1
|
Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11:2582. [PMID: 37761023 PMCID: PMC10526317 DOI: 10.3390/biomedicines11092582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer characterized by hepatocellular differentiation. HCC is molecularly heterogeneous with a wide spectrum of histopathology. The prognosis of patients with HCC is generally poor, especially in those with advanced stages. HCC remains a diagnostic challenge for pathologists because of its morphological and phenotypic diversity. However, recent advances have enhanced our understanding of the molecular genetics and histological subtypes of HCC. Accurate diagnosis of HCC is important for patient management and prognosis. This review provides an update on HCC pathology, focusing on molecular genetics, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
2
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Akbulut S, Tuncer A, Ogut Z, Sahin TT, Koc C. High-Level Procalcitonin in Patient with Mixed Fibrolamellar Hepatocellular Carcinoma: A Case Report and Literature Review. J Gastrointest Cancer 2022; 53:1130-1134. [PMID: 34738189 DOI: 10.1007/s12029-021-00731-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Course of blood procalcitonin levels by days.
Collapse
Affiliation(s)
- Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Adem Tuncer
- Department of Surgery, Inonu University Faculty of Medicine, 44280, Malatya, Turkey
| | - Zeki Ogut
- Department of Surgery, Inonu University Faculty of Medicine, 44280, Malatya, Turkey
| | - Tevfik Tolga Sahin
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Cemalettin Koc
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| |
Collapse
|
4
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
5
|
Nahm JH, Park YN. [Up-to-date Knowledge on the Pathological Diagnosis of Hepatocellular Carcinoma]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 78:268-283. [PMID: 34824185 DOI: 10.4166/kjg.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) has heterogeneous molecular and pathological features and biological behavior. Large-scale genetic studies of HCC were accumulated, and a pathological-molecular classification of HCC was proposed. Approximately 35% of HCCs can be classified into distinct histopathological subtypes according to their molecular characteristics. Among recently identified subtypes, macrotrabecular massive HCC, neutrophil-rich HCC, vessels encapsulating tumor clusters HCC, and progenitor phenotype HCC (HCC with CK19 expression) are associated with a poor prognosis, whereas the lymphocyte-rich HCC subtype is related to a better prognosis. This review provides up-to-date knowledge on the pathological diagnosis of HCC according to the updated World Health Organization Classification of Digestive System Tumors 5th ed.
Collapse
Affiliation(s)
- Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Samdanci ET, Akatli AN, Soylu NK. Clinicopathological Features of Two Extremely Rare Hepatocellular Carcinoma Variants: a Brief Review of Fibrolamellar and Scirrhous Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 51:1187-1192. [PMID: 32860202 DOI: 10.1007/s12029-020-00500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE We aimed to distinguish between fibrolamellar hepatocellular carcinoma and scirrhous hepatocellular carcinoma histopathologically. METHODS AND RESULTS In this review, fibrolamellar hepatocellular carcinoma and scirrhous hepatocellular carcinoma two specific and rare variants of hepatocellular carcinoma, which are difficult to diagnose histopathologically are discussed. CONCLUSION The clinical, radiological, gross, histopathological, immunohistochemical, and molecular features of these two tumors, which are defined by the World Health Organization (WHO), are mentioned.
Collapse
Affiliation(s)
- Emine Turkmen Samdanci
- Liver Institute, Pathology Department, Inonu University, School of Medicine, Malatya, Turkey.
| | - Ayse Nur Akatli
- Liver Institute, Pathology Department, Inonu University, School of Medicine, Malatya, Turkey
| | - Nese Karadag Soylu
- Liver Institute, Pathology Department, Inonu University, School of Medicine, Malatya, Turkey
| |
Collapse
|
7
|
Hirsch TZ, Negulescu A, Gupta B, Caruso S, Noblet B, Couchy G, Bayard Q, Meunier L, Morcrette G, Scoazec JY, Blanc JF, Amaddeo G, Nault JC, Bioulac-Sage P, Ziol M, Beaufrère A, Paradis V, Calderaro J, Imbeaud S, Zucman-Rossi J. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J Hepatol 2020; 72:924-936. [PMID: 31862487 DOI: 10.1016/j.jhep.2019.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS DNAJB1-PRKACA fusion is a specific driver event in fibrolamellar carcinoma (FLC), a rare subtype of hepatocellular carcinoma (HCC) that occurs in adolescents and young adults. In older patients, molecular determinants of HCC with mixed histological features of HCC and FLC (mixed-FLC/HCC) remain to be discovered. METHODS A series of 151 liver tumors including 126 HCC, 15 FLC, and 10 mixed-FLC/HCC were analyzed by RNAseq and whole-genome- or whole-exome sequencing. Western blots were performed to validate genomic discoveries. Results were validated using the TCGA database. RESULTS Most of the mixed-FLC/HCC RNAseq clustered in a robust subgroup of 17 tumors, which all had mutations or translocations inactivating BAP1, the gene encoding BRCA1-associated protein-1. Like FLC, BAP1-HCC were significantly enriched in females, patients with a lack of chronic liver disease, and fibrotic tumors compared to non-BAP1 HCC. However, patients were older and had a poorer prognosis than those with FLC. BAP1 tumors were immune hot, showed progenitor features and did not show DNAJB1-PRKACA fusion, while almost none of these tumors had mutations in CTNNB1, TP53 and TERT promoter. In contrast, 80% of the BAP1 tumors showed a chromosome gain of PRKACA at 19p13, combined with a loss of PRKAR2A (coding for the inhibitory regulatory subunit of PKA) at 3p21, leading to a high PRKACA/PRKAR2A ratio at the mRNA and protein levels. CONCLUSION We have characterized a subgroup of BAP1-driven HCC with fibrolamellar-like features and a dysregulation of the PKA pathway, which could be at the root of the clinical and histological similarities between BAP1 tumors and DNAJB1-PRKACA FLCs. LAY SUMMARY Herein, we have defined a homogeneous subgroup of hepatocellular carcinomas in which the BAP1 gene is inactivated. This leads to the development of cancers with features similar to those of fibrolamellar carcinoma. These tumors more frequently develop in females without chronic liver disease or cirrhosis. The presence of PKA activation and T cell infiltrates suggest that these tumors could be treated with PKA inhibitors or immunomodulators.
Collapse
Affiliation(s)
- Théo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Ana Negulescu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Bénédicte Noblet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Gabrielle Couchy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service de Pathologie Pédiatrique, APHP, Hôpital Robert Debré, F-75019 Paris, France
| | - Jean-Yves Scoazec
- Service d'anatomie et de cytologie pathologiques, Gustave Roussy Cancer Center, F-94800 Villejuif, France
| | - Jean-Frédéric Blanc
- Service Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Haut-Lévêque, CHU de Bordeaux, F-33000 Bordeaux, France; Service de Pathologie, Hôpital Pellegrin, CHU de Bordeaux, F-33076 Bordeaux, France; Université Bordeaux, Inserm, Research in Translational Oncology, BaRITOn, F-33076 Bordeaux, France
| | - Giuliana Amaddeo
- Service d'Hépato-Gastro-Entérologie, Hôpital Henri Mondor, APHP, Université Paris Est Créteil, Inserm U955, Institut Mondor de Recherche Biomédicale, F-94010 Créteil, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service d'Hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, Universitô Sorbonne Paris Nord, F-93140 Bondy, France
| | - Paulette Bioulac-Sage
- Service de Pathologie, Hôpital Pellegrin, CHU de Bordeaux, F-33076 Bordeaux, France; Université Bordeaux, Inserm, Research in Translational Oncology, BaRITOn, F-33076 Bordeaux, France
| | - Marianne Ziol
- Service d'Anatomie Pathologique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, Université Sorbonne Paris Nord, F-93140 Bondy, France
| | - Aurélie Beaufrère
- Service de pathologie, Hôpital Beaujon, APHP, F-92110 Clichy, France
| | - Valérie Paradis
- Service de pathologie, Hôpital Beaujon, APHP, F-92110 Clichy, France; Université de Paris, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, F-75890, France
| | - Julien Calderaro
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Service d'Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, F-94010 Créteil, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006, Paris, France; Hôpital Européen Georges Pompidou, APHP, F-75015 Paris, France.
| |
Collapse
|
8
|
Barreira JV, Silva N, Parmanande A, Rocha M, Coelho JS, Marques HP, da Luz R. Fibrolamellar Carcinoma: A Multimodal Approach. GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2020; 27:429-433. [PMID: 33251292 DOI: 10.1159/000507201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023]
Abstract
Fibrolamellar carcinoma is a rare variant of hepatocellular carcinoma not associated with cirrhosis or viral hepatitis. Serum alpha-fetoprotein levels are usually normal; the histology is of a well-differentiated tumor, and the staging is the same as for hepatocellular carcinoma. We describe the case of a female patient in her 4th decade of life with a diagnosis of fibrolamellar hepatocellular carcinoma with a multimodal approach. The rare incidence of this cancer and its unusual clinical presentation justifies reporting this case and highlights the importance of multidisciplinary teams in the treatment of cancer patients.
Collapse
Affiliation(s)
- João Vasco Barreira
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Nádia Silva
- General Surgery Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Anuraj Parmanande
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Manuel Rocha
- Gastroenterology Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - João S Coelho
- General Surgery Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Hugo Pinto Marques
- General Surgery Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - Ricardo da Luz
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| |
Collapse
|
9
|
Dinh TA, Sritharan R, Smith FD, Francisco AB, Ma RK, Bunaciu RP, Kanke M, Danko CG, Massa AP, Scott JD, Sethupathy P. Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Rep 2020; 31:107509. [PMID: 32294439 PMCID: PMC7474926 DOI: 10.1016/j.celrep.2020.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although FLC tumors exhibit a distinct gene expression profile, the chromatin regulatory landscape and the genes most critical for tumor cell survival remain unclear. Here, we use chromatin run-on sequencing to discover ∼7,000 enhancers and 141 enhancer hotspots activated in FLC relative to nonmalignant liver. Bioinformatic analyses reveal aberrant ERK/MEK signaling and candidate master transcriptional regulators. We also define the genes most strongly associated with hotspots of FLC enhancer activity, including CA12 and SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduce cell viability and/or significantly enhance the effect of the MEK inhibitor cobimetinib. These findings highlight molecular targets for drug development, as well as drug combination approaches.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rosanna K Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Charles G Danko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Andrew P Massa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Abstract
Next-generation sequencing (NGS) has become the primary technology for discovering gene fusions. Decreasing NGS costs have resulted in a growing quantity of patients with whole transcriptome sequencing (RNA-seq) and whole genome sequencing (WGS) data. We developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read alignment. INTEGRATE has become widely adopted by the larger cancer research community to discover biologically and clinically relevant gene fusions. Here we explain the rationale driving the development of the INTEGRATE tool and describe the detailed practical procedures for applying INTEGRATE to discover gene fusions using NGS data. INTEGRATE can be applied to both combined data and RNA-seq only data.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiation Oncology, Siteman Cancer Center, Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Biomedical Engineering, University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Molecular and histological correlations in liver cancer. J Hepatol 2019; 71:616-630. [PMID: 31195064 DOI: 10.1016/j.jhep.2019.06.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, both at the molecular and histological level. High-throughput sequencing and gene expression profiling have identified distinct transcriptomic subclasses and numerous recurrent genetic alterations; several HCC subtypes characterised by histological features have also been identified. HCC phenotype appears to be closely related to particular gene mutations, tumour subgroups and/or oncogenic pathways. Non-proliferative tumours display a well-differentiated phenotype. Among this molecular subgroup, CTNNB1-mutated HCCs constitute a homogeneous subtype, exhibiting cholestasis and microtrabecular and pseudoglandular architectural patterns. Another non-proliferative subtype has a gene expression pattern similar to that of mature hepatocytes (G4) and displays a steatohepatitic phenotype. In contrast, proliferative HCCs are most often poorly differentiated, and notably include tumours with progenitor features. A novel morphological variant of proliferative HCC - designated "macrotrabecular-massive" - was recently shown to be associated with angiogenesis activation and poor prognosis. Altogether, these findings may help to translate our knowledge of HCC biology into clinical practice, resulting in improved precision medicine for patients with this highly aggressive malignancy. This manuscript reviews the most recent data in this exciting field, discussing future directions and challenges.
Collapse
|
12
|
Abstract
Fibrolamellar carcinoma is distinctive at clinical and histologic levels. A novel DNAJB1-PRKACA fusion gene characterizes almost all cases, distinguishes it from other hepatocellular neoplasms, and drives the pathogenesis of this unique tumor. A subset of cases of fibrolamellar carcinoma is associated with alternate mechanisms of protein kinase A activation. This review article discusses common and unusual histologic features of fibrolamellar carcinoma, its differential diagnoses, and how to make the diagnosis while avoiding key pitfalls. The impact of the discovery of the fusion gene on the understanding of the tumor and the prognosis of fibrolamellar carcinoma are also discussed.
Collapse
Affiliation(s)
- Rondell P Graham
- Division of Anatomic Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA; Division of Laboratory Genetics and Genomics, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Wang G, Fang X, Han M, Wang X, Huang Q. MicroRNA-493-5p promotes apoptosis and suppresses proliferation and invasion in liver cancer cells by targeting VAMP2. Int J Mol Med 2018; 41:1740-1748. [PMID: 29328362 DOI: 10.3892/ijmm.2018.3358] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/15/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the role of miR‑493-5p in liver cancer tissues and cell lines, and its effect on cell behavioral characteristics. The expression of miR-493-5p was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in liver cancer tissues and cell lines (hepatic cell line HL-7702 and the liver cancer cell lines HCCC-9810, HuH-7 and HepG2). In addition, the mechanism by which miR-493-5p mediates its effects was analyzed via the transfection of miR-493-5p mimic and negative control miRNA into HepG2 cells. The viability, proliferation, apoptosis and invasion of the cells were analyzed using MTT assay, flow cytometry and Transwell chamber experiments. Furthermore, the effect of miR-493-5p on the expression of vesicle associated membrane protein 2 (VAMP2) was assayed using a dual-luciferase reporter system, and VAMP2 protein levels were determined by western blot analysis. In addition, following the cotransfection of HepG2 cells with pcDNA3.1‑VAMP2 plasmid and miR‑493-5p mimic, the role of miR-493-5p as a regulator of VAMP2 was evaluated using MTT assay, flow cytometry and Transwell chamber experiments. RT-qPCR analysis indicated that the expression of miR-493-5p in liver cancer tissues and cell lines was decreased significantly compared with that in adjacent normal liver tissues and normal liver cell lines, respectively. Compared with the control group, the cells transfected with miR-493-5p mimic (the miR-493-5p overexpression group) exhibited reduced cell viability, a reduced percentage of cells in the S phase and an increased percentage of apoptotic cells. In addition, fewer cells passed through the Transwell membrane in the miR-493-5p overexpression group compared with the control group. In the dual-luciferase reporter assay, luciferase activity in the miR‑493-5p overexpression group was attenuated compared with that in the control group. In addition, western blot analysis indicated that the VAMP2 protein levels in the miR‑493-5p overexpression group were lower than those in the control group. Furthermore, in cells overexpressing miR-493-5p and VAMP2 simultaneously, the biological behavior of the cells, including cell viability, cell cycle and cell invasiveness, was significantly rescued compared with that of the control group transfected with miR‑493-5p alone. In conclusion, miR-493-5p is indicated to be a tumor suppressor gene, and is downregulated in human liver cancer. miR-493-5p overexpression promotes cell apoptosis and inhibits the proliferation and migration of liver cancer cells by negatively regulating the expression of VAMP. These observations suggest the potential of treating liver cancer by the overexpression of microRNA-493-5p.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pancreato-Biliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiaosan Fang
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Meng Han
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Qiang Huang
- Department of Pancreato-Biliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
14
|
Zhang J, Gao T, Maher CA. INTEGRATE-Vis: a tool for comprehensive gene fusion visualization. Sci Rep 2017; 7:17808. [PMID: 29259323 PMCID: PMC5736641 DOI: 10.1038/s41598-017-18257-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023] Open
Abstract
Despite the increasing quantity of tools for accurately predicting gene fusion candidates from sequencing data, we are still faced with the critical challenge of visualizing the corresponding gene fusion products to infer their biological consequence (i.e. novel protein and increased gene expression). This is currently accomplished by manually inspecting and inferring the biological consequence of top scoring gene fusion candidates. This labor-intensive process could be made easier by automating the annotation of gene fusion products and generating easily interpretable visualizations. We developed a gene fusion visualization tool, called INTEGRATE-Vis, that generates comprehensive, highly customizable, publication-quality graphics focused on annotating each gene fusion at the transcript- and protein-level and assessing expression within an individual sample or across a patient cohort. INTEGRATE-Vis is the first comprehensive gene fusion visualization tool to help a user infer the potential consequence of a gene fusion event. It has potential utility in both research and clinical settings. INTEGRATE-Vis is available at https://github.com/ChrisMaherLab/INTEGRATE-Vis.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Teng Gao
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, 63105, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, 63110, USA. .,Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63105, USA.
| |
Collapse
|
15
|
Engelholm LH, Riaz A, Serra D, Dagnæs-Hansen F, Johansen JV, Santoni-Rugiu E, Hansen SH, Niola F, Frödin M. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma. Gastroenterology 2017; 153:1662-1673.e10. [PMID: 28923495 PMCID: PMC5801691 DOI: 10.1053/j.gastro.2017.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. RESULTS Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. CONCLUSIONS Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer.
Collapse
Affiliation(s)
- Lars H Engelholm
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark,Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjum Riaz
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Denise Serra
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens V Johansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen H Hansen
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,GI Cell Biology Research Laboratory, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Niola
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten Frödin
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
17
|
Affiliation(s)
- Miral Sadaria Grandhi
- Department of Surgery, Division of Surgical Oncology, Section of Gastrointestinal Surgical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Timothy M. Pawlik
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|