1
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Wang Z, Sun P, Li Z, Xiao S. Clinical Advances and Future Directions of Oncolytic Virotherapy for Head and Neck Cancer. Cancers (Basel) 2023; 15:5291. [PMID: 37958464 PMCID: PMC10650136 DOI: 10.3390/cancers15215291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Oncolytic viruses (OVs), without harming normal tissues, selectively infect and replicate within tumor cells, to release immune molecules and tumor antigens, achieving immune-mediated destruction of tumors and making them one of the most promising immunotherapies for cancer. Many clinical studies have demonstrated that OVs can provide clinical benefits for patients with different types of tumors, at various stages, including metastatic and previously untreatable cases. When OVs are used in combination with chemotherapy, radiotherapy, immunotherapy, and other treatments, they can synergistically enhance the therapeutic effects. The concept of oncolytic virotherapy (OVT) was proposed in the early 20th century. With advancements in genetic engineering, genetically modified viruses can further enhance the efficacy of cancer immunotherapy. In recent years, global research on OV treatment of malignant tumors has increased dramatically. This article comprehensively reviews the findings from relevant research and clinical trials, providing an overview of the development of OVT and its application in the clinical treatment of head and neck cancer. The aim is to offer insights for future clinical and fundamental research on OVT.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou 325000, China
| | - Peng Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Shaowen Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
3
|
Hao P, Zhang C, Ma H, Wang R. Enhanced tumor inhibiting effect of 131I-BDI-1-based radioimmunotherapy and cytosine deaminase gene therapy modulated by a radio-sensitive promoter in nude mice bearing bladder cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:85-90. [PMID: 36418230 PMCID: PMC9855308 DOI: 10.1093/jrr/rrac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Radioimmunotherapy (RIT) has great potential in cancer therapy. However, its efficacy in numerous tumors is restricted due to myelotoxicity, thereby limiting the dose of radionuclide. To increase tumor radiosensitivity, we incorporated the recombinant lentivirus into the EJ cells (bladder cancer [BC] cells), and examined the combined anti-tumor effects of RIT with 131I-BDI-1(131I-monoclonal antibody against human BC-1) and gene therapy (GT). The recombinant lentivirus was constructed and packed. The animal xenograft model was built and when the tumor reached about 0.5 cm in diameter, the mice were randomly separated into four groups: (1) RIT + GT: the xenografts were continuously incorporated with the recombinant lentivirus for two days. And 7.4 MBq 131I-BDI-1 was IV-injected, and 10 mg prodrug 5-fluorocytosine (FC) was IV-injected for 7 days, (2) RIT: same dose of 131I-BDI-1 as the previous group mice, (3) GT: same as the first group, except no 131I-BDI-1, and (4) Untreated. Compute tumor volumes in all groups. After 28 days the mice were euthanized and the tumors were extracted and weighed, and the inhibition rate was computed. The RIT + GT mice, followed by the RIT mice, exhibited markedly slower tumor growth, compared to the control mice. The tumor size was comparable between the GT and control mice. The tumor inhibition rates after 28 days of incubation were 42.85 ± 0.23%, 27.92 ± 0.21% and 0.57 ± 0.11% for the four groups, respectively. In conclusion, RIT, combined with GT, suppressed tumor development more effectively than RIT or GT alone. This data highlights the potent additive effect of radioimmune and gene therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Pan Hao
- Corresponding author. Department of Nuclear Medicine, LuHe Hospital, Capital Medical University, No.82, Xinhuanan road, Tongzhou district, Beijing LuHe Hospital. Beijing, China, 101149, Phone: +13811079497, fax: +86 010-69543901-8000, : Chunli Zhang Author, Dept of Nuclear Medicine, Peking University First Hospital, 8 Xishiku Rd, Xicheng District, Beijing, China,100034, Phone: +86 13716887128, fax: +86 010-83572915, , , , ,
| | - Chunli Zhang
- Corresponding author. Department of Nuclear Medicine, LuHe Hospital, Capital Medical University, No.82, Xinhuanan road, Tongzhou district, Beijing LuHe Hospital. Beijing, China, 101149, Phone: +13811079497, fax: +86 010-69543901-8000, : Chunli Zhang Author, Dept of Nuclear Medicine, Peking University First Hospital, 8 Xishiku Rd, Xicheng District, Beijing, China,100034, Phone: +86 13716887128, fax: +86 010-83572915, , , , ,
| | - Huan Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Ward MC, Koyfman SA, Bakst RL, Margalit DN, Beadle BM, Beitler JJ, Chang SSW, Cooper JS, Galloway TJ, Ridge JA, Robbins JR, Sacco AG, Tsai CJ, Yom SS, Siddiqui F. Retreatment of Recurrent or Second Primary Head and Neck Cancer After Prior Radiation: Executive Summary of the American Radium Society® (ARS) Appropriate Use Criteria (AUC): Expert Panel on Radiation Oncology - Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2022; 113:759-786. [PMID: 35398456 DOI: 10.1016/j.ijrobp.2022.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Re-treatment of recurrent or second primary head and neck cancers occurring in a previously irradiated field is complex. Few guidelines exist to support practice. METHODS We performed an updated literature search of peer-reviewed journals in a systematic fashion. Search terms, key questions, and associated clinical case variants were formed by panel consensus. The literature search informed the committee during a blinded vote on the appropriateness of treatment options via the modified Delphi method. RESULTS The final number of citations retained for review was 274. These informed five key questions, which focused on patient selection, adjuvant re-irradiation, definitive re-irradiation, stereotactic body radiation (SBRT), and re-irradiation to treat non-squamous cancer. Results of the consensus voting are presented along with discussion of the most current evidence. CONCLUSIONS This provides updated evidence-based recommendations and guidelines for the re-treatment of recurrent or second primary cancer of the head and neck.
Collapse
Affiliation(s)
- Matthew C Ward
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | | | | | - Danielle N Margalit
- Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Beth M Beadle
- Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - John A Ridge
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jared R Robbins
- University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Assuntina G Sacco
- University of California San Diego Moores Cancer Center, La Jolla, California
| | - C Jillian Tsai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sue S Yom
- University of California, San Francisco, California
| | | |
Collapse
|
5
|
Apoptosis-Inducing TNF Superfamily Ligands for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071543. [PMID: 33801589 PMCID: PMC8036978 DOI: 10.3390/cancers13071543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease with apoptosis evasion as one of its hallmarks; therefore, apoptosis induction in transformed cells seems a promising approach as a cancer treatment. TNF apoptosis-inducing ligands, which are naturally present in the body and possess tumoricidal activity, are attractive candidates. The most studied proteins are TNF-α, FasL, and TNF-related apoptosis-inducing ligand (TRAIL). Over the years, different recombinant TNF family-derived apoptosis-inducing ligands and agonists have been designed. Their stability, specificity, and half-life have been improved because most of the TNF ligands have the disadvantages of having a short half-life and affinity to more than one receptor. Here, we review the outlook on apoptosis-inducing ligands as cancer treatments in diverse preclinical and clinical stages and summarize strategies of overcoming their natural limitations to improve their effectiveness.
Collapse
|
6
|
Shi S, Li F, Wu L, Zhang L, Liu L. Feasibility of Bone Marrow Mesenchymal Stem Cell-Mediated Synthetic Radiosensitive Promoter-Combined Sodium Iodide Symporter for Radiogenetic Ovarian Cancer Therapy. Hum Gene Ther 2021; 32:828-838. [PMID: 33339472 DOI: 10.1089/hum.2020.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, most patients relapse within 12-24 months, and eventually die, especially platinum-resistant patients. Gene therapy has been one of the most potential methods for tumor treatment. Bone marrow mesenchymal stem cells (BMSCs) have been used for systemic delivery of therapeutic genes to solid tumors. Sodium iodide symporter (NIS) is an intrinsic membrane glycoprotein and can concentrate 131I, which is important for radionuclide therapy and nuclear medicine imaging in recent years. However, the rapid iodine efflux has become a bottleneck for NIS-mediated radionuclide gene therapy. Our previous studies found that the early growth response-1 (Egr1) promoter containing CC(A/T)6GG (CArG) elements had an 131I radiation-positive feedback effect on the NIS gene. Other research showed the synthesized Egr1 promoter containing four CArG elements, E4, was nearly three times as sensitive as the Egr1 promoter. In our study, BMSC-E4-NIS was engineered to express NIS under the control of E4 promoter using lentivirial vectors. After BMSC-E4-NIS implantation, no tumors were seen in BALB/c nude mice and BMSC-E4-NIS did not promote the growth of SKOV3 tumor. BMSCs migrated toward ovarian cancer samples in chemotaxis assays and to ovarian tumors in mice. Using micro-single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, we found that E4 promoter produced a notable increase in 125I uptake after 131I irradiation, the radionuclide uptake is almost three and six times more than Egr1 and cytomegalovirus (CMV) promoters. These studies confirmed the feasibility of using BMSCs as carriers for lentivirus-mediated E4-NIS gene therapy for ovarian cancer. Further research on BMSC-E4-NIS gene therapy for ovarian cancer in vivo will also be carried on, and if successful, this might provide a new adjuvant therapeutical option for platinum-resistant ovarian cancer patients and provide a new method for dynamic evaluation of curative effect.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liangcai Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Liwei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Hamada M, Yura Y. Efficient Delivery and Replication of Oncolytic Virus for Successful Treatment of Head and Neck Cancer. Int J Mol Sci 2020; 21:E7073. [PMID: 32992948 PMCID: PMC7582277 DOI: 10.3390/ijms21197073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer has been treated by a combination of surgery, radiation, and chemotherapy. In recent years, the development of immune checkpoint inhibitors (ICIs) has made immunotherapy a new treatment method. Oncolytic virus (OV) therapy selectively infects tumor cells with a low-pathogenic virus, lyses tumor cells by the cytopathic effects of the virus, and induces anti-tumor immunity to destroy tumors by the action of immune cells. In OV therapy for head and neck squamous cell carcinoma (HNSCC), viruses, such as herpes simplex virus type 1 (HSV-1), vaccinia virus, adenovirus, reovirus, measles virus, and vesicular stomatitis virus (VSV), are mainly used. As the combined use of mutant HSV-1 and ICI was successful for the treatment of melanoma, studies are underway to combine OV therapy with radiation, chemotherapy, and other types of immunotherapy. In such therapy, it is important for the virus to selectively replicate in tumor cells, and to express the viral gene and the introduced foreign gene in the tumor cells. In OV therapy for HNSCC, it may be useful to combine systemic and local treatments that improve the delivery and replication of the inoculated oncolytic virus in the tumor cells.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan;
| | | |
Collapse
|
8
|
Gamez ME, Blakaj A, Zoller W, Bonomi M, Blakaj DM. Emerging Concepts and Novel Strategies in Radiation Therapy for Laryngeal Cancer Management. Cancers (Basel) 2020; 12:cancers12061651. [PMID: 32580375 PMCID: PMC7352689 DOI: 10.3390/cancers12061651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Laryngeal squamous cell carcinoma is the second most common head and neck cancer. Its pathogenesis is strongly associated with smoking. The management of this disease is challenging and mandates multidisciplinary care. Currently, accepted treatment modalities include surgery, radiation therapy, and chemotherapy—all focused on improving survival while preserving organ function. Despite changes in smoking patterns resulting in a declining incidence of laryngeal cancer, the overall outcomes for this disease have not improved in the recent past, likely due to changes in treatment patterns and treatment-related toxicities. Here, we review emerging concepts and novel strategies in the use of radiation therapy in the management of laryngeal squamous cell carcinoma that could improve the relationship between tumor control and normal tissue damage (therapeutic ratio).
Collapse
Affiliation(s)
- Mauricio E. Gamez
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (W.Z.); (D.M.B.)
- Correspondence:
| | - Adriana Blakaj
- Department of Therapeutic Radiology, Yale School of Medicine, 35 Park St., New Haven, CT 06519, USA;
| | - Wesley Zoller
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (W.Z.); (D.M.B.)
| | - Marcelo Bonomi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, 320 West 10th Avenue, Columbus, OH 43210, USA;
| | - Dukagjin M. Blakaj
- Division of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (W.Z.); (D.M.B.)
| |
Collapse
|
9
|
O’Cathail SM, Davis S, Holmes J, Brown R, Fisher K, Seymour L, Adams R, Good J, Sebag-Montefiore D, Maughan T, Hawkins MA. A phase 1 trial of the safety, tolerability and biological effects of intravenous Enadenotucirev, a novel oncolytic virus, in combination with chemoradiotherapy in locally advanced rectal cancer (CEDAR). Radiat Oncol 2020; 15:151. [PMID: 32532291 PMCID: PMC7291514 DOI: 10.1186/s13014-020-01593-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chemoradiotherapy remains the standard of care for locally advanced rectal cancer. Efforts to intensify treatment and increase response rates have yet to yield practice changing results due to increased toxicity and/or absence of increased radiosensitization. Enadenotucirev (EnAd) is a tumour selective, oncolytic adenovirus which can be given intravenously. Pre-clinical evidence of synergy with radiation warrants further clinical testing and assessment of safety with radiation. METHODS Eligibility include histology confirmed locally advanced rectal cancer that require chemoradiation. The trial will use a Time-to-Event Continual Reassessment Model-based (TiTE-CRM) approach using toxicity and efficacy as co-primary endpoints to recommend the optimal dose and treatment schedule 30 patients will be recruited. Secondary endpoints include pathological complete response the neoadjuvant rectal score. A translational program will be based on a mandatory biopsy during the second week of treatment for 'proof-of-concept' and exploration of mechanism. The trial opened to recruitment in July 2019, at an expected rate of 1 per month for up to 4 years. DISCUSSION Chemoradiation with Enadenotucirev as a radiosensitiser in locally Advanced Rectal cancer (CEDAR) is a prospective multicentre study testing a new paradigm in radiosensitization in rectal cancer. The unique ability of EnAd to selectively infect tumour cells following intravenous delivery is an exciting opportunity with a clear translational goal. The novel statistical design will make efficient use of both toxicity and efficacy data to inform subsequent studies. TRIAL REGISTRATION ClinicalTrial.gov, NCT03916510. Registered 16th April 2019.
Collapse
Affiliation(s)
- Séan M. O’Cathail
- Oxford Institute of Radiation Oncology, University of Oxford, Oxford, OX3 7LE UK
| | - Steven Davis
- Department of Oncology, University of Oxford, Oxford, OX3 7LE UK
| | - Jane Holmes
- Centre for Statistical Medicine, University of Oxford, Oxford, OX3 7LE UK
| | - Richard Brown
- PsiOxus Therapeutics, Barton Lane, Abingdon, OX14 3YS UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, OX3 7LE UK
| | - Leonard Seymour
- Department of Oncology, University of Oxford, Oxford, OX3 7LE UK
| | | | - James Good
- Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2GW UK
| | | | - Tim Maughan
- Oxford Institute of Radiation Oncology, University of Oxford, Oxford, OX3 7LE UK
| | - Maria A. Hawkins
- Department of Physics and Biomedical Engineering, University College London, Oxford, UK
| |
Collapse
|
10
|
Palata O, Hradilova Podzimkova N, Nedvedova E, Umprecht A, Sadilkova L, Palova Jelinkova L, Spisek R, Adkins I. Radiotherapy in Combination With Cytokine Treatment. Front Oncol 2019; 9:367. [PMID: 31179236 PMCID: PMC6538686 DOI: 10.3389/fonc.2019.00367] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) plays an important role in the management of cancer patients. RT is used in more than 50% of patients during the course of their disease in a curative or palliative setting. In the past decades it became apparent that the abscopal effect induced by RT might be dependent on the activation of immune system, and that the induction of immunogenic cancer cell death and production of danger-associated molecular patterns from dying cells play a major role in the radiotherapy-mediated anti-tumor efficacy. Therefore, the combination of RT and immunotherapy is of a particular interest that is reflected in designing clinical trials to treat patients with various malignancies. The use of cytokines as immunoadjuvants in combination with RT has been explored over the last decades as one of the immunotherapeutic combinations to enhance the clinical response to anti-cancer treatment. Here we review mainly the data on the efficacy of IFN-α, IL-2, IL-2-based immunocytokines, GM-CSF, and TNF-α used in combinations with various radiotherapeutic techniques in clinical trials. Moreover, we discuss the potential of IL-15 and its analogs and IL-12 cytokines in combination with RT based on the efficacy in preclinical mouse tumor models.
Collapse
Affiliation(s)
- Ondrej Palata
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Nada Hradilova Podzimkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | | | | | | | - Lenka Palova Jelinkova
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Irena Adkins
- SOTIO a.s, Prague, Czechia.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Wang SJ, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers (Basel) 2018; 10:cancers10120515. [PMID: 30558196 PMCID: PMC6315809 DOI: 10.3390/cancers10120515] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent development in radiation biology has revealed potent immunogenic properties of radiotherapy in cancer treatments. However, antitumor immune effects of radiotherapy are limited by the concomitant induction of radiation-dependent immunosuppressive effects. In the growing era of immunotherapy, combining radiotherapy with immunomodulating agents has demonstrated enhancement of radiation-induced antitumor immune activation that correlated with improved treatment outcomes. Yet, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is largely unknown. Future prospective testing to fine-tune this promising combination of radiotherapy and immunotherapy is warranted.
Collapse
Affiliation(s)
- Shang-Jui Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| | - Bruce Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Shi S, Zhang M, Guo R, Miao Y, Li B. Bone Marrow-Derived Mesenchymal Stem Cell-Mediated Dual-Gene Therapy for Glioblastoma. Hum Gene Ther 2018; 30:106-117. [PMID: 29993289 DOI: 10.1089/hum.2018.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow mesenchymal stem cells (BMSCs) have been used for systemic delivery of therapeutic genes to solid tumors. However, the optimal treatment time post-BMSC implantation and the assessment of the long-term fate of therapeutic BMSCs post-tumor treatment are critical if such promising therapies are to be translated into clinical practice. An efficient BMSC-based therapeutic strategy has been developed that simultaneously allows killing of tumor cells, inhibiting of tumor angiogenesis, and assessment and eradication of implanted BMSCs after treatment of glioblastoma. BMSCs were engineered to co-express the angiogenesis inhibitor kringle 5 (K5) of human plasminogen, under the control of the cytomegalovirus promoter (CMV) and the human sodium-iodide symporter (NIS), involved in uptake of radioisotopes, under the control of early growth response factor 1 (Egr1), a radiation-activated promoter. A significant decrease in tumor growth and tumor angiogenesis and a subsequent increase in survival were observed when mice bearing glioblastoma were treated with 188Re post-therapeutic intravenous BMSC implantation. Furthermore, the systemic administration of 188Re post-tumor treatment selectively eliminated therapeutic BMSCs expressing NIS, which was monitored in real time by 125I micro single photon emission computed tomography/computed tomography imaging. Meanwhile, the Egr1 promoter induced a 188Re radiation positive feedback effect absorbed by NIS. After intravenous BMSC implantation, BMSCs levels in the tumor and lung both peaked on day 10 and decreased to the lowest levels on days 24 and 17, respectively. These findings suggest that day 17 post-BMSC implantation could be an optimal time for 188Re treatment. These results provide a new adjuvant therapy mediated by BMSCs for glioblastoma treatment.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Mou H, Zhong G, Gardner MR, Wang H, Wang YW, Cheng D, Farzan M. Conditional Regulation of Gene Expression by Ligand-Induced Occlusion of a MicroRNA Target Sequence. Mol Ther 2018; 26:1277-1286. [PMID: 29567311 PMCID: PMC5993935 DOI: 10.1016/j.ymthe.2018.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/03/2022] Open
Abstract
RNA switches that modulate gene expression with small molecules have a number of scientific and clinical applications. Here, we describe a novel class of small regulatory on switches based on the ability of a ligand-bound aptamer to promote stem formation between a microRNA target sequence (miR-T) and a complementary competing strand. Two on switch architectures employing this basic concept were evaluated, differing in the location of a tetracycline aptamer and the region of a miR-21 target sequence (miR-21-T) masked by its competing strand. Further optimizations of miR-21-T and its competing strand resulted in tetracycline-regulated on switches that induced luciferase expression by 19-fold in HeLa cells. A similar switch design based on miR-122-T afforded 7-fold regulation when placed in tandem, indicating that this approach can be extended to additional miR-T. Optimized on switches introduced into adeno-associated virus (AAV) vectors afforded 10-fold regulation of two antiviral proteins in AAV-transduced cells. Our data demonstrate that small-molecule-induced occlusion of a miR-T can be used to conditionally regulate gene expression in mammalian cells and suggest that regulatory switches built on this principle can be used to dose expression of an AAV transgene.
Collapse
Affiliation(s)
- Huihui Mou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Guocai Zhong
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haimin Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yi-Wen Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Dechun Cheng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Parasitology, Harbin Medical University, Harbin 150081, China
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
O’Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA. Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization. Front Oncol 2017; 7:153. [PMID: 28791251 PMCID: PMC5523729 DOI: 10.3389/fonc.2017.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.
Collapse
Affiliation(s)
- Sean M. O’Cathail
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Timothy S. Maughan
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kerry D. Fisher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Maria A. Hawkins
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Benson R, Giridhar P, Venkatesulu BP, Mallick S, Raza MW, Rath GK. Re-irradiation for head and neck squamous cell carcinoma. J Egypt Natl Canc Inst 2017; 29:1-9. [DOI: 10.1016/j.jnci.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/22/2022] Open
|
16
|
Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 2016; 4:51. [PMID: 27660705 PMCID: PMC5028964 DOI: 10.1186/s40425-016-0156-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023] Open
Abstract
Increasing evidence demonstrates that radiation acts as an immune stimulus, recruiting immune mediators that enable anti-tumor responses within and outside the radiation field. There has been a rapid expansion in the number of clinical trials harnessing radiation to enhance antitumor immunity. If positive, results of these trials will lead to a paradigm shift in the use of radiotherapy. In this review, we discuss the rationale for trials combining radiation with various immunotherapies, provide an update of recent clinical trial results and highlight trials currently in progress. We also address issues pertaining to the optimal incorporation of immunotherapy with radiation, including sequencing of treatment, radiation dosing and evaluation of clinical trial endpoints.
Collapse
Affiliation(s)
- Josephine Kang
- Department of Radiation Oncology, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA ; Department of Radiation Oncology, Stich Radiation Center, 525 East 68th Street, New York, NY 10065 USA
| |
Collapse
|
17
|
Abstract
Tumor necrosis factor-α (TNF-α) is a chemokine with effective tumoricidal properties. However, severe systemic toxicity limits its use of as anticancer agent. TNFerade is a novel replication deficient adenovector based gene therapy, which enables the radiation inducible translation of human TNF-α gene specifically in cancer cells. When injected intratumorally, it has least systemic distribution. Consequently, it lacks TNF-α related systemic toxicity. Evidence suggests that it has superior tumoricidal activity and tolerability with minimum adverse effects. It has demonstrated its beneficial role in the treatment of a variety of cancers in terms of improving the disease free and overall survival, delaying tumor progression, and inducing tumor regression when used with concurrent radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Arunava Kali
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India
| |
Collapse
|
18
|
Parsel SM, Grandis JR, Thomas SM. Nucleic acid targeting: towards personalized therapy for head and neck cancer. Oncogene 2015; 35:3217-26. [PMID: 26592450 PMCID: PMC4877278 DOI: 10.1038/onc.2015.424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
In light of a detailed characterization of genetic aberrations in cancer, nucleic acid targeting represents an attractive therapeutic approach with significant translational potential. Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer deaths worldwide with stagnant 5-year survival rates. Advances in conventional treatment have done little to improve survival and combined chemoradiation is associated with significant adverse effects. Recent reports have characterized the genetic alterations in HNSCC and demonstrated that mutations confer resistance to conventional and molecular targeted therapies. The ability to use specific nucleic acid sequences to inhibit cancer-associated genes including non-druggable targets facilitates personalized medicine approaches with less adverse effects. Additionally, advances in drug delivery mechanisms have increased the transfection efficiency aiding in greater therapeutic responses. Given these advances, the stage has been set to translate the information garnered from genomic studies into personalized treatment strategies. Genes involved in the tumor protein 53 (TP53) and epidermal growth factor receptor (EGFR) pathways have been extensively investigated and many promising preclinical studies have shown tumor inhibition through genetic modulation. We, and others, have demonstrated that targeting oncogene expression with gene therapy approaches is feasible in patients. Other methods such as RNA interference have proven to be effective and are potential candidates for clinical studies. This review summarizes the major advances in sequence-specific gene modulation in the preclinical setting and in clinical trials in head and neck cancer patients.
Collapse
Affiliation(s)
- S M Parsel
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - J R Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S M Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Vargo JA, Ferris RL, Ohr J, Clump DA, Davis KS, Duvvuri U, Kim S, Johnson JT, Bauman JE, Gibson MK, Branstetter BF, Heron DE. A prospective phase 2 trial of reirradiation with stereotactic body radiation therapy plus cetuximab in patients with previously irradiated recurrent squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2015; 91:480-8. [PMID: 25680594 DOI: 10.1016/j.ijrobp.2014.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Salvage options for unresectable locally recurrent, previously irradiated squamous cell carcinoma of the head and neck (rSCCHN) are limited. Although the addition of reirradiation may improve outcomes compared to chemotherapy alone, significant toxicities limit salvage reirradiation strategies, leading to suboptimal outcomes. We therefore designed a phase 2 protocol to evaluate the efficacy of stereotactic body radiation therapy (SBRT) plus cetuximab for rSCCHN. METHODS AND MATERIALS From July 2007 to March 2013, 50 patients >18 years of age with inoperable locoregionally confined rSCCHN within a previously irradiated field receiving ≥60 Gy, with a Zubrod performance status of 0 to 2, and normal hepatic and renal function were enrolled. Patients received concurrent cetuximab (400 mg/m(2) on day -7 and then 250 mg/m(2) on days 0 and +8) plus SBRT (40-44 Gy in 5 fractions on alternating days over 1-2 weeks). Primary endpoints were 1-year locoregional progression-free survival and National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0 graded toxicity. RESULTS Median follow-up for surviving patients was 18 months (range: 10-70). The 1-year local PFS rate was 60% (95% confidence interval [CI]: 44%-75%), locoregional PFS was 37% (95% CI: 23%-53%), distant PFS was 71% (95% CI: 54%-85%), and PFS was 33% (95% CI: 20%-49%). The median overall survival was 10 months (95% CI: 7-16), with a 1-year overall survival of 40% (95% CI: 26%-54%). At last follow-up, 69% died of disease, 4% died with disease, 15% died without progression, 10% were alive without progression, and 2% were alive with progression. Acute and late grade 3 toxicity was observed in 6% of patients respectively. CONCLUSIONS SBRT with concurrent cetuximab appears to be a safe salvage treatment for rSCCHN of short overall treatment time.
Collapse
Affiliation(s)
- John A Vargo
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James Ohr
- Division Medical Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Clump
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Kara S Davis
- Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seungwon Kim
- Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonas T Johnson
- Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie E Bauman
- Division Medical Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael K Gibson
- Division Medical Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Barton F Branstetter
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dwight E Heron
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Formenti SC. Combinations of immunotherapy and radiation in cancer therapy. Front Oncol 2014; 4:325. [PMID: 25506582 PMCID: PMC4246656 DOI: 10.3389/fonc.2014.00325] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022] Open
Abstract
The immune system has the ability to recognize and specifically reject tumors, and tumors only become clinically apparent once they have evaded immune destruction by creating an immunosuppressive tumor microenvironment. Radiotherapy (RT) can cause immunogenic tumor cell death resulting in cross-priming of tumor-specific T-cells, acting as an in situ tumor vaccine; however, RT alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement RT to help overcome tumor-induced immune suppression, as demonstrated in pre-clinical tumor models. Here, we provide the rationale for combinations of different immunotherapies and RT, and review the pre-clinical and emerging clinical evidence for these combinations in the treatment of cancer.
Collapse
Affiliation(s)
- Ralph E Vatner
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine , New York, NY , USA
| | - Benjamin T Cooper
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine , New York, NY , USA
| | - Claire Vanpouille-Box
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine , New York, NY , USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine , New York, NY , USA
| |
Collapse
|
21
|
Khan ML, Halfdanarson TR, Borad MJ. Immunotherapeutic and oncolytic viral therapeutic strategies in pancreatic cancer. Future Oncol 2014; 10:1255-75. [PMID: 24947264 DOI: 10.2217/fon.13.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pancreatic adenocarcinoma is an aggressive disease with dismal outcomes despite recent advances using combination chemotherapeutic regimens. The lack of an adequate immune response to malignant cells has been identified as a factor associated with tumor aggressiveness and refractoriness to systemic treatment. Preclinical and early clinical studies have identified numerous immunotherapeutic and oncolytic viral therapeutic strategies aimed towards amplifying the immune reaction to pancreatic cancer and have established encouraging results. Promising antitumor efficacy has been observed both in vitro and in vivo with many of these approaches. These novel applications have also led to improved understanding of the process of pancreatic tumor growth and invasion, knowledge of the tumor microenvironment and have pioneered further investigations of similar therapies. Here we review both immunotherapeutic and oncolytic viral therapeutic strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Meaghan L Khan
- Mayo Clinic Arizona Division of Hematology & Medical Oncology, 13400 E Shea Boulevard, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|