1
|
Ding B, Mai B, Liu T, Liu C, Bao H, Hu J, Qian X, Wang S, Ou Q, Dong X, Lei Z, Yan G. Anlotinib treatment for rapidly progressing pediatric embryonal rhabdomyosarcoma in the maxillary gingiva: a case report. Diagn Pathol 2024; 19:135. [PMID: 39379998 PMCID: PMC11460102 DOI: 10.1186/s13000-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Embryonal rhabdomyosarcoma (ERMS) is a highly aggressive form of soft-tissue sarcoma that predominantly affects children. Due to limited benefits and resistance to therapy, there is an unmet need to explore alternative therapeutic strategies. CASE PRESENTATION In this report, we present a rare case of pediatric ERMS located on the right side of the maxillary gingiva. A composite reference guide integrating clinical, radiographic, and histopathologic findings was used for a definitive diagnosis. Targeted next-generation sequencing of tumor biopsy was performed to identify genetic alterations. A 12-year-old female was admitted to the Pediatric Intensive Care Unit (PICU) and underwent a tracheotomy to relieve asphyxiation caused by a 5.5 cm diameter mass compressing the tongue root and pharyngeal cavity. Hematoxylin and eosin staining revealed a hybrid morphology characterized by clusters of round and spindle cells. Further immunohistochemistry assays indicated positive immunoreactivity for desmin, myogenin, and MyoD1. Various genetic alterations were identified, including mutations in GNAS, HRAS, LRP1B, amplification of MDM2 and IGF1R, and two novel IGF1R fusions. Negative PAX-FOXO1 fusion status supported the clinical diagnosis of ERMS. Initial treatment involved standard chemotherapy; however, the tumor persisted in its growth, reaching a maximum volume of 12 cm × 6 cm × 4 cm by the completion of treatment. Subsequent oral administration of anlotinib yielded a significant antitumor response, characterized by substantial tumor necrosis and size reduction. Following the ligation of the tumor pedicle and its removal, the patient developed a stabilized condition and was successfully discharged from PICU. CONCLUSIONS Our study highlights the importance of accurate diagnosis established on multifaceted assessment for the effective treatment of ERMS. We present compelling evidence supporting the clinical use of anlotinib as a promising treatment strategy for pediatric ERMS patients, especially for those resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Bo Ding
- Department of Pediatric Intensive Care Unit, Hainan Women and Children's Medical Center, Children's Hospital of Fudan University at Hainan, Children's Hospital of Hainan Medical University, Haikou, 570100, China
| | - Biwei Mai
- Department of Pediatric Intensive Care Unit, Hainan Women and Children's Medical Center, Children's Hospital of Fudan University at Hainan, Children's Hospital of Hainan Medical University, Haikou, 570100, China
| | - Tingyan Liu
- Department of Pediatric Intensive Care Unit, National Center for Children's Health, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Cuicui Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210032, China
| | - Hairong Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210032, China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial Surgery, ZhangZhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, 571700, Hainan, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Song Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210032, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, 210032, China
| | - Xiujuan Dong
- Department of Hematology and Oncology, Hainan Women and Children's Medical Center, Children's Hospital of Fudan University at Hainan, Children's Hospital of Hainan Medical University, Haikou, 570100, China
| | - Zhixian Lei
- Department of Pediatric Intensive Care Unit, Hainan Women and Children's Medical Center, Children's Hospital of Fudan University at Hainan, Children's Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Gangfeng Yan
- Department of Pediatric Intensive Care Unit, National Center for Children's Health, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
2
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Akshintala S, Sundby RT, Bernstein D, Glod JW, Kaplan RN, Yohe ME, Gross AM, Derdak J, Lei H, Pan A, Dombi E, Palacio-Yance I, Herrera KR, Miettinen MM, Chen HX, Steinberg SM, Helman LJ, Mascarenhas L, Widemann BC, Navid F, Shern JF, Heske CM. Phase I trial of Ganitumab plus Dasatinib to Cotarget the Insulin-Like Growth Factor 1 Receptor and Src Family Kinase YES in Rhabdomyosarcoma. Clin Cancer Res 2023; 29:3329-3339. [PMID: 37398992 PMCID: PMC10529967 DOI: 10.1158/1078-0432.ccr-23-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Antibodies against insulin-like growth factor (IGF) type 1 receptor have shown meaningful but transient tumor responses in patients with rhabdomyosarcoma (RMS). The SRC family member YES has been shown to mediate IGF type 1 receptor (IGF-1R) antibody acquired resistance, and cotargeting IGF-1R and YES resulted in sustained responses in murine RMS models. We conducted a phase I trial of the anti-IGF-1R antibody ganitumab combined with dasatinib, a multi-kinase inhibitor targeting YES, in patients with RMS (NCT03041701). PATIENTS AND METHODS Patients with relapsed/refractory alveolar or embryonal RMS and measurable disease were eligible. All patients received ganitumab 18 mg/kg intravenously every 2 weeks. Dasatinib dose was 60 mg/m2/dose (max 100 mg) oral once daily [dose level (DL)1] or 60 mg/m2/dose (max 70 mg) twice daily (DL2). A 3+3 dose escalation design was used, and maximum tolerated dose (MTD) was determined on the basis of cycle 1 dose-limiting toxicities (DLT). RESULTS Thirteen eligible patients, median age 18 years (range 8-29) enrolled. Median number of prior systemic therapies was 3; all had received prior radiation. Of 11 toxicity-evaluable patients, 1/6 had a DLT at DL1 (diarrhea) and 2/5 had a DLT at DL2 (pneumonitis, hematuria) confirming DL1 as MTD. Of nine response-evaluable patients, one had a confirmed partial response for four cycles, and one had stable disease for six cycles. Genomic studies from cell-free DNA correlated with disease response. CONCLUSIONS The combination of dasatinib 60 mg/m2/dose daily and ganitumab 18 mg/kg every 2 weeks was safe and tolerable. This combination had a disease control rate of 22% at 5 months.
Collapse
Affiliation(s)
- Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Isabel Palacio-Yance
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kailey R. Herrera
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Helen X. Chen
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Lee J. Helman
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Osteosarcoma Institute, Dallas, Texas
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Fariba Navid
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
4
|
Walker K, Hinsley S, Phillip R, Oughton JB, Murden G, Chalmers AJ, Faivre-Finn C, Greystoke A, Brown SR. Implementation of the Time-to-Event Continuous Reassessment Method Design in a Phase I Platform Trial Testing Novel Radiotherapy-Drug Combinations-CONCORDE. JCO Precis Oncol 2022; 6:e2200133. [PMID: 36446040 PMCID: PMC9812638 DOI: 10.1200/po.22.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE CONCORDE is the first phase I drug-radiotherapy (RT) combination platform in non-small-cell lung cancer, designed to assess multiple different DNA damage response inhibitors in combination with radical thoracic RT. Time-to-event continuous reassessment method (TiTE-CRM) methodology will inform dose escalation individually for each different DNA damage response inhibitor-RT combination and a randomized calibration arm will aid attribution of toxicities. We report in detail the novel statistical design and implementation of the TiTE-CRM in the CONCORDE trial. METHODS Statistical parameters were calibrated following recommendations by Lee and Cheung. Simulations were performed to assess the operating characteristics of the chosen models and were written using modified code from the R package dfcrm. RESULTS The results of the simulation work showed that the proposed statistical model setup can answer the research questions under a wide range of potential scenarios. The proposed models work well under varying levels of recruitment and with multiple adaptations to the original methodology. CONCLUSION The results demonstrate how TiTE-CRM methodology may be used in practice in a complex dose-finding platform study. We propose that this novel phase I design has potential to overcome some of the logistical barriers that for many years have prevented timely development of novel drug-RT combinations.
Collapse
Affiliation(s)
- Katrina Walker
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Samantha Hinsley
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
- Cancer Research UK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - Rachel Phillip
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Jamie B. Oughton
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Geraldine Murden
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Anthony J. Chalmers
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust/University of Manchester, Manchester, United Kingdom
| | | | - Sarah R. Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| |
Collapse
|
5
|
Qi L, Xu R, Ren X, Zhang W, Yang Z, Tu C, Li Z. Comprehensive Profiling Reveals Prognostic and Immunogenic Characteristics of Necroptosis in Soft Tissue Sarcomas. Front Immunol 2022; 13:877815. [PMID: 35663937 PMCID: PMC9159500 DOI: 10.3389/fimmu.2022.877815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
Soft tissue sarcomas (STSs) are heterogeneous malignancies derived from mesenchymal cells. Due to its rarity, heterogeneity, and limited overall response to chemotherapy, STSs represent a therapeutic challenge. Necroptosis is a novel therapeutic strategy for enhancing immunotherapy of cancer. Nevertheless, no research has explored the relationship between necroptosis-related genes (NRGs) and STSs. In this study, differentially expressed NRGs were identified using The Cancer Genome Atlas (TCGA) and The Cancer Genotype-Tissue Expression (GTEx) project. The expression levels of 34 NRGs were significantly different. Several key NRGs were validated using RT-qPCR and our own sequencing data. Patients with STSs were divided into two clusters using consensus cluster analysis, and significant differences were observed in their survival (p=0.002). We found the differentially expressed genes (DEGs) between the two clusters and carried out subsequent analysis. The necroptosis-related gene signatures with 10 key DEGs were identified with a risk score constructed. The prognosis of TCGA-SARC cohort with low necroptosis-related risk score was better (p<0.001). Meanwhile, the low-risk group had a significantly increased immune infiltration. Using the data of GSE17118 and another immunotherapy cohort as external validations, we observed significant survival differences between the two risk groups (p=0.019). The necroptosis-related risk score proved to be an independent prognostic factor, and a nomogram was further established and integrated with other clinical features. Notably, the necroptosis-related gene signature could also act as the prognostic indicator in other malignancies based on pan-cancer analysis. In summary, the study outlines NRGs in STSs and their potential role in prognosis and will be one of the important directions for future research.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Ruiling Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.,Department of Microbiology, Immunology & Molecular Genetics, UT Health Science Center, University of Texas Long School of Medicine, San Antonio, TX, United States
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
6
|
Sissung TM, Figg WD. Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted. Cancers (Basel) 2022; 14:cancers14051131. [PMID: 35267440 PMCID: PMC8909728 DOI: 10.3390/cancers14051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Phase I clinical trials are a cornerstone of pharmaceutical development in oncology. Many studies have now attempted to incorporate pharmacogenomics into phase I studies; however, many of these studies have fundamental flaws that that preclude interpretation and application of their findings. Study populations are often small and heterogeneous with multiple disease states, multiple dose levels, and prior therapies. Genetic testing typically includes few variants in candidate genes that do no encapsulate the full range of phenotypic variability in protein function. Moreover, a plurality of these studies do not present scientifically robust clinical or preclinical justification for undertaking pharmacogenomics studies. A significant amount of progress in understanding pharmacogenomic variability has occurred since pharmacogenomics approaches first began appearing in the literature. This progress can be immediately leveraged for the vast majority of Phase I studies. The purpose of this review is to summarize the current literature pertaining to Phase I incorporation of pharmacogenomics studies, analyze potential flaws in study design, and suggest approaches that can improve design of future scientific efforts. Abstract While over ten-thousand phase I studies are published in oncology, fewer than 1% of these studies stratify patients based on genetic variants that influence pharmacology. Pharmacogenetics-based patient stratification can improve the success of clinical trials by identifying responsive patients who have less potential to develop toxicity; however, the scientific limits imposed by phase I study designs reduce the potential for these studies to make conclusions. We compiled all phase I studies in oncology with pharmacogenetics endpoints (n = 84), evaluating toxicity (n = 42), response or PFS (n = 32), and pharmacokinetics (n = 40). Most of these studies focus on a limited number of agent classes: Topoisomerase inhibitors, antimetabolites, and anti-angiogenesis agents. Eight genotype-directed phase I studies were identified. Phase I studies consist of homogeneous populations with a variety of comorbidities, prior therapies, racial backgrounds, and other factors that confound statistical analysis of pharmacogenetics. Taken together, phase I studies analyzed herein treated small numbers of patients (median, 95% CI = 28, 24–31), evaluated few variants that are known to change phenotype, and provided little justification of pharmacogenetics hypotheses. Future studies should account for these factors during study design to optimize the success of phase I studies and to answer important scientific questions.
Collapse
Affiliation(s)
| | - William D. Figg
- Correspondence: ; Tel.: +1-240-760-6179; Fax: +1-240-541-4536
| |
Collapse
|
7
|
van Werkhoven E, Hinsley S, Frangou E, Holmes J, de Haan R, Hawkins M, Brown S, Love SB. Practicalities in running early-phase trials using the time-to-event continual reassessment method (TiTE-CRM) for interventions with long toxicity periods using two radiotherapy oncology trials as examples. BMC Med Res Methodol 2020; 20:162. [PMID: 32571298 PMCID: PMC7477911 DOI: 10.1186/s12874-020-01012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Awareness of model-based designs for dose-finding studies such as the Continual Reassessment Method (CRM) is now becoming more commonplace amongst clinicians, statisticians and trial management staff. In some settings toxicities can occur a long time after treatment has finished, resulting in extremely long, interrupted, CRM design trials. The Time-to-Event CRM (TiTE-CRM), a modification to the original CRM, accounts for the timing of late-onset toxicities and results in shorter trial duration. In this article, we discuss how to design and deliver a trial using this method, from the grant application stage through to dissemination, using two radiotherapy trials as examples. METHODS The TiTE-CRM encapsulates the dose-toxicity relationship with a statistical model. The model incorporates observed toxicities and uses a weight to account for the proportion of completed follow-up of participants without toxicity. This model uses all available data to determine the next participant's dose and subsequently declare the maximum tolerated dose. We focus on two trials designed by the authors to illustrate practical issues when designing, setting up, and running such studies. RESULTS In setting up a TiTE-CRM trial, model parameters need to be defined and the time element involved might cause complications, therefore looking at operating characteristics through simulations is essential. At the grant application stage, we suggest resources to fund statisticians' time before funding is awarded and make recommendations for the level of detail to include in funding applications. While running the trial, close contact of all involved staff is required as a dose decision is made each time a participant is recruited. We suggest ways of capturing data in a timely manner and give example code in R for design and delivery of the trial. Finally, we touch upon dissemination issues while the trial is running and upon completion. CONCLUSION Model-based designs can be complex. We hope this paper will help clinical trial teams to demystify the conduct of TiTE-CRM trials and be a starting point for using this methodology in practice.
Collapse
Affiliation(s)
| | - Samantha Hinsley
- Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Clinical Trials Research Unit, University of Leeds, Leeds, UK
| | | | - Jane Holmes
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | | | - Maria Hawkins
- CRUK MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Sarah Brown
- Clinical Trials Research Unit, University of Leeds, Leeds, UK
| | | |
Collapse
|
8
|
Pinheiro EA, Magdy T, Burridge PW. Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity. J Cardiovasc Transl Res 2020; 13:377-389. [PMID: 32078739 PMCID: PMC7365753 DOI: 10.1007/s12265-020-09962-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced cardiovascular toxicity (CICT) is a well-established risk for cancer survivors and causes diseases such as heart failure, arrhythmia, vascular dysfunction, and atherosclerosis. As our knowledge of the precise cardiovascular risks of each chemotherapy agent has improved, it has become clear that genomics is one of the most influential predictors of which patients will experience cardiovascular toxicity. Most recently, GWAS-led, top-down approaches have identified novel genetic variants and their related genes that are statistically related to CICT. Importantly, the advent of human-induced pluripotent stem cell (hiPSC) models provides a system to experimentally test the effect of these genomic findings in vitro, query the underlying mechanisms, and develop novel strategies to mitigate the cardiovascular toxicity liabilities due to these mechanisms. Here we review the cardiovascular toxicities of chemotherapy drugs, discuss how these can be modeled in vitro, and suggest how these models can be used to validate genetic variants that predispose patients to these effects.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Pinheiro EA, Fetterman KA, Burridge PW. hiPSCs in cardio-oncology: deciphering the genomics. Cardiovasc Res 2019; 115:935-948. [PMID: 30689737 PMCID: PMC6452310 DOI: 10.1093/cvr/cvz018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The genomic predisposition to oncology-drug-induced cardiovascular toxicity has been postulated for many decades. Only recently has it become possible to experimentally validate this hypothesis via the use of patient-specific human-induced pluripotent stem cells (hiPSCs) and suitably powered genome-wide association studies (GWAS). Identifying the individual single nucleotide polymorphisms (SNPs) responsible for the susceptibility to toxicity from a specific drug is a daunting task as this precludes the use of one of the most powerful tools in genomics: comparing phenotypes to close relatives, as these are highly unlikely to have been treated with the same drug. Great strides have been made through the use of candidate gene association studies (CGAS) and increasingly large GWAS studies, as well as in vivo whole-organism studies to further our mechanistic understanding of this toxicity. The hiPSC model is a powerful technology to build on this work and identify and validate causal variants in mechanistic pathways through directed genomic editing such as CRISPR. The causative variants identified through these studies can then be implemented clinically to identify those likely to experience cardiovascular toxicity and guide treatment options. Additionally, targets identified through hiPSC studies can inform future drug development. Through careful phenotypic characterization, identification of genomic variants that contribute to gene function and expression, and genomic editing to verify mechanistic pathways, hiPSC technology is a critical tool for drug discovery and the realization of precision medicine in cardio-oncology.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-525, 320 East Superior Street, Chicago, IL, USA
| |
Collapse
|
10
|
Mancarella C, Scotlandi K. IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy. J Mol Endocrinol 2018; 61:T45-T60. [PMID: 29273680 DOI: 10.1530/jme-17-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) system has gained substantial interest due to its involvement in regulating cell proliferation, differentiation and survival during anoikis and after conventional and targeted therapies. However, results from clinical trials have been largely disappointing, with only a few but notable exceptions, such as trials targeting sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF axis, as understanding the control of this axis is essential for future clinical studies.
Collapse
Affiliation(s)
- Caterina Mancarella
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
11
|
Up-regulation of INSR/IGF1R by C-myc promotes TSCC tumorigenesis and metastasis through the NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29518496 DOI: 10.1016/j.bbadis.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin receptor (INSR) and insulin-like growth factor 1 receptor (IGF1R) have been reported to be involved in the tumorigenesis and metastasis of various malignancies. The aim of our study was to investigate and compare the effects of INSR and IGF1R on the tumorigenesis and metastasis of tongue squamous cell carcinoma (TSCC) and explore the possible mechanism(s) involved. We found that INSR had the same up-regulated expression pattern as IGF1R in TSCC tissues. INSR and IGF1R up-regulation were correlated with each other and associated with lymph node metastasis and poor prognosis. Functional studies established that knocking down either INSR or IGF1R dramatically impeded TSCC cell proliferation, migration, and invasion in vitro and tumorigenesis and tumor metastasis in vivo, whereas ectopic overexpression of INSR or IGF1R enhanced these activities. Both INSR and IGF1R directly targeted p65 and activated the NF-κB pathway; furthermore, C-myc was observed to directly bind to the INSR and IGF1R promoters and up-regulates INSR and IGF1R expression in TSCC. Thus, our current data demonstrate that both INSR and IGF1R are directly targeted by C-myc and exert similar effects to promote the tumorigenesis and metastasis of TSCC through the NF-κB pathway. Therefore, INSR and IGF1R may be therapeutic target genes and potential prognostic factors for TSCC.
Collapse
|
12
|
Linschoten M, Teske AJ, Cramer MJ, van der Wall E, Asselbergs FW. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001753. [PMID: 29557343 DOI: 10.1161/circgen.117.001753] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemotherapy-related cardiac dysfunction is a significant side effect of anticancer treatment. Risk stratification is based on clinical- and treatment-related risk factors that do not adequately explain individual susceptibility. The addition of genetic variants may improve risk assessment. We conducted a systematic literature search in PubMed and Embase, to identify studies investigating genetic risk factors for chemotherapy-related cardiac dysfunction. Included were articles describing genetic variants in humans altering susceptibility to chemotherapy-related cardiac dysfunction. The validity of identified studies was assessed by 10 criteria, including assessment of population stratification, statistical methodology, and replication of findings. We identified 40 studies: 34 exploring genetic risk factors for anthracycline-induced cardiotoxicity (n=9678) and 6 studies related to trastuzumab-associated cardiotoxicity (n=642). The majority (35/40) of studies had a candidate gene approach, whereas 5 genome-wide association studies have been performed. We identified 25 genetic variants in 20 genes and 2 intergenic variants reported significant at least once. The overall validity of studies was limited, with small cohorts, failure to assess population ancestry and lack of replication. SNPs with the most robust evidence up to this point are CELF4 rs1786814 (sarcomere structure and function), RARG rs2229774 (topoisomerase-2β expression), SLC28A3 rs7853758 (drug transport), UGT1A6 rs17863783 (drug metabolism), and 1 intergenic variant (rs28714259). Existing evidence supports the hypothesis that genetic variation contributes to chemotherapy-related cardiac dysfunction. Although many variants identified by this systematic review show potential to improve risk stratification, future studies are necessary for validation and assessment of their value in a diagnostic and prognostic setting.
Collapse
Affiliation(s)
- Marijke Linschoten
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Arco J Teske
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Maarten J Cramer
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Elsken van der Wall
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Folkert W Asselbergs
- From the Department of Cardiology, Division of Heart & Lungs (M.L., A.J.T., M.J.C., F.W.A.) and Department of Medical Oncology (E.v.d.W.), University Medical Center Utrecht, University of Utrecht, The Netherlands; Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.); and Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.) and Farr Institute of Health Informatics Research and Institute of Health Informatics (F.W.A.), University College London, United Kingdom.
| |
Collapse
|
13
|
Davis EJ, Chugh R. Spotlight on olaratumab in the treatment of soft-tissue sarcoma: design, development, and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3579-3587. [PMID: 29263653 PMCID: PMC5732568 DOI: 10.2147/dddt.s121298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Soft-tissue sarcoma (STS) is a heterogeneous group of tumors that arise from mesenchymal tissue. The prognosis of metastatic STS is poor with a life expectancy of 12–18 months. The mainstay of treatment is chemotherapy with an anthracycline. The addition of other chemotherapeutic agents to an anthracycline has been studied with limited success in improving outcomes for STS patients. Olaratumab is a fully human IgG1 monoclonal antibody that binds to platelet-derived growth factor receptor α (PDGFR-α) preventing binding of its ligands and receptor activation. This drug recently received the US Food and Drug Administration’s accelerated approval for the treatment of advanced STS when combined with doxorubicin. This approval was based upon an improvement in overall survival of patients receiving the combination of doxorubicin and olaratumab compared to those receiving doxo-rubicin alone. In this review, we have analyzed the available literature on the development of olaratumab, its clinical utility, and its place in therapy. Based on early-phase clinical trials, olaratumab appears to be a promising agent for the treatment of STS.
Collapse
Affiliation(s)
- Elizabeth J Davis
- Department of Internal Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Rashmi Chugh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Tsushima H, Morimoto S, Fujishiro M, Yoshida Y, Hayakawa K, Hirai T, Miyashita T, Ikeda K, Yamaji K, Takamori K, Takasaki Y, Sekigawa I, Tamura N. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis. Autoimmunity 2017; 50:329-335. [PMID: 28682648 DOI: 10.1080/08916934.2017.1344970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.
Collapse
Affiliation(s)
- Hiroshi Tsushima
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Shinji Morimoto
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Maki Fujishiro
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Yuko Yoshida
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Kunihiro Hayakawa
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Takuya Hirai
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Tomoko Miyashita
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Keigo Ikeda
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Ken Yamaji
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Kenji Takamori
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Yoshinari Takasaki
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Iwao Sekigawa
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Naoto Tamura
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| |
Collapse
|
15
|
Bertoni N, Pereira LMS, Severino FE, Moura R, Yoshida WB, Reis PP. Integrative meta-analysis identifies microRNA-regulated networks in infantile hemangioma. BMC MEDICAL GENETICS 2016; 17:4. [PMID: 26772808 PMCID: PMC4715339 DOI: 10.1186/s12881-015-0262-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/12/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hemangioma is a common benign tumor in the childhood; however our knowledge about the molecular mechanisms of hemangioma development and progression are still limited. Currently, microRNAs (miRNAs) have been shown as gene expression regulators with an important role in disease pathogenesis. Our goals were to identify miRNA-mRNA expression networks associated with infantile hemangioma. METHODS We performed a meta-analysis of previously published gene expression datasets including 98 hemangioma samples. Deregulated genes were further used to identify microRNAs as potential regulators of gene expression in infantile hemangioma. Data were integrated using bioinformatics methods, and genes were mapped in proteins, which were then used to construct protein-protein interaction networks. RESULTS Deregulated genes play roles in cell growth and differentiation, cell signaling, angiogenesis and vasculogenesis. Regulatory networks identified included microRNAs miR-9, miR-939 and let-7 family; these microRNAs showed the most number of interactions with deregulated genes in infantile hemangioma, suggesting that they may have an important role in the molecular mechanisms of disease. Additionally, results were used to identify drug-gene interactions and druggable gene categories using Drug-Gene Interaction Database. We show that microRNAs and microRNA-target genes may be useful biomarkers for the development of novel therapeutic strategies for patients with infantile hemangioma. CONCLUSIONS microRNA-regulated pathways may play a role in infantile hemangioma development and progression and may be potentially useful for future development of novel therapeutic strategies for patients with infantile hemangioma.
Collapse
Affiliation(s)
- Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Lied M S Pereira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Fábio E Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Regina Moura
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Winston B Yoshida
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Patricia P Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
16
|
Liang J, Li B, Yuan L, Ye Z. Prognostic value of IGF-1R expression in bone and soft tissue sarcomas: a meta-analysis. Onco Targets Ther 2015; 8:1949-55. [PMID: 26251617 PMCID: PMC4524581 DOI: 10.2147/ott.s88293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulated evidence has indicated a correlation between IGF-1R and bone and soft tissue sarcoma (BSTS) progression. However, research on the prognostic role of IGF-1R in sarcomas has revealed very different or even totally opposite results. This meta-analysis aimed to unveil the controversial role IGF-1R plays in predicting the outcome of BSTS patients. We systematically reviewed the evidence for the effect of IGF-1R expression in multiple types of BSTSs, including osteosarcoma, Ewing’s sarcoma, synovial sarcoma, liposarcoma, and rhabdomyosarcoma, to elucidate this issue. The prognostic value of IGF-1R expression in BSTS patients was evaluated regarding overall survival, measured by pooled hazard ratios (HRs) with 95% confidence intervals (CIs). Seven studies including 627 patients were enrolled in this meta-analysis. Our results demonstrated that IGF-1R expression was associated with poor outcome in terms of overall survival in BSTS patients (pooled HR =2.15, 95% CI: 1.06–4.38; P=0.03). In subtypes of BSTSs, elevated IGF-1R expression was revealed to be significantly correlated with worse prognosis in osteosarcoma (pooled HR =2.20, 95% CI: 1.59–0.03; P<0.001), while no statistical significance was discovered in Ewing’s sarcoma (pooled HR =1.01, 95% CI: 0.45–2.27; P=0.99). Expression of IGF-1R could be a negative prognostic biomarker for patients suffering from BSTSs.
Collapse
Affiliation(s)
- Junbo Liang
- School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China ; Department of Orthopedics, Taizhou Hospital, Taizhou, People's Republic of China
| | - Binghao Li
- Department of Orthopaedics, Institute of Orthopaedic Research, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Yuan
- School of Public Health, Fudan University, Shanghai, People's Republic of China
| | - Zhaoming Ye
- Department of Orthopaedics, Institute of Orthopaedic Research, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|