1
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2024; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Moris D, Liapis I, Gupta P, Ziogas IA, Karachaliou GS, Dimitrokallis N, Nguyen B, Radkani P. An Overview for Clinicians on Intraductal Papillary Mucinous Neoplasms (IPMNs) of the Pancreas. Cancers (Basel) 2024; 16:3825. [PMID: 39594780 PMCID: PMC11593033 DOI: 10.3390/cancers16223825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Currently, there is no reliable method of discerning between low-risk and high-risk intraductal papillary mucinous neoplasms (IPMNs). Operative resection is utilized in an effort to resect those lesions with high-grade dysplasia (HGD) prior to the development of invasive disease. The current guidelines recommend resection for IPMN that involve the main pancreatic duct. Resecting lesions with HGD before their progression to invasive disease and the avoidance of resection in those patients with low-grade dysplasia is the optimal clinical scenario. Therefore, the importance of developing preoperative models able to discern HGD in IPMN patients cannot be overstated. Low-risk patients should be managed with nonsurgical treatment options (typically MRI surveillance), while high-risk patients would undergo resection, hopefully prior to the formation of invasive disease. Current research is evolving in multiple directions. First, there is an ongoing effort to identify reliable markers for predicting malignant transformation of IPMN, mainly focusing on genomic and transcriptomic data from blood, tissue, and cystic fluid. Also, multimodal models of combining biomarkers with clinical and radiographic data seem promising for providing robust and accurate answers of risk levels for IPMN patients.
Collapse
Affiliation(s)
- Dimitrios Moris
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis Liapis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Piyush Gupta
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis A. Ziogas
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Georgia-Sofia Karachaliou
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Nikolaos Dimitrokallis
- 1st Department of Surgery & Organ Transplant Unit, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Brian Nguyen
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| |
Collapse
|
3
|
Kazemi-Harikandei SZ, Karimi A, Tavangar SM. Clinical Perspectives on the Histomolecular Features of the Pancreatic Precursor Lesions: A Narrative Review. Middle East J Dig Dis 2024; 16:136-146. [PMID: 39386334 PMCID: PMC11459284 DOI: 10.34172/mejdd.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal cancer with poor prognoses. Identifying and characterizing pancreatic cystic lesions (PCLs) in the early detection and follow-up plans is thought to help detect pancreatic malignancy. Besides, the molecular features of PCLs are thought to unravel potentials for targeted therapies. We present a narrative review of the existing literature on the role of PCLs in the early detection, risk stratification, and medical management of PC. High-grade intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasia (PanIN) stage III are high-risk lesions for developing PC. These lesions often require thorough histomolecular characterization using endoscopic ultrasound (EUS), before a surgical decision is made. EUS is also useful in the risk assessment of PCLs with tentative plans-for instance, in branch-duct IPMNs (BD-IPMN)- where the final decision might change. Besides the operative decisions, recent improvements in the application of targeted therapies are expected to improve survival measures. Knowledge of molecular features has helped develop targeted therapies. In summary, the histomolecular characterization of PCLs is helpful in optimizing management plans in PC. Further improvements are still needed for the broad application of this knowledge in the clinical setting.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Benke M, Zeöld A, Kittel Á, Khamari D, Hritz I, Horváth M, Keczer B, Borka K, Szücs Á, Wiener Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci Rep 2023; 13:19820. [PMID: 37963969 PMCID: PMC10646105 DOI: 10.1038/s41598-023-47129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Extracellular vesicles (EV) carry their cargo in a membrane protected form, however, their value in early diagnostics is not well known. Although pancreatic cysts are heterogeneous, they can be clustered into the larger groups of pseudocysts (PC), and serous and mucinous pancreatic cystic neoplasms (S-PCN and M-PCN, respectively). In contrast to PCs and S-PCNs, M-PCNs may progress to malignant pancreatic cancers. Since current diagnostic tools do not meet the criteria of high sensitivity and specificity, novel methods are urgently needed to differentiate M-PCNs from other cysts. We show that cyst fluid is a rich source of EVs that are positive and negative for the EV markers CD63 and CD81, respectively. Whereas we found no difference in the EV number when comparing M-PCN with other pancreatic cysts, our EV-based biomarker identification showed that EVs from M-PCNs had a higher level of miR-200b. We also prove that not only EV-derived, but also total cyst fluid miR-200b discriminates patients with M-PCN from other pancreatic cysts with a higher sensitivity and specificity compared to other diagnostic methods, providing the possibility for clinical applications. Our results show that measuring miR-200b in cyst fluid-derived EVs or from cyst fluid may be clinically important in categorizing patients.
Collapse
Affiliation(s)
- Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Anikó Zeöld
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, and HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - István Hritz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Miklós Horváth
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary.
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Papadopoulos N, Hruban RH. Molecular Mechanisms of Cystic Neoplasia‐. THE PANCREAS 2023:630-637. [DOI: 10.1002/9781119876007.ch82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Kozłowska M, Śliwińska A. The Link between Diabetes, Pancreatic Tumors, and miRNAs-New Players for Diagnosis and Therapy? Int J Mol Sci 2023; 24:10252. [PMID: 37373398 DOI: 10.3390/ijms241210252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite significant progress in medicine, pancreatic cancer is one of the most tardily diagnosed cancer and is consequently associated with a poor prognosis and a low survival rate. The asymptomatic clinical picture and the lack of relevant diagnostic markers for the early stages of pancreatic cancer are believed to be the major constraints behind an accurate diagnosis of this disease. Furthermore, underlying mechanisms of pancreatic cancer development are still poorly recognized. It is well accepted that diabetes increases the risk of pancreatic cancer development, however the precise mechanisms are weakly investigated. Recent studies are focused on microRNAs as a causative factor of pancreatic cancer. This review aims to provide an overview of the current knowledge of pancreatic cancer and diabetes-associated microRNAs, and their potential in diagnosis and therapy. miR-96, miR-124, miR-21, and miR-10a were identified as promising biomarkers for early pancreatic cancer prediction. miR-26a, miR-101, and miR-200b carry therapeutic potential, as they not only regulate significant biological pathways, including the TGF-β and PI3K/AKT, but their re-expression contributes to the improvement of the prognosis by reducing invasiveness or chemoresistance. In diabetes, there are also changes in the expression of microRNAs, such as in miR-145, miR-29c, and miR-143. These microRNAs are involved, among others, in insulin signaling, including IRS-1 and AKT (miR-145), glucose homeostasis (hsa-miR-21), and glucose reuptake and gluconeogenesis (miR-29c). Although, changes in the expression of the same microRNAs are observed in both pancreatic cancer and diabetes, they exert different molecular effects. For example, miR-181a is upregulated in both pancreatic cancer and diabetes mellitus, but in diabetes it contributes to insulin resistance, whereas in pancreatic cancer it promotes tumor cell migration, respectively. To conclude, dysregulated microRNAs in diabetes affect crucial cellular processes that are involved in pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
7
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Phase I Trial of nab-Paclitaxel Administered Concurrently With Radiotherapy in Patients With Locally Advanced Inoperable Pancreatic Adenocarcinoma. Pancreas 2022; 51:490-495. [PMID: 35849065 DOI: 10.1097/mpa.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nab-paclitaxel has radiosensitizing antitumor efficacy in pancreatic cancer. We aimed to establish maximum tolerated dose (MTD) of nab-paclitaxel with radiotherapy in unresectable locally advanced pancreatic cancer. METHODS In a phase I dose escalation trial patients received weekly nab-paclitaxel for 6 weeks with external beam radiotherapy (EBRT). 3 + 3 design was used with nab-paclitaxel doses: 25 mg/m 2 (cohort 1), 50 mg/m 2 (cohort 2), 75 mg/m 2 (cohort 3), and 100 mg/m 2 (cohort 4). Primary endpoint was MTD. Secondary objectives were progression-free survival and overall survival. RESULTS Fourteen patients were recruited. Median age was 69 years (range, 40-86). Grade 1/2 toxicities were nausea (93%), vomiting (54%), diarrhea (57%), and fatigue (69%). There were no dose limiting toxicities (DLT) in cohorts 1 to 3. In cohort 4, DLTs of febrile neutropenia and enterocolitis were observed in patient 1. Subsequent DLT of febrile neutropenia and enterocolitis occurred in patient 5 in the expanded cohort. Following chemoradiotherapy median progression-free survival was 4.7 months (95% confidence interval, 2.5-27.5) and median overall survival was 10.8 months (95% confidence interval, 6.37-25.2). CONCLUSIONS Nab-paclitaxel and EBRT was well-tolerated at doses below 100 mg/m 2 . The MTD and recommended phase II study dose for nab-paclitaxel with EBRT is 75 mg/m 2 in this disease.
Collapse
|
9
|
Comandatore A, Immordino B, Balsano R, Capula M, Garajovà I, Ciccolini J, Giovannetti E, Morelli L. Potential Role of Exosomes in the Chemoresistance to Gemcitabine and Nab-Paclitaxel in Pancreatic Cancer. Diagnostics (Basel) 2022; 12:286. [PMID: 35204377 PMCID: PMC8871170 DOI: 10.3390/diagnostics12020286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, a growing number of studies have evaluated the role of exosomes in pancreatic ductal adenocarcinoma cancer (PDAC) demonstrating their involvement in a multitude of pathways, including the induction of chemoresistance. The aim of this review is to present an overview of the current knowledge on the role of exosomes in the resistance to gemcitabine and nab-paclitaxel, which are two of the most commonly used drugs for the treatment of PDAC patients. Exosomes are vesicular cargos that transport multiple miRNAs, mRNAs and proteins from one cell to another cell and some of these factors can influence specific determinants of gemcitabine activity, such as the nucleoside transporter hENT1, or multidrug resistance proteins involved in the resistance to paclitaxel. Additional mechanisms underlying exosome-mediated resistance include the modulation of apoptotic pathways, cellular metabolism, or the modulation of oncogenic miRNA, such as miR-21 and miR-155. The current status of studies on circulating exosomal miRNA and their possible role as biomarkers are also discussed. Finally, we integrated the preclinical data with emerging clinical evidence, showing how the study of exosomes could help to predict the resistance of individual tumors, and guide the clinicians in the selection of innovative therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Benoit Immordino
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Rita Balsano
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Mjriam Capula
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Ingrid Garajovà
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Joseph Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| |
Collapse
|
10
|
Kim HS, Shi J. Epigenetics in precision medicine of pancreatic cancer. EPIGENETICS IN PRECISION MEDICINE 2022:257-279. [DOI: 10.1016/b978-0-12-823008-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Saha B, Chhatriya B, Pramanick S, Goswami S. Bioinformatic Analysis and Integration of Transcriptome and Proteome Results Identify Key Coding and Noncoding Genes Predicting Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1056622. [PMID: 34790815 PMCID: PMC8592698 DOI: 10.1155/2021/1056622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are precursor lesions of pancreatic ductal adenocarcinoma (PDAC). IPMNs are generally associated with high risk of developing malignancy and therefore need to be diagnosed and assessed accurately, once detected. Existing diagnostic methods are inadequate, and identification of efficient biomarker capable of detecting high-risk IPMNs is necessitated. Moreover, the mechanism of development of malignancy in IPMNs is also elusive. METHODS Gene expression meta-analysis conducted using 12 low-risk IPMN and 23 high-risk IPMN tissue samples. We have also listed all the altered miRNAs and long noncoding RNAs (lncRNAs), identified their target genes, and performed pathway analysis. We further enlisted cyst fluid proteins detected to be altered in high-risk or malignant IPMNs and compared them with fraction of differentially expressed genes secreted into cyst fluid. RESULTS Our meta-analysis identified 270 upregulated and 161 downregulated genes characteristically altered in high-risk IPMNs. We further identified 61 miRNAs and 14 lncRNAs and their target genes and key pathways contributing towards understanding of the gene regulation during the progression of the disease. Most importantly, we have detected 12 genes altered significantly both in cystic lesions and cyst fluid. CONCLUSION Our study reports, for the first time, a meta-analysis identifying key changes in gene expression between low-risk and high-risk IPMNs and also explains the regulatory aspect through construction of a miRNA-lncRNA-mRNA interaction network. The 12-gene-signature could function as potential biomarker in cyst fluid for detection of IPMN with a high risk of developing malignancy.
Collapse
Affiliation(s)
- Barsha Saha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | | | - Srikanta Goswami
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
12
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
13
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
14
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2021; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient’s survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
15
|
MiR-10a in Pancreatic Juice as a Biomarker for Invasive Intraductal Papillary Mucinous Neoplasm by miRNA Sequencing. Int J Mol Sci 2021; 22:ijms22063221. [PMID: 33809988 PMCID: PMC8004614 DOI: 10.3390/ijms22063221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
New biomarkers are needed to further stratify the risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). Although microRNAs (miRNAs) are expected to be stable biomarkers, they can vary owing to a lack of definite internal controls. To identify universal biomarkers for invasive IPMN, we performed miRNA sequencing using tumor-normal paired samples. A total of 19 resected tissues and 13 pancreatic juice samples from 32 IPMN patients were analyzed for miRNA expression by next-generation sequencing with a two-step normalization of miRNA sequence data. The miRNAs involved in IPMN associated with invasive carcinoma were identified from this tissue analysis and further verified with the pancreatic juice samples. From the tumor-normal paired tissue analysis of the expression levels of 2792 miRNAs, 20 upregulated and 17 downregulated miRNAs were identified. In IPMN associated with invasive carcinoma (INV), miR-10a-5p and miR-221-3p were upregulated and miR-148a-3p was downregulated when compared with noninvasive IPMN. When these findings were further validated with pancreatic juice samples, miR-10a-5p was found to be elevated in INV (p = 0.002). Therefore, three differentially expressed miRNAs were identified in tissues with INV, and the expression of miR-10a-5p was also elevated in pancreatic juice samples with INV. MiR-10a-5p is a promising additional biomarker for invasive IPMN.
Collapse
|
16
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Schlick K, Hohla F, Hamacher F, Hackl H, Hufnagl C, Markus S, Magnes T, Gampenrieder SP, Melchardt T, Stättner S, Hauser-Kronberger C, Greil R, Rinnerthaler G. Overcoming negative predictions of microRNA expressions to gemcitabine response with FOLFIRINOX in advanced pancreatic cancer patients. Future Sci OA 2020; 7:FSO644. [PMID: 33437513 PMCID: PMC7787156 DOI: 10.2144/fsoa-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
FOLFIRINOX is superior to gemcitabine in patients with pancreatic cancer, but this regimen is associated with toxicity and biomarkers for response are warranted. MicroRNAs can mediate drug resistance and could provide predictive information. Altered expressions of several microRNAs including miR-21-5p, miR-10b-5p and miR-34a-5p have been previously linked to a worse response to gemcitabine. We investigated the influence of expression levels in tumor tissue of those three microRNAs on outcome to FOLFIRINOX. Twenty-nine patients with sufficient formalin-fixed paraffin-embedded tumor tissue were identified. There was no significant association between high and low expression groups for these three microRNA. We conclude that polychemotherapy combination can overcome intrinsic negative prognostic factors.
Collapse
Affiliation(s)
- Konstantin Schlick
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Florian Hohla
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
| | - Frank Hamacher
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Hufnagl
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Steiner Markus
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Teresa Magnes
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Simon Peter Gampenrieder
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Stättner
- Department of Surgery, Salzkammergutklinikum, Standort Vöcklabruck, Oberösterreich, Austria
- Department of Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Richard Greil
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
18
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
19
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
20
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
21
|
Use of Biomarkers and Imaging for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071965. [PMID: 32707720 PMCID: PMC7409286 DOI: 10.3390/cancers12071965] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers worldwide, and it is typically diagnosed late, with a poor prognosis. Early detection is the most important underlying factor for improving the prognosis of pancreatic cancer patients. One of the most effective strategies for detecting cancers at an early stage is screening of the general population. However, because of the low incidence of pancreatic cancer in the general population, the stratification of subjects who need to undergo further examinations by invasive and expensive modalities is important. Therefore, minimally invasive modalities involving biomarkers and imaging techniques that would facilitate the early detection of pancreatic cancer are highly needed. Multiple types of new blood biomarkers have recently been developed, including unique post-translational modifications of circulating proteins, circulating exosomes, microRNAs, and circulating tumor DNA. We previously reported that circulating apolipoprotein A2 undergoes unique processing in the bloodstream of patients with pancreatic cancer and its precancerous lesions. Additionally, we recently demonstrated a new method for measuring pancreatic proton density in the fat fraction using a fat–water magnetic resonance imaging technique that reflects pancreatic steatosis. In this review, we describe recent developments in potential biomarkers and imaging modalities for the early detection and risk stratification of pancreatic cancer, and we discuss current strategies for implementing screening programs for pancreatic cancer.
Collapse
|
22
|
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY) 2020; 12:9380-9404. [PMID: 32420903 PMCID: PMC7288910 DOI: 10.18632/aging.103214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic impact of microRNA (miRNA) expression levels in pancreatic cancer (PC) has been estimated for years, but the outcomes are controversial and heterogeneous. Therefore, we comprehensively reviewed the evidence collected on miRNA expression in PC to determine this effect. RESULTS PC patients with high miR-21 (HR=2.61, 95%CI=1.68-4.04), miR-451a (HR=2.23, 95%CI=1.23-4.04) or miR-1290 (HR=1.43, 95%CI=1.04-1.95) levels in blood had significantly poorer OS (P<0.05). Furthermore, PC patients with high miR-10b (HR=1.73, 95%CI=1.09-2.76), miR-17-5p (HR=1.91, 95%CI=1.30-2.80), miR-21 (HR=1.90, 95%CI=1.61-2.25), miR-23a (HR=2.18, 95%CI=1.52-3.13), miR-155 (HR=2.22, 95%CI=1.27-3.88), miR-203 (HR=1.65, 95%CI=1.14-2.40), miR-221 (HR=1.72, 95%CI=1.08-2.74), miR-222 levels (HR=1.72, 95%CI=1.02-2.91) or low miR-29c (HR=1.39, 95%CI=1.08-1.79), miR-126 (HR=1.55, 95%CI=1.23-1.95), miR-218 (HR=2.62, 95%CI=1.41-4.88) levels in tissues had significantly shorter OS (P<0.05). CONCLUSIONS In summary, blood miR-21, miR-451a, miR-1290 and tissue miR-10b, miR-17-5p, miR-21, miR-23a, miR-29c, miR-126, miR-155, miR-203, miR-218, miR-221, miR-222 had significant prognostic value. METHODS We searched PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews to recognize eligible studies, and 57 studies comprising 5445 PC patients and 15 miRNAs were included to evaluate the associations between miRNA expression levels and overall survival (OS) up to June 1, 2019. Summary hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the effect.
Collapse
Affiliation(s)
- Fei Zhao
- , Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chao Wei
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Meng-Ying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
23
|
Vicentini C, Calore F, Nigita G, Fadda P, Simbolo M, Sperandio N, Luchini C, Lawlor RT, Croce CM, Corbo V, Fassan M, Scarpa A. Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterol 2020; 20:137. [PMID: 32375666 PMCID: PMC7204029 DOI: 10.1186/s12876-020-01287-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic and peri-pancreatic neoplasms encompass a variety of histotypes characterized by a heterogeneous prognostic impact. miRNAs are considered efficient candidate biomarkers due to their high stability in tissues and body fluids. We applied Nanostring profiling of circulating exosomal miRNAs to distinct pancreatic lesions in order to establish a source for biomarker development. METHODS A series of 140 plasma samples obtained from patients affected by pancreatic ductal adenocarcinoma (PDAC, n = 58), pancreatic neuroendocrine tumors (PanNET, n = 42), intraductal papillary mucinous neoplasms (IPMN, n = 20), and ampulla of Vater carcinomas (AVC, n = 20) were analyzed. Comprehensive miRNA profiling was performed on plasma-derived exosomes. Relevant miRNAs were validated by qRT-PCR and in situ hybridization (ISH). RESULTS Lesion specific miRNAs were identified through multiple disease comparisons. Selected miRNAs were validated in the plasma by qRT-PCR and at tissue level by ISH. We leveraged the presence of clinical subtypes with each disease cohort to identify miRNAs that are differentially enriched in aggressive phenotypes. CONCLUSIONS This study shows that pancreatic lesions are characterized by specific exosomal-miRNA signatures. We also provide the basis for further explorations in order to better understand the relevance of these signatures in pancreatic neoplasms.
Collapse
Affiliation(s)
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | - Carlo Maria Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Vincenzo Corbo
- ARC-NET Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Matteo Fassan
- ARC-NET Research Centre, University of Verona, Verona, Italy.
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Via Aristide Gabelli 61, 35121, Padua, PD, Italy.
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
24
|
Molecular Diagnosis of Cystic Neoplasms of the Pancreas: a Review. J Gastrointest Surg 2020; 24:1201-1214. [PMID: 32128679 DOI: 10.1007/s11605-020-04537-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND The prevalence of incidental pancreatic cystic neoplasms (PCNs) has increased dramatically with advancements in cross-sectional imaging. Diagnostic imaging is limited in differentiating between benign and malignant PCNs. The aim of this review is to provide an overview of biomarkers that can be used to distinguish PCNs. METHODS A review of the literature on molecular diagnosis of cystic neoplasms of the pancreas was performed. RESULTS Pancreatic cysts can be categorized into inflammatory and non-inflammatory lesions. Inflammatory cysts include pancreatic pseudocysts. Noninflammatory lesions include both mucinous and non-mucinous lesions. Mucinous lesions include intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm. Non-mucinous lesions include serous cystadenoma and solid-pseudopapillary tumor of the pancreas. Imaging, cyst aspiration, and histologic findings, as well as carcinoembryonic antigen and amylase are commonly used to distinguish between cyst types. However, molecular techniques to detect differences in genetic mutations, protein expression, glycoproteomics, and metabolomic profiling are important developments in distinguishing between cyst types. DISCUSSION Nomograms incorporating common clinical, laboratory, and imaging findings have been developed in a better effort to predict malignant IPMN. The incorporation of top molecular biomarker candidates to nomograms may improve the predictive ability of current models to more accurately diagnose malignant PCNs.
Collapse
|
25
|
Garajová I, Balsano R, Tommasi C, Giovannetti E. Noncoding Rnas Emerging as Novel Biomarkers in Pancreatic Cancer. Curr Pharm Des 2019; 24:4601-4604. [PMID: 30659532 DOI: 10.2174/1381612825666190119125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs play important regulatory roles in diverse biological processes and their misregulation
might lead to different diseases, including cancer. Previous studies have reported the evolving role of miRNAs
as new potential biomarkers in cancer diagnosis, prognosis, as well as predictive biomarkers of chemotherapy
response or therapeutic targets. In this review, we outline the involvement of noncoding RNA in pancreatic
cancer, providing an overview of known miRNAs in its diagnosis, prognosis and chemoresistance. In addition,
we discuss the influence of non-coding RNAs in the metastatic behavior of pancreatic cancer, as well as the role
of diet in epigenetic regulation of non-coding RNAs in cancer, which can, in turn, lead the development of new
prevention’s techniques or novel targets for cancer therapy.
Collapse
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Chiara Tommasi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Hasan S, Jacob R, Manne U, Paluri R. Advances in pancreatic cancer biomarkers. Oncol Rev 2019; 13:410. [PMID: 31044028 PMCID: PMC6478006 DOI: 10.4081/oncol.2019.410] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Biomarkers play an essential role in the management of patients with invasive cancers. Pancreatic ductal adenocarcinoma (PDC) associated with poor prognosis due to advanced presentation and limited therapeutic options. This is further complicated by absence of validated screening and predictive biomarkers for early diagnosis and precision treatments respectively. There is emerging data on biomarkers in pancreatic cancer in past two decades. So far, the CA 19-9 remains the only approved biomarker for diagnosis and response assessment but limited by low sensitivity and specificity. In this article, we aim to review current and future biomarkers that has potential serve as critical tools for early diagnostic, predictive and prognostic indications in pancreatic cancer.
Collapse
Affiliation(s)
- Syed Hasan
- University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
27
|
Mungamuri SK. Targeting the epigenome as a therapeutic strategy for pancreatic tumors. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:211-244. [DOI: 10.1016/b978-0-12-819457-7.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
28
|
MicroRNAs in pancreatic cancer diagnosis and therapy. Cent Eur J Immunol 2018; 43:314-324. [PMID: 30588176 PMCID: PMC6305615 DOI: 10.5114/ceji.2018.80051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer remains a disease with very poor prognosis (only 5-6% of patients are still alive after five years). Attempts to improve the results of treatment of pancreatic cancer focus on a better understanding of the pathogenesis, and non-invasive diagnostic methods (genetic testing from peripheral blood), which would create the possibility of early diagnosis and early surgical treatment before the onset of metastasis. New hopes for the improvement of early diagnosis and treatment of pancreatic ductal adenocarcinoma (PDAC) are associated with genetic testing of microRNA expression changes. A large body of evidence has revealed that microRNAs are aberrantly expressed in the serum and in cancer tissues and elicit oncogenic or tumour-suppressive functions. Selected microRNAs can distinguish pancreatic ductal adenocarcinoma from non-cancerous lesions of the pancreas. This review focuses on the involvement of microRNAs in the early diagnosis of pancreatic cancer. Research results related to the development of a novel therapeutic strategy based on the modulation of microRNA expressions for a better outcome in patients with pancreatic cancer are also presented.
Collapse
|
29
|
Intraductal Papillary Mucinous Neoplasms of the Pancreas: Current Understanding and Future Directions for Stratification of Malignancy Risk. Pancreas 2018; 47:272-279. [PMID: 29424809 PMCID: PMC5808987 DOI: 10.1097/mpa.0000000000000999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of intraductal papillary mucinous neoplasms (IPMNs) has been increasing over the past decade, mainly owing to increased awareness and the increased use of cross-sectional imaging. The Sendai and Fukuoka consensus guidelines provide us with clinical management guidelines and algorithms; however, the clinical management of IPMNs continues to be challenging. Our incomplete understanding of the natural history of the disease, and the events and pathways that permit progression to adenocarcinoma, result in difficulties predicting which tumors are high risk and will progress to invasive disease. In this review, we summarize the current management guidelines and describe ongoing efforts to more clearly stratify IPMNs by risk of malignancy and identify IPMNs with malignant potential or ongoing malignant transformation.
Collapse
|
30
|
Ren L, Yu Y. The role of miRNAs in the diagnosis, chemoresistance, and prognosis of pancreatic ductal adenocarcinoma. Ther Clin Risk Manag 2018; 14:179-187. [PMID: 29416345 PMCID: PMC5790163 DOI: 10.2147/tcrm.s154226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a very challenging malignancy with late presentation, metastatic potential, chemoresistance, and poor prognosis. Therefore, there is an urgent need for novel diagnostic and prognostic biomarkers. miRNAs are small noncoding RNAs that regulate the expression of multitude number of genes. Aberrant expression of miRNAs has been linked to the development of various malignancies, including PDAC. A series of miRNAs have been defined as holding promise for early diagnostics, as indicators of therapy resistance, and even as markers for prognosis in PDAC patients. In this review, we summarize the current knowledge on the role of miRNAs in diagnosis, chemoresistance, and prognosis in PDAC patients.
Collapse
Affiliation(s)
- Le Ren
- Department of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yue Yu
- Department of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Can we better predict the biologic behavior of incidental IPMN? A comprehensive analysis of molecular diagnostics and biomarkers in intraductal papillary mucinous neoplasms of the pancreas. Langenbecks Arch Surg 2017; 403:151-194. [DOI: 10.1007/s00423-017-1644-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
|
32
|
Du C, Chai NL, Linghu EQ, Li HK, Sun YF, Xu W, Wang XD, Tang P, Yang J. Incidents and adverse events of endoscopic ultrasound-guided fine-needle aspiration for pancreatic cystic lesions. World J Gastroenterol 2017; 23:5610-5618. [PMID: 28852320 PMCID: PMC5558124 DOI: 10.3748/wjg.v23.i30.5610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the diagnostic value and safety mainly regarding incidents of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for pancreatic cystic lesions (PCLs).
METHODS A total of 150 consecutive patients with suspected PCLs were prospectively enrolled from April 2015 to November 2016. We finally enrolled 140 patients undergoing EUS-FNA. We compared the diagnostic accuracy of EUS-FNA and pathological diagnosis, which is regarded as the gold standard, for PCLs. Patients undergoing EUS-FNA at least 1 wk preoperatively were monitored for incidents and adverse events to evaluate its safety.
RESULTS There were 88 (62.9%) women and 52 (37.1%) men among 140 patients, with a mean age of 50.1 (± 15.4) years. There were 67 cysts located in the head/uncinate of the pancreas and 67 in the body/tail, and 6 patients had at least 1 cyst in the pancreas. There were 75 patients undergoing surgery and 55 undergoing EUS-FNA with interval at least 1 wk before other operations, with 3 patients undergoing the procedure twice. The accuracy of EUS-FNA in differentiating benign and malignant lesions was 97.3% (73/75), while the accuracy of characterizing PCL subtype was 84.0% (63/75). The incident rate was 37.9% (22/58), whereas only 1 AE was observed in 58 cases.
CONCLUSION EUS-FNA is effective and safe for diagnosis of PCLs, however procedure-related incidents are common. Caution should be taken in patients undergoing EUS-FNA.
Collapse
|
33
|
Prostaglandin E 2: A Pancreatic Fluid Biomarker of Intraductal Papillary Mucinous Neoplasm Dysplasia. J Am Coll Surg 2017; 225:481-487. [PMID: 28739154 DOI: 10.1016/j.jamcollsurg.2017.07.521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND With the increased frequency of diagnostic imaging, pancreatic cysts are now detected in >3% of American adults. Most of these are intraductal papillary mucinous neoplasms (IPMNs) with well-established but variable malignant potential. A biomarker that predicts malignant potential or dysplastic grade would help determine which IPMNs require removal and which can be observed safely. We previously reported that pancreatic fluid prostaglandin E2 (PGE2) levels might have promise as a predictor of IPMN dysplasia and we seek to validate those results in the current study. STUDY DESIGN Pancreatic cyst/duct fluid was prospectively collected from 100 patients with IPMN undergoing pancreatic resection. Surgical pathology revealed 47 low-/moderate-grade, 34 high-grade, and 20 invasive IPMNs. The PGE2 levels were assessed by ELISA and correlated with IPMN dysplasia grade, demographics, clinical radiologic/pathologic variables, acute/chronic pancreatitis, and NSAID use. RESULTS Mean pancreatic cyst fluid PGE2 levels in high-grade and invasive IPMNs were significantly higher than low-/moderate-grade IPMNs (3.5 and 4.4 pg/μL, respectively, vs 1.2 pg/μL; p < 0.0016). At a threshold of 1.1 pg/μL, PGE2 was 63% sensitive, 79% specific, and 71% accurate for detection of high-grade/invasive IPMNs. When tested in the subset of IPMN patients with preoperative pancreatic cyst fluid CEA >192 ng/mL, PGE2 at a threshold of 0.5 pg/μL demonstrated 78% sensitivity, 100% specificity, and 86% accuracy for detection of high-grade/invasive IPMN. CONCLUSIONS Our results validate pancreatic cyst fluid PGE2 as an indicator of IPMN dysplasia, especially in select patients with preoperative pancreatic cyst fluid CEA >192 ng/mL. The inclusion of PGE2/CEA in a diagnostic biomarker panel can facilitate more optimal treatment stratification of IPMN patients.
Collapse
|
34
|
MicroRNAs for Detection of Pancreatic Neoplasia: Biomarker Discovery by Next-generation Sequencing and Validation in 2 Independent Cohorts. Ann Surg 2017; 265:1226-1234. [PMID: 27232245 PMCID: PMC5434964 DOI: 10.1097/sla.0000000000001809] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text Objective: The aim of our study was to analyze the miRNome of pancreatic ductal adenocarcinoma (PDAC) and its preneoplastic lesion intraductal papillary mucinous neoplasm (IPMN), to find new microRNA (miRNA)-based biomarkers for early detection of pancreatic neoplasia. Objective: Effective early detection methods for PDAC are needed. miRNAs are good biomarker candidates. Methods: Pancreatic tissues (n = 165) were obtained from patients with PDAC, IPMN, or from control individuals (C), from Hospital Clínic of Barcelona. Biomarker discovery was done using next-generation sequencing in a discovery set of 18 surgical samples (11 PDAC, 4 IPMN, 3 C). MiRNA validation was carried out by quantitative reverse transcriptase PCR in 2 different set of samples. Set 1—52 surgical samples (24 PDAC, 7 IPMN, 6 chronic pancreatitis, 15 C), and set 2—95 endoscopic ultrasound-guided fine-needle aspirations (60 PDAC, 9 IPMN, 26 C). Results: In all, 607 and 396 miRNAs were significantly deregulated in PDAC and IPMN versus C. Of them, 40 miRNAs commonly overexpressed in both PDAC and IPMN were selected for further validation. Among them, significant up-regulation of 31 and 30 miRNAs was confirmed by quantitative reverse transcriptase PCR in samples from set 1 and set 2, respectively. Conclusions: miRNome analysis shows that PDAC and IPMN have differential miRNA profiles with respect to C, with a large number of deregulated miRNAs shared by both neoplastic lesions. Indeed, we have identified and validated 30 miRNAs whose expression is significantly increased in PDAC and IPMN lesions. The feasibility of detecting these miRNAs in endoscopic ultrasound-guided fine-needle aspiration samples makes them good biomarker candidates for early detection of pancreatic cancer.
Collapse
|
35
|
Abstract
With increased utilization and ongoing advancements in cross-sectional abdominal imaging, the identification of a pancreatic cyst has become a frequent finding. While many pancreatic cysts are associated with a benign clinical course, others may transform into pancreatic ductal adenocarcinoma. However, distinguishing a benign from a malignant pancreatic cyst or pancreatic cyst with malignant potential on the basis of standard clinical findings, imaging parameters and ancillary studies can be challenging. Hence, a significant interest within the past decade has been the identification of novel biomarkers to accurately classify and prognosticate a pancreatic cyst. Within this review, we discuss novel DNA, miRNA, protein and metabolite biomarkers, and their relevance in clinical practice. In addition, we focus on future areas of research that have the potential to change pancreatic cyst management.
Collapse
|
36
|
Loosen SH, Neumann UP, Trautwein C, Roderburg C, Luedde T. Current and future biomarkers for pancreatic adenocarcinoma. Tumour Biol 2017; 39:1010428317692231. [DOI: 10.1177/1010428317692231] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sven H Loosen
- Department of Gastroenterology, Digestive Diseases and Intensive Care Medicine (Department of Medicine III), Division of GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Department of Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Gastroenterology, Digestive Diseases and Intensive Care Medicine (Department of Medicine III), Division of GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Digestive Diseases and Intensive Care Medicine (Department of Medicine III), Division of GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Digestive Diseases and Intensive Care Medicine (Department of Medicine III), Division of GI Oncology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
37
|
MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. Oncotarget 2017; 8:58765-58770. [PMID: 28938594 PMCID: PMC5601690 DOI: 10.18632/oncotarget.17679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are deadly exocrine mucinous tumors. Currently the molecular features and diagnostic markers of IPMNs are not well understood. In this study, we performed microRNA (miRNA) profiling assays to study the potential roles of miRNAs in IPMNs using 78 cases of IPMN patients and controls. When comparing the miRNA expression between IPMN patient samples and controls, we found that miR-210, miR-223, miR-221, miR-155 and miR-187 were differentially expressed in normal pancreas and IPMNs. We further studied the miRNA expression profiles in different pancreatic diseases and identified miRNA features that are associated with Chronic pancreatitis (CP), IPMN, and Pancreatic ductal adenocarcinoma (PDAC). Therefore, these miRNAs might serve as new risk biomarkers of IPMN and could be useful for future targeted therapies.
Collapse
|
38
|
Negoi I, Hostiuc S, Sartelli M, Negoi RI, Beuran M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer - A systematic review and meta-analysis. Am J Surg 2017; 214:515-524. [PMID: 28477839 DOI: 10.1016/j.amjsurg.2017.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to summarize the current knowledge regarding microRNA-21 and to evaluate its prognostic impact in patients with pancreatic cancer. METHODS We conducted an electronic literature search to identify all published studies in PubMed/MEDLINE, Scopus and Google Scholar databases from 2000 until August 2016. RESULTS A total of 17 studies involving 1471 patients met the inclusion criteria for the quantitative synthesis. The microRNA-21 upregulation was significantly associated with poorer overall survival, disease-free survival, and progression-free survival. The subgroup analysis revealed that microRNA-21 overexpression has a significant higher prognostic value for patients who receive adjuvant chemotherapy. Increased microRNA-21 was associated with a statistically significant higher rate of metastatic lymph nodes and poorly differentiated tumors. CONCLUSIONS MicroRNA-21 upregulation in pancreatic cancer is associated with a significantly poorer overall survival, disease-free survival, and progression-free survival. MicroRNA-21 may be a useful prognostic biomarker, allowing stratification for chemotherapy administration, and being a component of precision medicine in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ionut Negoi
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania.
| | - Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of Legal Medicine and Bioethics, National Institute of Legal Medicine Mina Minovici, Romania
| | | | | | - Mircea Beuran
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania
| |
Collapse
|
39
|
Rovithi M, Avan A, Funel N, Leon LG, Gomez VE, Wurdinger T, Griffioen AW, Verheul HMW, Giovannetti E. Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Sci Rep 2017; 7:44686. [PMID: 28304379 PMCID: PMC5356332 DOI: 10.1038/srep44686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to develop chick-embryo chorioallantoic membrane (CAM) bioluminescent tumor models employing low passage cell cultures obtained from primary pancreatic ductal adenocarcinoma (PDAC) cells. Primary PDAC cells transduced with lentivirus expressing Firefly-luciferase (Fluc) were established and inoculated onto the CAM membrane, with >80% engraftment. Fluc signal reliably correlated with tumor growth. Tumor features were evaluated by immunohistochemistry and genetic analyses, including analysis of mutations and mRNA expression of PDAC pivotal genes, as well as microRNA (miRNA) profiling. These studies showed that CAM tumors had histopathological and genetic characteristic comparable to the original tumors. We subsequently tested the modulation of key miRNAs and the activity of gemcitabine and crizotinib on CAM tumors, showing that combination treatment resulted in 63% inhibition of tumor growth as compared to control (p < 0.01). These results were associated with reduced expression of miR-21 and increased expression of miR-155. Our study provides the first evidence that transduced primary PDAC cells can form tumors on the CAM, retaining several histopathological and (epi)genetic characteristics of original tumors. Moreover, our results support the use of these models for drug testing, providing insights on molecular mechanisms underlying antitumor activity of new drugs/combinations.
Collapse
Affiliation(s)
- Maria Rovithi
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Internal Medicine, Agios Nikolaos General Hospital, Agios Nikolaos, Crete, Greece
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Leticia G. Leon
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Valentina E. Gomez
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, US
| | - Arjan W. Griffioen
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M. W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Chang X, Yu C, Li J, Yu S, Chen J. hsa-miR-96 and hsa-miR-217 Expression Down-Regulates with Increasing Dysplasia in Pancreatic Intraepithelial Neoplasias and Intraductal Papillary Mucinous Neoplasms. Int J Med Sci 2017; 14:412-418. [PMID: 28539816 PMCID: PMC5441032 DOI: 10.7150/ijms.18641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
AIM: To compare the clinicopathological features of pancreatic intraepithelial neoplasias (PanINs) and intraductal papillary mucinous neoplasms (IPMNs), and to investigate the role of hsa-miR-96 and hsa-miR-217 in these two lesions. Methods: Formalin-fixed paraffin-embedded pancreatic specimens were selected in this study, including 58 cases of pancreatic intraepithelial neoplasias (PanINs), 45 cases of pancreatic ductal adenocarcinomas (PDAs), and 57 cases of intraductal papillary mucinous neoplasms (IPMNs). MiRNAs hsa-miR-96 and hsa-miR-217 were detected using locked nucleic acid in situ hybridization (LNA-ISH) with the NBT/BCIP staining system. The differences in miRNA expression among sample sets were analyzed with the Chi-squared test. Results: PanIN-PDAs were inclined to present with higher rate of invasion (p=0.033), lymph node metastasis (p=0.0004) and poorer differentiation (p<0.001). Of the 45 PDAs, only 2 cases were within AJCC Ⅰstage, while there were 11 cases of IPMN associated carcinomas (p=0.0018). In PanIN-1, PanIN-2 and PanIN-3, the expression of hsa-miR-96 was 91.3% (22/23), 78.6%(12/17) and 22.2%(4/18) respectively, while the expression of hsa-miR-217 was 95.7%(22/23) , 70.6% (12/17) and 27.8% (5/18). In IPMN with low-grade, intermediate-grade, high-grade dysplasia, associated carcinoma, the expression of hsa-miR-96 was 67%(9/13), 64%(7/11), 43%(3/7) and 27%(7/26) respectively, while the expression of hsa-miR-217 was 77%(10/13), 64%(7/11), 29%(2/7) and 38%(10/26). The expression of hsa-miR-96 and hsa-miR-217 in PanIN-1 lesions was not significantly different from that in the normal pancreatic ductal epithelium. However, their expression in PanIN-2/3 lesions was significantly different from that in normal pancreatic ductal epithelium (P<0.01). No difference was observed between PanIN derived adenocarcinomas and IPMN-associated carcinomas. Conclusion: IPMN associated carcinomas were in a statistically earlier stage than PanIN- PDAs at the time of operation. Abnormal expression of hsa-miR-96 and of hsa-miR-217 was observed in premalignant lesions (PanINs and IPMNs) of pancreatic carcinoma and down-regulated with increasing grades of PanINs and IPMNs. These microRNAs may serve as potentially early biomarker and act as tumor suppressor genes.
Collapse
Affiliation(s)
- XiaoYan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
| | - ChunKai Yu
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100730, China
| |
Collapse
|
41
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
42
|
Previdi MC, Carotenuto P, Zito D, Pandolfo R, Braconi C. Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol 2016; 13:443-453. [PMID: 27841659 PMCID: PMC5253462 DOI: 10.2217/fon-2016-0253] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer of the digestive system, which is becoming a serious health problem worldwide. Overall survival for patients with pancreatic cancer is poor, mainly due to a lack of biomarkers to enable early diagnosis and a lack of prognostic markers that can inform decision-making, facilitating personalized treatment and an optimal clinical outcome. ncRNAs play an important role in pancreatic carcinogenesis. Here we review the literature on the role of ncRNAs as biomarkers in pancreatic cancer. We focus on the significance of ncRNAs as markers for early diagnosis, as prognostic biomarkers able to inform clinical management and as targets for novel therapeutics for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Maria C Previdi
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Pietro Carotenuto
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Domenico Zito
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Rosantony Pandolfo
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK.,The Royal Marsden NHS Trust London & Surrey, Downs Rd, Sutton, SM2 5NG, UK
| |
Collapse
|
43
|
Garajová I, Le Large TYS, Giovannetti E, Kazemier G, Biasco G, Peters GJ. The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis. Methods Mol Biol 2016; 1395:163-87. [PMID: 26910074 DOI: 10.1007/978-1-4939-3347-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer death and has the worst prognosis of any major malignancy, with less than 5 % of patients alive 5-years after diagnosis. The therapeutic options for metastatic PDAC have changed in the past few years from single agent gemcitabine treatment to combination regimens. Nowadays, FOLFIRINOX or gemcitabine with nab-paclitaxel are new standard combinations in frontline metastatic setting in PDAC patients with good performance status. MicroRNAs (miRNA) are small, noncoding RNA molecules affecting important cellular processes such as inhibition of apoptosis, cell proliferation, epithelial-to-mesenchymal transition (EMT), metastases, and resistance to common cytotoxic and anti-signaling therapy in PDAC. A functional association between miRNAs and chemoresistance has been described for several common therapies. Therefore, in this review, we summarize the current knowledge on the role of miRNAs in the resistance to current anticancer treatment used for patients affected by metastatic PDAC.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Tessa Y S Le Large
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| |
Collapse
|
44
|
Huang J, Liu J, Chen-Xiao K, Zhang X, Lee WNP, Go VLW, Xiao GG. Advance in microRNA as a potential biomarker for early detection of pancreatic cancer. Biomark Res 2016; 4:20. [PMID: 27795830 PMCID: PMC5075408 DOI: 10.1186/s40364-016-0074-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is characterized as a disease with low survival and high mortality because of no effective diagnostic and therapeutic strategies available in clinic. Conventional clinical diagnostic methods including serum markers and radiological imaging (CT, MRI, EUS, etc.) often fail to detect precancerous or early stage lesions. Development of effective biomarkers is unmet for reduction of mortality of pancreatic cancer. MicroRNAs (miRNAs) are a group of small non-protein-coding RNAs playing roles in regulation of cell physiology including tumorigenesis, apoptotic escape, proliferation, invasion, epithelial-mesenchymal transition (EMT), metastasis and chemoresistance. Various altered signaling pathways involving in molecular pathogenesis of pancreatic cancer are mediated by miRNAs as a role of either oncogenes or tumor suppressors. Among biomarkers developed including protein, metabolites, DNA, RNA, epigenetic mutation, miRNAs are superior because of its unique chemical property. Recent study suggests that miRNAs may be promising biomarkers used for early detection of pancreatic cancer. This review will update the progression made in early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Jing Huang
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Jianzhou Liu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Kevin Chen-Xiao
- Harbor-University of California Los Angeles Research and Education Institute, UCLA School of Medicine, Torrance, CA 90502 USA
| | - Xuemei Zhang
- Harbor-University of California Los Angeles Research and Education Institute, UCLA School of Medicine, Torrance, CA 90502 USA
| | - W N Paul Lee
- Harbor-University of California Los Angeles Research and Education Institute, UCLA School of Medicine, Torrance, CA 90502 USA
| | - Vay Liang W Go
- Harbor-University of California Los Angeles Research and Education Institute, UCLA School of Medicine, Torrance, CA 90502 USA
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024 China ; Harbor-University of California Los Angeles Research and Education Institute, UCLA School of Medicine, Torrance, CA 90502 USA ; Genomics and Functional Proteomics Laboratories, Creighton University Medical Center, Omaha, NE 68131 USA
| |
Collapse
|
45
|
Caparello C, Meijer LL, Garajova I, Falcone A, Le Large TY, Funel N, Kazemier G, Peters GJ, Vasile E, Giovannetti E. FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic cancer. World J Gastroenterol 2016; 22:6987-7005. [PMID: 27610011 PMCID: PMC4988311 DOI: 10.3748/wjg.v22.i31.6987] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely aggressive disease; although progress has been made in the last few years, the prognosis of these patients remains dismal. FOLFIRINOX is now considered a standard treatment in first-line setting, since it demonstrated an improved overall and progression-free survival vs gemcitabine alone. However, the enthusiasm over the benefit of this three-drug regimen is tempered by the associated increased toxicity profile, and many efforts have been made to improve the feasibility of this schedule. After a more recent phase III trial showing an improved outcome over gemcitabine, the combination of gemcitabine/nab-paclitaxel emerged as another standard first-line treatment. However, this treatment is also associated with more side effects. In addition, despite initial promising data on the predictive role of SPARC levels, recent studies showed that these levels are not associated with nab-paclitaxel efficacy. The choice to use this treatment over FOLFIRINOX is therefore a topic of debate, also because no validated biomarkers to guide FOLFIRINOX treatment are available. In the era of actionable mutations and target agents it would be desirable to identify molecular factors or biomarkers to predict response to therapy in order to maximize the efficacy of treatment and avoid useless toxic effects for non-responding patients. However, until today the milestone of treatment for pancreatic cancer remains chemotherapy combinations, without predictive or monitoring tools existing to optimize therapy. This review analyzes the state-of-the-art treatments, promises and limitations of targeted therapies, ongoing trials and future perspectives, including potential role of microRNAs as predictive biomarkers.
Collapse
|
46
|
Permuth-Wey J, Chen DT, Fulp WJ, Yoder SJ, Zhang Y, Georgeades C, Husain K, Centeno BA, Magliocco AM, Coppola D, Malafa M. Plasma MicroRNAs as Novel Biomarkers for Patients with Intraductal Papillary Mucinous Neoplasms of the Pancreas. Cancer Prev Res (Phila) 2016; 8:826-34. [PMID: 26314797 DOI: 10.1158/1940-6207.capr-15-0094] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide, partly because methods are lacking to detect disease at an early, operable stage. Noninvasive PDAC precursors called intraductal papillary mucinous neoplasms (IPMN) exist, and strategies are needed to aid in their proper diagnosis and management. Data support the importance of miRNAs in the progression of IPMNs to malignancy, and we hypothesized that miRNAs may be shed from IPMN tissues and detected in blood. Our primary goals were to measure the abundance of miRNAs in archived preoperative plasma from individuals with pathologically confirmed IPMNs and healthy controls and discover plasma miRNAs that distinguish between IPMN patients and controls and between "malignant" and "benign" IPMNs. Using novel nCounter technology to evaluate 800 miRNAs, we showed that a 30-miRNA signature distinguished 42 IPMN cases from 24 controls [area underneath the curve (AUC) = 74.4; 95% confidence interval (CI), 62.3-86.5, P = 0.002]. The signature contained novel miRNAs and miRNAs previously implicated in pancreatic carcinogenesis that had 2- to 4-fold higher expression in cases than controls. We also generated a 5-miRNA signature that discriminated between 21 malignant (high-grade dysplasia and invasive carcinoma) and 21 benign (low- and moderate-grade dysplasia) IPMNs (AUC = 73.2; 95% CI, 57.6-73.2, P = 0.005), and showed that paired plasma and tissue samples from patients with IPMNs can have distinct miRNA expression profiles. This study suggests feasibility of using new cost-effective technology to develop a miRNA-based blood test to aid in the preoperative identification of malignant IPMNs that warrant resection while sparing individuals with benign IPMNs the morbidity associated with overtreatment.
Collapse
Affiliation(s)
- Jennifer Permuth-Wey
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Dung-Tsa Chen
- Departments of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - William J Fulp
- Departments of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sean J Yoder
- Department of Molecular Genomics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yonghong Zhang
- Departments of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christina Georgeades
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida. Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Kazim Husain
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Barbara Ann Centeno
- Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anthony M Magliocco
- Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Domenico Coppola
- Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mokenge Malafa
- Gastrointestinal Surgical Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
47
|
Frampton AE, Krell J, Prado MM, Gall TM, Abbassi-Ghadi N, Del Vecchio Blanco G, Funel N, Giovannetti E, Castellano L, Basyouny M, Habib NA, Kaltsidis H, Vlavianos P, Stebbing J, Jiao LR. Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies. Oncotarget 2016; 7:28556-69. [PMID: 27086919 PMCID: PMC5053745 DOI: 10.18632/oncotarget.8699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/22/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific. RESULTS Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly. METHODS Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples. CONCLUSIONS We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery.
Collapse
Affiliation(s)
- Adam E. Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Mireia Mato Prado
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Tamara M.H. Gall
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Nima Abbassi-Ghadi
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College, St. Mary's Hospital, London, UK
| | | | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Leandro Castellano
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Mohamed Basyouny
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Nagy A. Habib
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Harry Kaltsidis
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Panagiotis Vlavianos
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Long R. Jiao
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
48
|
MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Lett 2016; 373:130-137. [PMID: 26828016 DOI: 10.1016/j.canlet.2016.01.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/25/2023]
|
49
|
Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J Gastrointest Oncol 2016; 8:18-29. [PMID: 26798434 PMCID: PMC4714143 DOI: 10.4251/wjgo.v8.i1.18] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 4th deadliest cancer in the United States, due to its aggressive nature, late detection, and resistance to chemotherapy. The majority of PDAC develops from 3 precursor lesions, pancreatic intraepithelial lesions (PanIN), intraductual papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm. Early detection and surgical resection can increase PDAC 5-year survival rate from 6% for Stage IV to 50% for Stage I. To date, there are no reliable biomarkers that can detect PDAC. MicroRNAs (miRNA) are small noncoding RNAs (18-25 nucleotides) that regulate gene expression by affecting translation of messenger RNA (mRNA). A large body of evidence suggests that miRNAs are dysregulated in various types of cancers. MiRNA has been profiled as a potential biomarker in pancreatic tumor tissue, blood, cyst fluid, stool, and saliva. Four miRNA biomarkers (miR-21, miR-155, miR-196, and miR-210) have been consistently dysregulated in PDAC. MiR-21, miR-155, and miR-196 have also been dysregulated in IPMN and PanIN lesions suggesting their use as early biomarkers of this disease. In this review, we explore current knowledge of miRNA sampling, miRNA dysregulation in PDAC and its precursor lesions, and advances that have been made in using miRNA as a biomarker for PDAC and its precursor lesions.
Collapse
|
50
|
Alemar B, Gregório C, Ashton-Prolla P. miRNAs As Diagnostic and Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions: A Review. Biomark Insights 2015; 10:113-24. [PMID: 26688661 PMCID: PMC4677802 DOI: 10.4137/bmi.s27679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/30/2015] [Accepted: 09/06/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a rare but lethal tumor, is difficult to diagnose without performing an invasive procedure. miRNAs are known to be deregulated in PDAC patients, and recent studies have shown that they can be used as diagnostic and prognostic of the disease. The detection of miRNAs in samples acquired through minimally or noninvasive procedures, such as serum, plasma, and saliva, can have a positive impact on the clinical management of these patients. This article is a comprehensive review of the major studies that have evaluated the expression of miRNAs as biomarkers in pancreatic cancer and its premalignant lesions.
Collapse
Affiliation(s)
- Bárbara Alemar
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleandra Gregório
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|