currently under evaluation, the most promising strategies developed thus far are antiangiogenic agents and PARP inhibitors.
Collapse
Affiliation(s)
- Hui Jun Lim
- Faculty of Medicine, University of New South Wales, Australia
| | - William Ledger
- School of Women's & Children's Health, University of New South Wales, Sydney 2031, New South Wales, Australia
| |
Collapse
|
36
|
Rodriguez-Freixinos V, Mackay HJ, Karakasis K, Oza AM. Current and emerging treatment options in the management of advanced ovarian cancer. Expert Opin Pharmacother 2016; 17:1063-76. [PMID: 26918413 DOI: 10.1517/14656566.2016.1159295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer is the most lethal gynecologic malignancy. Recent advances in understanding the biology and its molecular and histological diversity have led to mechanism based therapeutic strategies such as poly-ADP-ribose polymerase inhibitors (PARP) targeting homologous recombination deficient tumor cells and anti-angiogenic therapies. Clinical trial designs in ovarian cancer have to evolve to incorporate assessment of the genomic complexity and identify predictive biomarkers to improve precision of treatment and outcome. AREAS COVERED This review summarizes present-day strategies used in the management of ovarian cancer and novel promising therapeutic approaches in development. The article is based on English peer-reviewed articles located on MEDLINE and related abstracts presented at major international meetings. EXPERT OPINION Two types of molecular targeted therapies, anti-angiogenics and PARP inhibitors, have been shown to be active in randomized clinical trials and approved by regulatory agencies. Management of ovarian cancer is poised to change with the continued advancement of precision medicine that is founded upon improved understanding of disease biology; separation into histologically and molecularly defined subgroups; and the incorporation of this new knowledge into early phase drug development and novel clinical trial design.
Collapse
Affiliation(s)
- Victor Rodriguez-Freixinos
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| | - Helen J Mackay
- b Division of Medical Oncology and Hematology , Sunnybrook Odette Cancer Centre , Toronto , Ontario , Canada
| | - Katherine Karakasis
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| | - Amit M Oza
- a Division of Medical Oncology and Hematology, Princess Margaret Hospital , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
37
|
McClung EC, Wenham RM. Profile of bevacizumab in the treatment of platinum-resistant ovarian cancer: current perspectives. Int J Womens Health 2016; 8:59-75. [PMID: 27051317 PMCID: PMC4803258 DOI: 10.2147/ijwh.s78101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with platinum-resistant ovarian cancer have progression of disease within 6 months of completing platinum-based chemotherapy. While several chemotherapeutic options exist for the treatment of platinum-resistant ovarian cancer, the overall response to any of these therapies is ~10%, with a median progression-free survival of 3–4 months and a median overall survival of 9–12 months. Bevacizumab (Avastin), a humanized, monoclonal antivascular endothelial growth factor antibody, has demonstrated antitumor activity in the platinum-resistant setting and was recently approved by US Food and Drug Administration for combination therapy with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan. This review summarizes key clinical trials investigating bevacizumab for recurrent, platinum-resistant ovarian cancer and provides an overview of efficacy, safety, and quality of life data relevant in this setting. While bevacizumab is currently the most studied and clinically available antiangiogenic therapy, we summarize recent studies highlighting novel alternatives, including vascular endothelial growth factor-trap, tyrosine kinase inhibitors, and angiopoietin inhibitor trebananib, and discuss their application for the treatment of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- E Clair McClung
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Robert M Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
38
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
39
|
Carlisle B, Demko N, Freeman G, Hakala A, MacKinnon N, Ramsay T, Hey S, London AJ, Kimmelman J. Benefit, Risk, and Outcomes in Drug Development: A Systematic Review of Sunitinib. J Natl Cancer Inst 2016; 108:djv292. [PMID: 26547927 PMCID: PMC5943825 DOI: 10.1093/jnci/djv292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the total patient burden associated with clinical development and where burdens fall most heavily during a drug development program. Our goal was to quantify the total patient burden/benefit in developing a new drug. METHODS We measured risk using drug-related adverse events that were grade 3 or higher, benefit by objective response rate, and trial outcomes by whether studies met their primary endpoint with acceptable safety. The differences in risk (death rate) and benefit (overall response rate) between industry and nonindustry trials were analyzed with an inverse-variance weighted fixed effects meta-analysis implemented as a weighted regression analysis. All statistical tests were two-sided. RESULTS We identified 103 primary publications of sunitinib monotherapy, representing 9092 patients and 3991 patient-years of involvement over 10 years and 32 different malignancies. In total, 1052 patients receiving sunitinib monotherapy experienced objective tumor response (15.7% of intent-to-treat population, 95% confidence interval [CI] = 15.3% to 16.0%), 98 died from drug-related toxicities (1.08%, 95% CI = 1.02% to 1.14%), and at least 1245 experienced grade 3-4 drug-related toxicities (13.7%, 95% CI = 13.3% to 14.1%). Risk/benefit worsened as the development program matured, with several instances of replicated negative studies and almost no positive trials after the first responding malignancies were discovered. CONCLUSIONS Even for a successful drug, the risk/benefit balance of trials was similar to phase I cancer trials in general. Sunitinib monotherapy development showed worsening risk/benefit, and the testing of new indications responded slowly to evidence that sunitinib monotherapy would not extend to new malignancies. Research decision-making should draw on evidence from whole research programs rather than a narrow band of studies in the same indication.
Collapse
Affiliation(s)
- Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nadine Demko
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Georgina Freeman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Amanda Hakala
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nathalie MacKinnon
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Tim Ramsay
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Spencer Hey
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Alex John London
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL).
| |
Collapse
|
40
|
Wang Z, Fu S. An overview of tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Investig Drugs 2015; 25:15-30. [PMID: 26560712 DOI: 10.1517/13543784.2016.1117071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the fifth most common cause of cancer-related deaths in women. Initial treatment with surgery and chemotherapy has improved survival significantly. However, the disease progresses or recurs in most patients. Thus, there is an urgent need to develop more effective treatment strategies. AREAS COVERED This article provides an overview of tyrosine kinase inhibitors (TKIs) for the treatment of EOC, which is based on English peer-reviewed articles on MEDLINE and related abstracts presented at major conferences. The authors highlight the data from the published clinical trials in EOC patients who were treated with TKIs or TKI-based regimens. EXPERT OPINION EOC is responsive to most chemotherapeutic drugs and/or biological agents and represents an ideal disease model for investigating novel anti-cancer agents. Numerous small-molecule TKIs targeting the VEGFR, PARP, PI3K-AKT-mTOR, MAPK, Src, PKC, Wee1 and HER1/2 signaling pathways are currently being tested in clinical trials. Research is needed for devising regimens combining TKIs with other agents in an optimal timing schedule and for identifying potential biomarkers predictive of response and survival.
Collapse
Affiliation(s)
- Zhijie Wang
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA.,b Department of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital & Beijing Institute for Cancer Research , Beijing , China
| | - Siqing Fu
- a Department of Investigational Cancer Therapeutics , The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston , TX 77030 , USA
| |
Collapse
|
41
|
Marchetti C, Palaia I, De Felice F, Musella A, Donfracesco C, Vertechy L, Romito A, Piacenti I, Musio D, Muzii L, Tombolini V, Benedetti Panici P. Tyrosine-kinases inhibitors in recurrent platinum-resistant ovarian cancer patients. Cancer Treat Rev 2015; 42:41-6. [PMID: 26559739 DOI: 10.1016/j.ctrv.2015.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
For many decades, ovarian cancer (OC) has been one of the most common gynecological cancer. Despite advances in OC diagnosis and treatment, the risk of recurrence is ever present and approximately 85% of patients will experience relapse. Recurrent OC after first-line therapy is almost always incurable. Multiple novel therapies, including tyrosine-kinases inhibitors (TKI), have shown promising results, but their role needs to be clarified. In this review we describe the rationale and the clinical evidence regarding the use of TKI for the treatment of recurrent platinum-resistant OC patients.
Collapse
Affiliation(s)
- C Marchetti
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - I Palaia
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - F De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - A Musella
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - C Donfracesco
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - L Vertechy
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - A Romito
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - I Piacenti
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - D Musio
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - L Muzii
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - V Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - P Benedetti Panici
- Department of Gynecological and Obstetrical Sciences and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
42
|
Symeonides S, Gourley C. Ovarian Cancer Molecular Stratification and Tumor Heterogeneity: A Necessity and a Challenge. Front Oncol 2015; 5:229. [PMID: 26557500 PMCID: PMC4617149 DOI: 10.3389/fonc.2015.00229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Stefan Symeonides
- Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh , UK
| | - Charlie Gourley
- Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
43
|
Mahner S, Woelber L, Mueller V, Witzel I, Prieske K, Grimm D, Keller-V Amsberg G, Trillsch F. Beyond Bevacizumab: An Outlook to New Anti-Angiogenics for the Treatment of Ovarian Cancer. Front Oncol 2015; 5:211. [PMID: 26500886 PMCID: PMC4593253 DOI: 10.3389/fonc.2015.00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/14/2015] [Indexed: 12/27/2022] Open
Abstract
In addition to the monoclonal vascular endothelial growth factor (VEGF) antibody bevacizumab, several alternative anti-angiogenic treatment strategies for ovarian cancer patients have been evaluated in clinical trials. Apart from targeting extracellular receptors by the antibody aflibercept or the peptibody trebananib, the multikinase inhibitors pazopanib, nintedanib, cediranib, sunitinib, and sorafenib were developed to interfere with VEGF receptors and multiple additional intracellular pathways. Nintedanib and pazopanib significantly improved progression-free survival in two positive phase III trials for first-line therapy. A reliable effect on overall survival could, however, not be observed for any anti-angiogenic first-line therapies so far. In terms of recurrent disease, two positive phase III trials revealed that trebananib and cediranib are effective anti-angiogenic agents for this indication. Patient selection and biomarker guided prediction of response seems to be a central aspect for future studies. Combining anti-angiogenics with other targeted therapies to possibly spare chemotherapy in certain constellations represents another very interesting future perspective for clinical trials. This short review gives an overview of current clinical trials for anti-angiogenic treatment strategies beyond bevacizumab. In this context, possible future perspectives combining anti-angiogenics with other targeted therapies and the need for specific biomarkers predicting response are elucidated.
Collapse
Affiliation(s)
- Sven Mahner
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Linn Woelber
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Volkmar Mueller
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Isabell Witzel
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Katharina Prieske
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Donata Grimm
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | | | - Fabian Trillsch
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
44
|
Marchetti C, Ledermann JA, Benedetti Panici P. An overview of early investigational therapies for chemoresistant ovarian cancer. Expert Opin Investig Drugs 2015. [DOI: 10.1517/13543784.2015.1072168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Hirte H, Lheureux S, Fleming G, Sugimoto A, Morgan R, Biagi J, Wang L, McGill S, Ivy S, Oza A. A phase 2 study of cediranib in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: A trial of the Princess Margaret, Chicago and California Phase II Consortia. Gynecol Oncol 2015; 138:55-61. [DOI: 10.1016/j.ygyno.2015.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/10/2015] [Indexed: 12/27/2022]
|
46
|
Gadducci A, Lanfredini N, Sergiampietri C. Antiangiogenic agents in gynecological cancer: State of art and perspectives of clinical research. Crit Rev Oncol Hematol 2015; 96:113-28. [PMID: 26126494 DOI: 10.1016/j.critrevonc.2015.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor [VEGF] pathway, which plays a key role in angiogenesis, may be blocked by either extracellular interference with VEGF itself (bevacizumab [BEV] or aflibercept), or intracytoplasmic inhibition of VEGF receptor (pazopanib, nintedanib, cediranid, sunitinib and sorafenib). An alternative approach is represented by trebananib, a fusion protein that prevents the interaction of angiopoietin [Ang]-1 and Ang-2 with Tie2 receptor on vascular endothelium. The combination of antiangiogenic agents, especially BEV, and chemotherapy is a rational therapeutic option for primary or recurrent ovarian carcinoma. However, it will be difficult to accept that it represents the new standard treatment, until biological characterization of ovarian carcinoma has not identified subsets of tumors with different responsiveness to BEV. Anti-angiogenesis is an interesting target also for recurrent cervical or endometrial cancer, but nowadays the use of anti-angiogenic agents in these malignancies should be reserved to patients enrolled in clinical trials.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Nora Lanfredini
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| | - Claudia Sergiampietri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
47
|
Angiogenesis in primary hyperparathyroidism. Ann Diagn Pathol 2015; 19:91-8. [DOI: 10.1016/j.anndiagpath.2015.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 01/29/2023]
|
48
|
Reck M. Nintedanib: examining the development and mechanism of action of a novel triple angiokinase inhibitor. Expert Rev Anticancer Ther 2015; 15:579-94. [PMID: 25831142 DOI: 10.1586/14737140.2015.1031218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiangiogenic agents are effective standard-of-care options in several malignancies, but are generally associated with only modest improvements in survival, as well as leading to additional toxicities. Furthermore, almost all patients develop acquired resistance to therapy, possibly due to the activation of alternative proangiogenic pathways. Here we discuss: the rationale for developing nintedanib, an agent that simultaneously inhibits signaling pathways activated by platelet-derived growth factor, FGF, as well as VEGF; how its distinctive inhibitory and pharmacokinetic profile could underlie promising efficacy and tolerability observed in Phase II trials in patients with relapsed/refractory non-small cell lung cancer, advanced ovarian cancer and metastatic colorectal cancer; the ongoing Phase III program that is assessing nintedanib in these areas of major unmet medical need; and recent progress in the development of biomarkers that may predict response to nintedanib.
Collapse
Affiliation(s)
- Martin Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
49
|
Coward JIG, Middleton K, Murphy F. New perspectives on targeted therapy in ovarian cancer. Int J Womens Health 2015; 7:189-203. [PMID: 25678824 PMCID: PMC4324539 DOI: 10.2147/ijwh.s52379] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking heterogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose) inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Jermaine IG Coward
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
- Inflammtion and Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn Middleton
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
| | - Felicity Murphy
- Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia
| |
Collapse
|
50
|
Xie Y, Hicks MJ, Kaminsky SM, Moore MAS, Crystal RG, Rafii A. AAV-mediated persistent bevacizumab therapy suppresses tumor growth of ovarian cancer. Gynecol Oncol 2014; 135:325-32. [PMID: 25108232 DOI: 10.1016/j.ygyno.2014.07.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE Anti-angiogenesis therapies such as bevacizumab, the monoclonal antibody to vascular endothelial growth factor (VEGF), have been used against ovarian cancer, but transient and low peritoneal drug levels are likely a factor in treatment failure. We hypothesized that a single administration of adeno-associated virus (AAV)-mediated intraperitoneal expression of bevacizumab would direct persistent expression and suppress growth and metastasis of ovarian cancer. METHODS AAVrh.10BevMab, a rhesus serotype 10 adeno-associated viral vector coding for bevacizumab, was evaluated for the capacity of a single intraperitoneal administration to persistently suppress peritoneal tumor growth in an intraperitoneal model of ovarian carcinomatosis with human ovarian cancer cells in nude immunodeficient mice. RESULTS The data demonstrates that AAVrh10.BevMab mediates persistent and high levels of bevacizumab in the peritoneal cavity following a single intraperitoneal administration in mice. In AAVrh10.BevMab treated A2780 human ovarian cancer-bearing mice, tumor growth was significantly suppressed (p<0.05) and the area of blood vessels in the tumor was decreased (p<0.04). Survival of mice with A2780 xenografts or SK-OV3 xenografts was greatly prolonged in the presence of AAVrh10.BevMab (p<0.001). Administration of AAVrh10.BevMab 4days after A2780-luciferase cell implantation reduced tumor growth (p<0.01) and increased mouse survival (p<0.0001). Combination of AAVrh10.BevMab with cytotoxic reagents paclitaxel or topotecan proved to be more effective in increasing survival than treatment with cytotoxic reagent alone. CONCLUSION A single administration of AAVrh10.BevMab provides sustained and high local expression of bevacizumab in the peritoneal cavity, and significantly suppresses peritoneal carcinomatosis and increases survival in an ovarian cancer murine model.
Collapse
Affiliation(s)
- Yi Xie
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Martin J Hicks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Malcolm A S Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| |
Collapse
|