1
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Asgharzadeh F, Moradi Binabaj M, Fanoudi S, C. Cho W, Yang YJ, Azarian M, Shafiee Ardestani M, Nasiri N, Ramezani Farani M, Huh YS. Nanomedicine Strategies Utilizing Lipid-Based Nanoparticles for Liver Cancer Therapy: Exploring Signaling Pathways and Therapeutic Modalities. Adv Pharm Bull 2024; 14:513-523. [PMID: 39494254 PMCID: PMC11530870 DOI: 10.34172/apb.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024] Open
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related deaths, following pancreatic cancer. The 5-year overall survival rate for HCC remains relatively low. Currently, there are multiple treatment options available for HCC, including systemic drugs, minimally invasive local therapies such as radiofrequency ablation, transarterial chemoembolization (TACE), and arterial radioembolization (TARE), as well as surgical interventions like liver resection or transplantation. However, the effectiveness of drug delivery to the cancerous liver is hindered by pathophysiological changes in the organ. In order to address this challenge, lipid-based nanoparticles (LNPs) have emerged as promising platforms for delivering a diverse range of therapeutic drugs. LNPs offer various structural configurations that enhance their physical stability and enable them to accommodate different types of cargo with varying mechanical properties and degrees of hydrophobicity. In this article, we provide a comprehensive review of the current applications of LNPs in the development of anti-HCC therapies. By examining the existing research, we aim to shed light on the potential future directions and advancements in this field.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Yu-jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Nasiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Li F, Xu L, Li C, Hu F, Su Y. Immunological role of Gas6/TAM signaling in hemostasis and thrombosis. Thromb Res 2024; 238:161-171. [PMID: 38723521 DOI: 10.1016/j.thromres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
The immune system is an emerging regulator of hemostasis and thrombosis. The concept of immunothrombosis redefines the relationship between coagulation and immunomodulation, and the Gas6/Tyro3-Axl-MerTK (TAM) signaling pathway builds the bridge across them. During coagulation, Gas6/TAM signaling pathway not only activates platelets, but also promotes thrombosis through endothelial cells and vascular smooth muscle cells involved in inflammatory responses. Thrombosis appears to be a common result of a Gas6/TAM signaling pathway-mediated immune dysregulation. TAM TK and its ligands have been found to be involved in coagulation through the PI3K/AKT or JAK/STAT pathway in various systemic diseases, providing new perspectives in the understanding of immunothrombosis. Gas6/TAM signaling pathway serves as a breakthrough target for novel therapeutic strategies to improve disease management. Many preclinical and clinical studies of TAM receptor inhibitors are in process, confirming the pivotal role of Gas6/TAM signaling pathway in immunothrombosis. Therapeutics targeting the TAM receptor show potential both in anticoagulation management and immunotherapy. Here, we review the immunological functions of the Gas6/TAM signaling pathway in coagulation and its multiple mechanisms in diseases identified to date, and discuss the new clinical strategies that may generated by these roles.
Collapse
Affiliation(s)
- Fanshu Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; Peking University People's Hospital, Qingdao, China
| |
Collapse
|
5
|
Santoro A, Assenat E, Yau T, Delord JP, Maur M, Knox J, Cattan S, Lee KH, Del Conte G, Springfeld C, Leo E, Xyrafas A, Fairchild L, Mardjuadi F, Chan SL. A phase Ib/II trial of capmatinib plus spartalizumab vs. spartalizumab alone in patients with pretreated hepatocellular carcinoma. JHEP Rep 2024; 6:101021. [PMID: 38617599 PMCID: PMC11009449 DOI: 10.1016/j.jhepr.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 04/16/2024] Open
Abstract
Background & aims This phase Ib/II trial evaluated the safety and efficacy of capmatinib in combination with spartalizumab or spartalizumab alone in patients with advanced hepatocellular carcinoma (HCC). Methods Eligible patients who had progressed or were intolerant to sorafenib received escalating doses of capmatinib 200 mg, 300 mg, and 400 mg twice a day (bid) plus spartalizumab 300 mg every 3 weeks (q3w) in the phase Ib study. Once the recommended phase II dose (RP2D) was determined, the phase II study commenced with randomised 1:1 treatment with either capmatinib + spartalizumab (n = 32) or spartalizumab alone (n = 30). Primary endpoints were safety and tolerability (phase Ib) and investigator-assessed overall response rate per RECIST v1.1 for combination vs. single-agent arms using a Bayesian logistic regression model (phase II). Results In phase Ib, the RP2D for capmatinib in combination with spartalizumab was determined to be 400 mg bid. Dose-limiting toxicity consisting of grade 3 diarrhoea was reported in one patient at the capmatinib 400 mg bid + spartalizumab 300 mg q3w dose level. The primary endpoint in the phase II study was not met. The observed overall response rate in the capmatinib + spartalizumab arm was 9.4% vs. 10% in the spartalizumab arm. The most common any-grade treatment-related adverse events (TRAEs, ≥20%) were nausea (37.5%), asthenia and vomiting (28.1% each), diarrhoea, pyrexia, and decreased appetite (25.0% each) in the combination arm; TRAEs ≥10% were pruritus (23.3%), and rash (10.0%) in the spartalizumab-alone arm. Conclusion Capmatinib at 400 mg bid plus spartalizumab 300 mg q3w was established as the RP2D, with manageable toxicities and no significant safety signals, but the combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. Impact and implications Simultaneous targeting of MET and programmed cell death protein 1 may provide synergistic clinical benefit in patients with advanced HCC. This is the first trial to report a combination of capmatinib (MET inhibitor) and spartalizumab (programmed cell death protein 1 inhibitor) as second-line treatment after sorafenib for advanced HCC. The combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. The results indicate that there is a clear need to identify a reliable predictive marker of response for HCC and to identify patients with HCC that would benefit from the combination of checkpoint inhibitor +/- targeted therapy. Clinical trial number NCT02795429.
Collapse
Affiliation(s)
- Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, Milan, Italy
| | - Eric Assenat
- Hopital Arnaud de Villeneuve Montpellier Cedex 5, Herault, France
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | | | - Michela Maur
- Oncology Unit, AOU Policlinico Modena and University Study of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Kyung-Hun Lee
- Seoul National University Hospital, Seoul, South Korea
| | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Christoph Springfeld
- Nat. Centrum f. Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Elisa Leo
- Novartis Pharma AG, Basel, Switzerland
| | | | - Lauren Fairchild
- Oncology Data Science, Novartis Institutes for BioMedical Research, Cambridge, USA
| | - Feby Mardjuadi
- Novartis Institutes for Biomedical Research Co., Ltd., Shanghai, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Liang X, Jiang Y, Yao W, Deng Y, Yang S, Liu Q. Liver-directed moderately hypo-fractionated radiotherapy combined with pembrolizumab and bevacizumab for advanced hepatocellular carcinoma: a retrospective observational study of 23 cases. Transl Cancer Res 2024; 13:1508-1518. [PMID: 38617508 PMCID: PMC11009807 DOI: 10.21037/tcr-23-1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/07/2024] [Indexed: 04/16/2024]
Abstract
Background Programmed cell death protein 1 (PD-1) or its ligand (PD-L1) monoclonal antibody combined with bevacizumab (a monoclonal antibody targeting vascular endothelial growth factor) has been established as first-line systemic treatment for advanced hepatocellular carcinoma (HCC). Radiotherapy is a crucial local treatment for HCC. Mutual efficacy enhancement has been reported between radiotherapy, anti-angiogenesis therapy and immunotherapy in preclinical researches, but not been validated in clinical practice. Whether radiotherapy can enhance efficacy of anti-PD-1 immunotherapy plus bevacizumab for HCC remains unclear. This retrospective observational study aimed to appraise efficacy and safety of the combination of radiotherapy with pembrolizumab (a PD-1 monoclonal antibody) and bevacizumab for advanced HCC for the first time. Methods Patients with advanced HCC treated by intrahepatic tumor-directed moderately hypo-fractionated radiotherapy combined with pembrolizumab and bevacizumab were consecutively included. Clinicopathological characteristics, therapeutic outcomes and treatment-related adverse events (TRAEs) were recorded and evaluated. Results A total of 23 patients were eventually enrolled. Median cycles of pembrolizumab and bevacizumab were 4 (median, 1-8) and 4 (median, 1-9) cycles. The objective response rates and disease control rates of irradiated intrahepatic HCC and non-irradiated extrahepatic HCC were 34.8% [95% confidence interval (CI), 16.4-57.3%] vs. 10.0% (95% CI, 1.2-31.7%), and 91.3% (95% CI, 72.0-98.9%) vs. 70.0% (95% CI, 45.7-88.1%), respectively. The median progression-free survival (PFS) and overall survival (OS) were 6.6 (95% CI, 4.7-8.5) and 18.3 (95% CI, 8.2-33.6) months, and 12-month PFS and OS rates were 17.5% (95% CI, 7.0-28.0%) and 60.9% (95% CI, 50.7-71.1%). Two patients (8.7%) with locally advanced, unresectable HCC eventually underwent curative resection of tumors after this trimodal treatment. Eighteen patients (78.3%) had ≥ grade 3 TRAEs, with myelosuppression and transaminase increase as the most common. Conclusions This study firstly reported that combining radiotherapy with pembrolizumab and bevacizumab was preliminarily a feasible and effective therapeutic choice for advanced HCC in despite of more TRAEs. This tri-modal regimen may be a potential conversion therapy for unresectable, locally advanced HCC. The limitations of this study are its retrospective nature and small sample size; therefore, big-sample prospective studies are warranted to further investigate this tri-modal regimen.
Collapse
Affiliation(s)
- Xuexia Liang
- Department of Cancer Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yanhui Jiang
- Department of Cancer Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Yao
- Department of Cancer Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yun Deng
- Department of Cancer Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shuai Yang
- Department of Radiotherapy and Minimally Invasive Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaodan Liu
- Department of Cancer Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
7
|
Lu L, Guo W, Chen J, Gao S, Liu L, Gong B, Yang H, Wang X, Chen Y, Shi Y, Chen X. Postoperative subphenotypes modified the hepatoma arterial-embolization prognostic score: A novel smHAP-II nomogram. J Cancer 2024; 15:2940-2947. [PMID: 38706898 PMCID: PMC11064269 DOI: 10.7150/jca.91175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Three subphenotypes were identified for unresectable hepatocellular carcinoma (uHCC) after frontline transarterial chemoembolization (TACE). This study aimed to develop an individual smHAP-Ⅱ nomogram for uHCC patients after TACE. Methods: Between January 2007 to December 2016, 1517 uHCC patients undergoing TACE were included from four hospitals in China (derivation cohort: 597 cases; validation cohort: 920 cases). Multivariable Cox proportion regression analysis was used to develop a nomogram, incorporating postoperative subphenotypes (Phenotype 1, 2, 3) and HAP score (Score 0 to 4). The model was validated by a 1000-time bootstrap resampling procedure. The performance of the model was compared with existing ones by Harrell's C-index and Area Under Curve (AUC). Results: Postoperative subphenotypes modified the HAP score (smHAP-Ⅱ nomogram) was developed and validated, with the Harrell's C-index of the nomogram was 0.679 (SD: 0.029) for the derivation cohort and 0.727(SD:0.029) for the external cohort. The area under curves of the nomogram for 1-, 3-, and 5-year OS were 0.750, 0.710, and 0.732 for the derivation cohort, respectively (0.789, 0.762, and 0.715 for the external cohort). In the calibration curves stratified by treatment after TACE, the lines for re-TACE and stop-TACE cross at 0.23, indicating that patients with a 3-year predicted survival >23% would not benefit from TACE. Conclusions: The addition of postoperative subphenotypes significantly improved the prognostic performance. The smHAP-Ⅱ nomogram can be used for accurate prognostication and selection of optimal candidates for TACE, with the value to guide sequential treatment strategy.
Collapse
Affiliation(s)
- Linbin Lu
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Wanting Guo
- Department of Oncology, the 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical College of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Jialin Chen
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Simiao Gao
- Department of Oncology, the 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical College of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Lifang Liu
- Department of Oncology, the 900th Hospital of Joint Logistic Support Force, PLA, Xiamen University Medical College, 350025, Fuzhou, Fujian, PR China
| | - Baocuo Gong
- Department of Oncology, the 900th Hospital of Joint Logistic Support Force, PLA, Xiamen University Medical College, 350025, Fuzhou, Fujian, PR China
| | - Hongyi Yang
- Department of Oncology, the 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical College of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Xuewen Wang
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Yayin Chen
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Yanhong Shi
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| | - Xiong Chen
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025, Fuzhou, Fujian, PR China
| |
Collapse
|
8
|
Cabibbo G, Daniele B, Borzio M, Casadei-Gardini A, Cillo U, Colli A, Conforti M, Dadduzio V, Dionisi F, Farinati F, Gardini I, Giannini EG, Golfieri R, Guido M, Mega A, Cinquini M, Piscaglia F, Rimassa L, Romanini L, Pecorelli A, Sacco R, Scorsetti M, Viganò L, Vitale A, Trevisani F. Multidisciplinary treatment of hepatocellular carcinoma in 2023: Italian practice Treatment Guidelines of the Italian Association for the Study of the Liver (AISF), Italian Association of Medical Oncology (AIOM), Italian Association of Hepato-Bilio-Pancreatic Surgery (AICEP), Italian Association of Hospital Gastroenterologists (AIGO), Italian Association of Radiology and Clinical Oncology (AIRO), Italian Society of Pathological Anatomy and Diagnostic Cytology (SIAPeC-IAP), Italian Society of Surgery (SIC), Italian Society of Gastroenterology (SIGE), Italian Society of Medical and Interventional Radiology (SIRM), Italian Organ Transplant Society (SITO), and Association of Patients with Hepatitis and Liver Disease (EpaC) - Part II - Non-surgical treatments. Dig Liver Dis 2024; 56:394-405. [PMID: 38052656 DOI: 10.1016/j.dld.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Worldwide, hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. The remarkable improvements in treating HCC achieved in the last years have increased the complexity of its management. Following the need to have updated guidelines on the multidisciplinary treatment management of HCC, the Italian Scientific Societies involved in the management of this cancer have promoted the drafting of a new dedicated document. This document was drawn up according to the GRADE methodology needed to produce guidelines based on evidence. Here is presented the second part of guidelines, focused on the multidisciplinary tumor board of experts and non-surgical treatments of HCC.
Collapse
Affiliation(s)
- Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties PROMISE, University of Palermo, Gastroenterology Unit, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", Palermo, Italy.
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, ASL Napoli 1 Centro, Napoli, Italy
| | - Mauro Borzio
- Centro Diagnostico Italiano (CDI), Milano, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Umberto Cillo
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, 35128 Padua, Italy
| | - Agostino Colli
- Dipartimento di Medicina Trasfusionale ed Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Vincenzo Dadduzio
- Medical Oncology Unit, "Mons. A.R.Dimiccoli" Hospital, Barletta, ASL BT, Italy
| | - Francesco Dionisi
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute - Rome, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35128 Padova, Italy
| | - Ivan Gardini
- EpaC Onlus, Italian Liver Patient Association, Turin, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rita Golfieri
- Alma Mater Studiorum" Bologna University, Bologna, Italy; Radiology Unit Madre Fortunata Toniolo Private Hospital, coordinator of Radiology centers Medipass Bologna, Bologna, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova - Italy
| | - Andrea Mega
- Department of Gastronterology, Regional Hospital Bolzano, Italy
| | - Michela Cinquini
- Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Laura Romanini
- Radiology Unit, Ospedale di Cremona, ASST Cremona, Cremona, Italy
| | - Anna Pecorelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rodolfo Sacco
- Gastroenterology and Endoscopy Unit, Department of Surgical and Medical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Radiotherapy and Radiosurgery, Humanitas Research Hospital IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Luca Viganò
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125 Bergamo, Italy; Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090 Milan, Italy
| | - Alessandro Vitale
- General Surgery 2-Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padua University Hospital, 35128 Padua, Italy
| | - Franco Trevisani
- Department of Medical and Surgical Sciences, University of Bologna, Italy; Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
9
|
Jia W, Jin B, Xu W, Liu S, Mao X, Peng H, Zhang Y. pH-Responsive and Actively Targeted Metal-Organic Framework Structures for Multimodal Antitumor Therapy and Inhibition of Tumor Invasion and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50069-50082. [PMID: 37871135 DOI: 10.1021/acsami.3c11909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Multimodal treatment is an important tool to overcome tumor drug resistance. The reactive oxygen species (ROS) generated by photodynamic therapy (PDT) can directly play a killing role on tumor cells, which has the advantages of repeatable treatment and no drug resistance. However, its therapeutic oxygen consumption and destruction of tumor microvessels lead to hypoxia in tumor tissues, and hypoxia leads to overexpression of the receptor tyrosine kinase (c-MET) and vascular endothelial growth factor receptor (VEGFR). Overexpression of these two receptors leads to increased tumor invasiveness and metastasis. The molecularly targeted drug cabozantinib (CAB) has multiple targets, including anti-c-MET and VEGFR, to inhibit the development of hepatocellular carcinoma (HCC). In this study, our team designed a pH-sensitive nanoparticle CAB/Ce6@ZIF-8@PEG-FA (CCZP) loaded with CAB and Ce6, which exerted a multimodal therapeutic effect of PDT and molecularly targeted therapy by laser irradiation, and the PDT-induced overexpression of MET and VEGFR could also be inhibited by the target of CAB, thus reducing the invasive tumor cells metastasis. In summary, CCZP gives full play to the advantages of both drugs, exerting multimodal treatment while reducing HCC invasion and metastasis, providing a safe, potential approach to clinical treatment.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University, Nanjing 210009, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, China
| | - WenJing Xu
- Medical School, Southeast University, Nanjing 210009, China
| | - ShiWei Liu
- Medical School, Southeast University, Nanjing 210009, China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hao Peng
- Medical School, Southeast University, Nanjing 210009, China
| | - YeWei Zhang
- Medical School, Southeast University, Nanjing 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
10
|
Qin A, Qin Y, Lee J, Musket A, Ying M, Krenciute G, Marincola FM, Yao ZQ, Musich PR, Xie Q. Tyrosine kinase signaling-independent MET-targeting with CAR-T cells. J Transl Med 2023; 21:682. [PMID: 37779207 PMCID: PMC10544186 DOI: 10.1186/s12967-023-04521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity. METHODS MET-specific CARs with CD28ζ or 4-1BBζ as co-stimulation domains were constructed. MET-CAR-T cells derived from healthy subjects (HS) and HCC patients were evaluated for their killing activity and cytokine release against HCC cells with various MET activations in vitro, and for their tumor growth inhibition in orthotopic xenograft models in vivo. RESULTS MET-CAR.CD28ζ and MET-CAR.4-1BBζ T cells derived from both HS and HCC patients specifically killed MET-positive HCC cells. When stimulated with MET-positive HCC cells in vitro, MET-CAR.CD28ζ T cells demonstrated a higher level of cytokine release and expression of programmed cell death protein 1 (PD-1) than MET-CAR.4-1BBζ T cells. When analyzed in vivo, MET-CAR.CD28ζ T cells more effectively inhibited HCC orthotopic tumor growth in mice when compared to MET-CAR.4-1BBζ T cells. CONCLUSION We generated and characterized MET-specific CAR-T cells for targeting HCC with MET overexpression regardless of MET activation. Compared with MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells showed a higher anti-HCC potency but also a higher level of T cell exhaustion. While MET-CAR.CD28ζ is preferred for further development, overcoming the exhaustion of MET-CAR-T cells is necessary to improve their therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Yuan Qin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Joseph Lee
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anna Musket
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Zhi Q Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Qian Xie
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
11
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
12
|
Gu L, Jin X, Liang H, Yang C, Zhang Y. Upregulation of CSNK1A1 induced by ITGB5 confers to hepatocellular carcinoma resistance to sorafenib in vivo by disrupting the EPS15/EGFR complex. Pharmacol Res 2023; 192:106789. [PMID: 37149115 DOI: 10.1016/j.phrs.2023.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Oral multitarget tyrosine kinase inhibitors (TKIs), such as sorafenib, which suppress tumor cell proliferation and tumor angiogenesis, have been approved to treat patients with hepatocellular carcinoma (HCC). Of note, only approximately 30% of patients can benefit from TKIs, and this population usually acquires drug resistance within 6 months. In this study, we intended to explore the mechanism associated with regulating the sensitivity of HCC to TKIs. We revealed that integrin subunit β 5 (ITGB5) is abnormally expressed in HCC and contributes to decreased the sensitivity of HCC to sorafenib. Mechanistically, unbiased mass spectrometry analysis using ITGB5 antibodies revealed that ITGB5 interacts with EPS15 to prevent the degradation of EGFR in HCC cells, which activates AKT-mTOR signaling and the MAPK pathway to reduce the sensitivity of HCC cells to sorafenib. In addition, mass spectrometry analysis showed that CSNK1A1 binds to ITGB5 in HCC cells. Further study indicated that ITGB5 increased the protein level of CSNK1A1 through the EGFR-AKT-mTOR pathway in HCC. Upregulated CSNK1A1 phosphorylates ITGB5 to enhance the interaction between ITGB5 and EPS15 and activate EGFR in HCC cells. Thus, we identified a positive feedback loop between ITGB5-EPS15-EGFR-CSNK1A1 in HCC cells. This finding provides a theoretical basis for the future development of therapeutic strategies to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
13
|
Piñero F, Anders M, Bermudez C, Demirdjian E, Varón A, Palazzo A, Rodriguez J, Beltrán O, da Fonseca LG, Ridruejo E, Caballini P, Tamagnone N, Reggiardo V, Cheinquer H, Araujo A, Arufe D, Marín JI, Ratusnu N, Manero E, Perez D, Villa M, Orozco F, Murga D, Marciano S, Bessone F, Silva M, Mendizabal M. Liver decompensation is a frequent cause of treatment discontinuation and prognostic factor in intermediate-advanced HCC. Ann Hepatol 2023; 28:101110. [PMID: 37100385 DOI: 10.1016/j.aohep.2023.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION AND OBJECTIVES With the advent of new therapeutic options for patients with hepatocellular carcinoma (HCC) for intermediate or advanced stages of the Barcelona Clinic Liver Cancer (BCLC), regional real-world data regarding prognostic survival factors are of significant importance. PATIENTS AND METHODS A multicenter prospective cohort study was conducted in Latin America including BCLC B or C patients since 15th May 2018. We report here the second interim analysis focusing on prognostic variables and causes of treatment discontinuation. Cox proportional hazard survival analysis was performed, estimating hazard ratios (HR) and 95% confidence intervals (95% CI). RESULTS Overall, 390 patients were included, 55.1% and 44.9% were BCLC B and C at the time of study enrollment. Cirrhosis was present in 89.5% of the cohort. Among the BCLC-B group, 42.3% were treated with TACE with a median survival since the first session of 41.9 months. Liver decompensation before TACE was independently associated with increased mortality [HR 3.22 (CI 1.64;6.33); P<.001]. Systemic treatment was initiated in 48.2% of the cohort (n=188), with a median survival of 15.7 months. Of these, 48.9% presented first-line treatment discontinuation (44.4% tumor progression, 29.3% liver decompensation, 18.5% symptomatic deterioration, and 7.8% intolerance), and only 28.7% received second-line systemic treatments. Liver decompensation [HR 2.9 (1.64;5.29); P<.0001], and symptomatic progression [HR 3.9 (1.53;9.78); P=0.004] were independently associated with mortality after first-line systemic treatment discontinuation. CONCLUSIONS The complexity of these patients, with one-third presenting liver decompensation after systemic therapies, underlines the need for multidisciplinary team management and the central role of hepatologists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ezequiel Ridruejo
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Argentina
| | | | | | | | - Hugo Cheinquer
- Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul. Brazil
| | - Alexandre Araujo
- Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul. Brazil
| | | | | | | | - Estela Manero
- Hospital Pablo Soria, San Salvador de Jujuy, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shannon AH, Ruff SM, Pawlik TM. Expert Insights on Current Treatments for Hepatocellular Carcinoma: Clinical and Molecular Approaches and Bottlenecks to Progress. J Hepatocell Carcinoma 2022; 9:1247-1261. [PMID: 36514693 PMCID: PMC9741819 DOI: 10.2147/jhc.s383922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver tumor that typically occurs in the setting of chronic liver disease/cirrhosis. Treatment modalities for HCC have evolved and given the variety of treatment options, a multi-disciplinary approach requiring input from surgical, medical, and radiation oncology, hepatology, and interventional radiology is necessary. Multiple advances have been made over the last decade regarding treatment of HCC, especially advanced disease. Resection and transplantation remain as cornerstone curative-intent treatment options. For patients who are not candidates for curative-intent therapy, exciting progress has been made in molecular and cellular approaches to systemic therapy for HCC including immunotherapies and tyrosine kinase inhibitors. Although the prognosis for advanced HCC remains poor, the armamentarium of therapies has increased, and valuable years of life can be gained with these therapies. While the main therapeutic modality for early-stage disease remains resection, multimodal immunotherapy has emerged as first-line treatment for advanced disease. We herein review different clinical and molecular treatment modalities related to the treatment of HCC, as well as provide insights into future directions for HCC treatment. We highlight how research and progress are needed to move into a new era of molecular and cellular treatments.
Collapse
Affiliation(s)
- Alexander H Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Correspondence: Timothy M Pawlik, Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, Professor of Surgery, Oncology, Health Services Management and Policy, The Ohio State University, Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH, USA, Tel +1 614 293 8701, Fax +1 614 293 4063, Email
| |
Collapse
|
15
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P, Koustas E, Kanavidis P, Prevezanos D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Antoniou EA. Targeted Therapies for Hepatocellular Carcinoma Treatment: A New Era Ahead-A Systematic Review. Int J Mol Sci 2022; 23:ijms232214117. [PMID: 36430594 PMCID: PMC9698799 DOI: 10.3390/ijms232214117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common malignancies and the third cause of cancer-related death worldwide, with surgery being the best prognostic tool. Among the well-known causative factors of HCC are chronic liver virus infections, chronic virus hepatitis B (HBV) and chronic hepatitis virus C (HCV), aflatoxins, tobacco consumption, and non-alcoholic liver disease (NAFLD). There is a need for the development of efficient molecular markers and alternative therapeutic targets of great significance. In this review, we describe the general characteristics of HCC and present a variety of targeted therapies that resulted in progress in HCC therapy.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-694-846-7790
| | - Nikolaos Garmpis
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iason Psilopatis
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Prodromos Kanavidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Li R, Jin C, Zhao W, Liang R, Xiong H. Development of a novel immune-related lncRNA prognostic signature for patients with hepatocellular carcinoma. BMC Gastroenterol 2022; 22:450. [PMID: 36344926 PMCID: PMC9639314 DOI: 10.1186/s12876-022-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common neoplasm and the major cause of cancer-associated death worldwide. The high mortality rate of HCC is mainly attributed to its widespread prevalence and the lack of effective treatment. Immunotherapy as a promising, innovative approach has revolutionised the treatment of solid tumours. However, owing to the heterogeneity and complex tumour microenvironment of HCC, an efficient biomarker for immunotherapy has yet to be identified. We investigated the role of immune-related long non-coding RNAs (lncRNAs) as prognostic biomarkers in patients with HCC from The Cancer Genome Atlas (TCGA) database. Spearman correlation, univariate and multivariate Cox, and lasso regression analyses were utilised to screen lncRNAs associated with prognosis. Four lncRNAs were filtered out to develop an immune-associated lncRNA prognostic signature in TCGA training as well as validation cohorts. Patients with HCC were then categorised into low- and high-risk groups according to the median value of the risk scores to evaluate the ability of the prognostic model between training and validation cohorts. A nomogram (based on risk score and stage) was constructed to appraise the general overall survival (OS) of patients with HCC. Differences in immune cell infiltration, immune checkpoint inhibitor (ICI) treatment response, gene mutation, and drug sensitivity were observed between the two groups. Thus, the lncRNA prognostic signature can serve as a sensitive prognostic biomarker with potential in individualised immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Rui Li
- grid.33199.310000 0004 0368 7223Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Chen Jin
- grid.268099.c0000 0001 0348 3990Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Weiheng Zhao
- grid.33199.310000 0004 0368 7223Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Rui Liang
- grid.190737.b0000 0001 0154 0904Biological Engineering Academy, Chongqing University, Chongqing, China
| | - Huihua Xiong
- grid.33199.310000 0004 0368 7223Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
17
|
Xu Y, Fu S, Shang K, Zeng J, Mao Y. PD-1 inhibitors plus lenvatinib versus PD-1 inhibitors plus regorafenib in patients with advanced hepatocellular carcinoma after failure of sorafenib. Front Oncol 2022; 12:958869. [PMID: 36176403 PMCID: PMC9513444 DOI: 10.3389/fonc.2022.958869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Lenvatinib, regorafenib and anti-programmed cell death protein-1 (PD-1) immunotherapy have shown promising clinical outcomes in patients with advanced hepatocellular carcinoma (HCC) after sorafenib failure, respectively. However, the combination of the two treatments has not been reported. We compared the efficacy of PD-1 inhibitors with lenvatinib (PL) and PD-1 inhibitors plus regorafenib (PR) in patients with advanced HCC in this study. Methods We conducted a retrospective study of advanced HCC patients who undergone PD-1 inhibitors combined with lenvatinib or regorafenib after failure of sorafenib at Second Affiliated Hospital of Nanchang University from July 2018 and December 2020. The overall survival (OS), progression-free survival (PFS), effective rates and treatment-related adverse events (TRAEs) were investigated. Results In total, 61 patients met the criteria and were included in the present study, and they were divided into the PL group (n = 32) and PR group (n = 29). The overall response rate (ORR) (12.5%vs. 10.3%, respectively; p = 0.557) and disease control rate (DCR) (71.9%vs. 58.6%, respectively; p < 0.207) were higher in the PL group than in the PR group, but there was no statistical difference. Furthermore, median PFS and OS were not significantly different between the two groups in Kaplan-Meier survival analysis (PFS: 5.3 months vs 4.0 months, p = 0.512; OS: 14.1 months vs 13.7 months, p = 0.764 for the PL group vs PR group). The most common treatment-related adverse events (TRAEs) were hand -foot skin reaction (24/61,39.3%), hypertension (20/61,32.8%) and hypothyroidism (13/61,21.3%). The frequent TRAEs (≥Grade 3) during PD-1 inhibitors plus lenvatinib or regorafenib treatment were hand-foot skin reaction (5/29,12.4%), thrombocytopenia (2/29 6.90%) and proteinuria (n =2/32,6.25%). Conclusions Combination of lenvatinib/regorafenib and PD-1 inhibitors is a promising therapy for HCC patients after sorafenib failure.
Collapse
Affiliation(s)
- Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shumin Fu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Shang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiayu Zeng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ye Mao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ye Mao,
| |
Collapse
|
18
|
Bartos A, Iancu I, Ciobanu L, Onaciu A, Moldovan C, Moldovan A, Moldovan RC, Tigu AB, Stiufiuc GF, Toma V, Iancu C, Al Hajjar N, Stiufiuc RI. Hybrid Lipid Nanoformulations for Hepatoma Therapy: Sorafenib Loaded Nanoliposomes-A Preliminary Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2833. [PMID: 36014698 PMCID: PMC9414144 DOI: 10.3390/nano12162833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sorafenib is a multikinase inhibitor that has received increasing attention due to its high efficacy in hepatocellular carcinoma treatment. However, its poor pharmacokinetic properties (limited water solubility, rapid elimination, and metabolism) still represent major bottlenecks that need to be overcome in order to improve Sorafenib's clinical application. In this paper, we propose a nanotechnology-based hybrid formulation that has the potential to overcome these challenges: sorafenib-loaded nanoliposomes. Sorafenib molecules have been incorporated into the hydrophobic lipidic bilayer during the synthesis process of nanoliposomes using an original procedure developed in our laboratory and, to the best of our knowledge, this is the first paper reporting this type of analysis. The liposomal hybrid formulations have been characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA) that provided useful information concerning their shape, size, zeta-potential, and concentration. The therapeutic efficacy of the nanohybrids has been evaluated on a normal cell line (LX2) and two hepatocarcinoma cell lines, SK-HEP-1 and HepG2, respectively.
Collapse
Affiliation(s)
- Adrian Bartos
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ioana Iancu
- Department of Surgery, Medicover Hospital, 407062 Cluj-Napoca, Romania
| | - Lidia Ciobanu
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Anca Onaciu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alin Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Radu Cristian Moldovan
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | | | - Valentin Toma
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Surgery, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Rares Ionut Stiufiuc
- MedFuture—Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Maroto P, Porta C, Capdevila J, Apolo AB, Viteri S, Rodriguez-Antona C, Martin L, Castellano D. Cabozantinib for the treatment of solid tumors: a systematic review. Ther Adv Med Oncol 2022; 14:17588359221107112. [PMID: 35847482 PMCID: PMC9284205 DOI: 10.1177/17588359221107112] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Cabozantinib is approved, in various settings, for the treatment of renal
cell carcinoma, medullary thyroid cancer, and hepatocellular carcinoma, and
it has been investigated for the treatment of other cancers. With the
available evidence and the real-world performance of cabozantinib compared
with clinical trial data, we performed a systematic review of cabozantinib
monotherapy as treatment for solid tumors in adults. Methods: This study was designed in accordance with Preferred Reporting Items for
Systematic Reviews and Meta-Analyses and registered with PROSPERO
(CRD42020144680). We searched for clinical and observational studies of
cabozantinib monotherapy for solid tumors using Embase, MEDLINE, and
Cochrane databases (October 2020), and screened relevant congress abstracts.
Eligible studies reported clinical or safety outcomes, or biomarker data.
Small studies (n < 25) and studies of cabozantinib
combination therapies were excluded. Quality was assessed using National
Institute for Health and Care Excellence methodology, and study
characteristics were described qualitatively. Results: Of 2888 citations, 114 were included (52 randomized studies, 29 observational
studies, 32 nonrandomized phase I or II studies or pilot trials, and 1
analysis of data from a randomized study and a nonrandomized study). Beyond
approved indications, other tumors studied were castration-resistant
prostate cancer, urothelial carcinoma, Ewing sarcoma, osteosarcoma, uveal
melanoma, non-small-cell lung cancer, Merkel cell carcinoma, glioblastoma,
pheochromocytomas and paragangliomas, cholangiocarcinoma, gastrointestinal
stromal tumor, colorectal cancer, salivary gland cancer, carcinoid and
pancreatic neuroendocrine tumors, and breast, endometrial and ovarian
cancers. The most common adverse events were hypertension, diarrhea, and
fatigue. Conclusion: The identified evidence demonstrates the positive efficacy/effectiveness of
cabozantinib monotherapy in various solid tumor types, with safety findings
being consistent with those observed with other VEGFR-targeting tyrosine
kinase inhibitors. When available, real-world findings were consistent with
the data reported from clinical trials. A limitation of this review is the
high proportion of abstracts; however, this allowed us to capture the most
up-to-date findings.
Collapse
Affiliation(s)
- Pablo Maroto
- Medical Oncology Services, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, Barcelona, 08025, Spain
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Jaume Capdevila
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Santiago Viteri
- UOMI Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | | | | | - Daniel Castellano
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
20
|
Rajappa S, Rau KM, Dattatreya PS, Ramaswamy A, Fernandes P, Pruthi A, Cheng R, Lukanowski M, Huang YH. Second-line treatment of advanced hepatocellular carcinoma: Time for more individualized treatment options? World J Hepatol 2022; 14:1074-1086. [PMID: 35978665 PMCID: PMC9258252 DOI: 10.4254/wjh.v14.i6.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently diagnosed primary tumor of the liver and is usually detected as advanced disease. It is an aggressive disease that often progresses rapidly when it fails to respond to treatment. As such, patients have limited opportunities to try different subsequent-line treatment regimens. In the last 5 years, the number of agents and/or regimens available for the treatment of advanced HCC has significantly increased, which has made treatment choices for this patient population increasingly complex. In the second-line setting, several phase III trials of regorafenib (RESORCE), ramucirumab (REACH/REACH-2), and cabozantinib (CELESTIAL) have demonstrated clinically meaningful survival benefits in patients with the disease. However, the median overall survival of patients with advanced HCC remains unchanged at approximately 12 mo from the start of systemic second-line therapy, with a limited duration of response. Evidence from the REACH/REACH-2 trials demonstrated for the first time that baseline alpha-fetoprotein (AFP) levels can be used as an identification factor to select those who are likely to benefit the most from ramucirumab treatment. Ramucirumab is both well tolerated and efficacious and has a clinically acceptable safety profile. Therefore, it should be considered an option for patients with AFP levels ≥ 400 ng/mL.
Collapse
Affiliation(s)
- Senthil Rajappa
- Department of Medical Oncology, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad 500034, Telangana, India
| | - Kun-Ming Rau
- College of Medicine, I-Shou University, Kaohsiung 822, Taiwan
| | | | - Anant Ramaswamy
- Department of Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Philana Fernandes
- Global Scientific Communications, Eli Lilly and Company Ltd, Cork 48006, Cork, Ireland
| | | | - Rebecca Cheng
- Medical Affairs, Eli Lilly Taiwan, Taipei 10543, Taiwan
| | | | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming Yang Ming Chiao Tung University School of Medicine, Taipei 112, Taiwan.
| |
Collapse
|
21
|
Solid Tumors and Kinase Inhibition: Management and Therapy Efficacy Evolution. Int J Mol Sci 2022; 23:ijms23073830. [PMID: 35409190 PMCID: PMC8998551 DOI: 10.3390/ijms23073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The increasing numbers of cancer cases worldwide and the exceedingly high mortality rates of some tumor subtypes raise the question about if the current protocols for cancer management are effective and what has been done to improve upon oncologic patients’ prognoses. The traditional chemo-immunotherapy options for cancer treatment focus on the use of cytotoxic agents that are able to overcome neoplastic clones’ survival mechanisms and induce apoptosis, as well as on the ability to capacitate the host’s immune system to hinder the continuous growth of malignant cells. The need to avert the highly toxic profiles of conventional chemo-immunotherapy and to overcome the emerging cases of tumor multidrug resistance has fueled a growing interest in the field of precision medicine and targeted molecular therapies in the last couple of decades, although relatively new alternatives in oncologic practices, the increased specificity, and the positive clinical outcomes achieved through targeted molecular therapies have already consolidated them as promising prospects for the future of cancer management. In recent years, the development and application of targeted drugs as tyrosine kinase inhibitors have enabled cancer treatment to enter the era of specificity. In addition, the combined use of targeted therapy, immunotherapy, and traditional chemotherapy has innovated the standard treatment for many malignancies, bringing new light to patients with recurrent tumors. This article comprises a series of clinical trials that, in the past 5 years, utilized kinase inhibitors (KIs) as a monotherapy or in combination with other cytotoxic agents to treat patients afflicted with solid tumors. The results, with varying degrees of efficacy, are reported.
Collapse
|
22
|
Sofer S, Lamkiewicz K, Armoza Eilat S, Partouche S, Marz M, Moskovits N, Stemmer SM, Shlomai A, Sklan EH. A genome-wide CRISPR activation screen reveals Hexokinase 1 as a critical factor in promoting resistance to multi-kinase inhibitors in hepatocellular carcinoma cells. FASEB J 2022; 36:e22191. [PMID: 35147243 DOI: 10.1096/fj.202101507rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/20/2022] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is often diagnosed at an advanced stage and is, therefore, treated with systemic drugs, such as tyrosine-kinase inhibitors (TKIs). These drugs, however, offer only modest survival benefits due to the rapid development of drug resistance. To identify genes implicated in TKI resistance, a cluster of regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 activation screen was performed in hepatoma cells treated with regorafenib, a TKI used as second-line therapy for advanced HCC. The screen results show that Hexokinase 1 (HK1), catalyzing the first step in glucose metabolism, is a top candidate for conferring TKI resistance. Compatible with this, HK1 was upregulated in regorafenib-resistant cells. Using several experimental approaches, both in vitro and in vivo, we show that TKI resistance correlates with HK1 expression. Furthermore, an HK inhibitor resensitized resistant cells to TKI treatment. Together, our data indicate that HK1 may function as a critical factor modulating TKI resistance in hepatoma cells and, therefore, may serve as a biomarker for treatment success.
Collapse
Affiliation(s)
- Summer Sofer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany
| | - Shir Armoza Eilat
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany.,Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - Neta Moskovits
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Salomon M Stemmer
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Davidoff Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Amir Shlomai
- Felsenstein Medical Research Center and the Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Cucarull B, Tutusaus A, Rider P, Hernáez-Alsina T, Cuño C, García de Frutos P, Colell A, Marí M, Morales A. Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers (Basel) 2022; 14:cancers14030621. [PMID: 35158892 PMCID: PMC8833604 DOI: 10.3390/cancers14030621] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | | | - Carlos Cuño
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Unidad Asociada (IMIM), IIBB-CSIC, CIBERCV, IDIBAPS, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| |
Collapse
|
24
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
25
|
Landscape of prognostic signatures and immunogenomics of the AXL/GAS6 axis in renal cell carcinoma. Br J Cancer 2021; 125:1533-1543. [PMID: 34611307 PMCID: PMC8608819 DOI: 10.1038/s41416-021-01559-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cabozantinib is an oral tyrosine kinase inhibitor in renal cell carcinoma (RCC), whose targets include oncogenic AXL and unique ligand GAS6. Critical gaps in basic knowledge need to be addressed to devise an exclusive biomarker and candidate when targeting the AXL/GAS6 axis. METHODS To clarify the effects of the AXL/GAS6 axis on RCC, we herein performed a large-scale immunogenomic analysis and single-cell counts including various metastatic organs and histological subtypes of RCC. We further applied genome-wide mutation analyses and methylation arrays. RESULTS Varying patterns of AXL and GAS6 expression were observed throughout primary RCC tumours and metastases. Scoring individual AXL/GAS6 levels in the tumour centre and invasive margin, namely, the AXL/GAS6 score, showed a good ability to predict the prognosis of clear cell RCC. Metastasis- and histological subtype-specific differences in the AXL/GAS6 score existed since lung metastasis and the papillary subtype were weakly related to the AXL/GAS6 axis. Cell-by-cell immunohistological assessments clarified an immunosuppressive environment in tumours with high AXL/GAS6 scores. Genomic alterations in the PI3K-mTOR pathway and DNA methylation profiling revealed distinct differences with the AXL/GAS6 score in ccRCC. CONCLUSION The AXL/GAS6 scoring system could predict the outcome of prognosis and work as a robust biomarker for the immunogenomic state in RCC.
Collapse
|
26
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
27
|
Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, Deng J, Deng Y, Wu Z, Li Q, Song Y, Zhang H, Chen J, Tian K, Ni Y, Pu Z. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021; 11:752725. [PMID: 34707994 PMCID: PMC8543014 DOI: 10.3389/fonc.2021.752725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted therapies such as oral tyrosine kinase inhibitors (TKIs) are the main therapeutic strategy effective for advanced hepatocellular carcinoma (HCC). Currently six tyrosine kinase inhibitors for HCC therapy have been approved. The newly approved first-line drug donafenib represent the major milestones in HCC therapeutics in recent years. However, drug resistance in HCC remains challenging due to random mutations in target receptors as well as downstream pathways. TKIs-based combinatorial therapies with immune checkpoint inhibitors such as PD-1/PD-L1 antibodies afford a promising strategy to further clinical application. Recent developments of nanoparticle-based TKI delivery techniques improve drug absorption and bioavailability, enhance efficient targeting delivery, prolonged circulation time, and reduce harmful side effects on normal tissues, which may improve the therapeutic efficacy of the TKIs. In this review, we summarize the milestones and recent progress in clinical trials of TKIs for HCC therapy. We also provide an overview of the novel nanoparticle-based TKI delivery techniques that enable efficient therapy.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaohe Tian
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Bo Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- College of Engineering, Boston University, Boston, MA, United States
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qi Li
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yi’an Song
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Hongyuan Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- The Faculty of Arts and Sciences, The University of British Columbia, Kelowna, BC, Canada
| | - Jinjun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Kuifeng Tian
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
28
|
Pathak S, Sonbol MB. Second-Line Treatment Options for Hepatocellular Carcinoma: Current Landscape and Future Direction. J Hepatocell Carcinoma 2021; 8:1147-1158. [PMID: 34584898 PMCID: PMC8464222 DOI: 10.2147/jhc.s268314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a leading cause of mortality worldwide, and its incidence is rising. The last few years have witnessed a proliferation of available systemic therapeutic options, with the approval of multiple agents, including immune checkpoint inhibitors and drugs targeting vascular endothelial growth factor, such as cabozantinib, regorafenib, and ramucirumab. Most recently, the combination of atezolizumab plus bevacizumab has resulted in the longest overall survival yet known in hepatocellular carcinoma, therefore changing the preferred first-line treatment from the previous options of sorafenib and lenvatinib. The aim of this review is to summarize the available clinical data for the current second-line systemic treatment options and the future perspectives in the treatment landscape of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Surabhi Pathak
- Hematology-Oncology, King’s Daughters Medical Center, Ashland, KY, USA
| | - Mohamad Bassam Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
29
|
Comparison of prognostic models in advanced hepatocellular carcinoma patients undergoing Sorafenib: A multicenter study. Dig Liver Dis 2021; 53:1011-1019. [PMID: 33353858 DOI: 10.1016/j.dld.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sorafenib is the gold standard therapy for the advanced hepatocellular carcinoma (HCC). No scoring/staging is universally accepted to predict the survival of these patients. AIMS To evaluate the accuracy of the available prognostic models for HCC to predict the survival of advanced HCC patients treated with Sorafenib included in the Italian Liver Cancer (ITA.LI.CA.) multicenter cohort. METHODS The performance of several prognostic scores was assessed through a Cox regression-model evaluating the C-index and the Akaike Information Criterion (AIC). RESULTS Data of 1129 patients were analyzed. The mean age of patients was 61.6 years, and 80.8% were male. During a median follow-up period of 13 months, 789 patients died. The median period of Sorafenib administration was 4 months. All the prognostic scores were able to predict the overall survival (p<0.001) at univariate analysis, except the Albumin-Bilirubin score. The Italian Liver Cancer score (CLIP) yielded the highest accuracy (C-index 0.604, AIC 9898), followed by the ITA.LI.CA. prognostic score (C-index 0.599, AIC 9915). CONCLUSIONS The CLIP score had the highest accuracy in predicting the overall survival of HCC patients treated with Sorafenib, although its performance remained poor. Further studies are needed to refine the current ability to predict the outcome of HCC patients undergoing Sorafenib.
Collapse
|
30
|
Zhang C, Yang M. The Emerging Factors and Treatment Options for NAFLD-Related Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13153740. [PMID: 34359642 PMCID: PMC8345138 DOI: 10.3390/cancers13153740] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is an increasing factor in the cause of hepatocellular carcinoma (HCC). The incidence of NAFLD has increased in recent decades, accompanied by an increase in the prevalence of other metabolic diseases, such as obesity and type 2 diabetes. However, current treatment options are limited. Both genetic factors and non-genetic factors impact the initiation and progression of NAFLD-related HCC. The early diagnosis of liver cancer predicts curative treatment and longer survival. Some key molecules play pivotal roles in the initiation and progression of NAFLD-related HCC, which can be targeted to impede HCC development. In this review, we summarize some key factors and important molecules in NAFLD-related HCC development, the latest progress in HCC diagnosis and treatment options, and some current clinical trials for NAFLD treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic factors, influenced by age and environment, significantly impact the initiation and progression of NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. However, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomarkers, as well as the combined evaluation algorithm and artificial intelligence, support the early and precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-related HCC is increasing, and a better understanding of the underlying mechanism implicated in the progression of NAFLD-related HCC is essential for improving treatment and prognosis.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
31
|
Long HY, Huang TY, Xie XY, Long JT, Liu BX. Treatment strategies for hepatocellular carcinoma with extrahepatic metastasis. World J Clin Cases 2021; 9:5754-5768. [PMID: 34368295 PMCID: PMC8316954 DOI: 10.12998/wjcc.v9.i21.5754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Extrahepatic metastasis (EHM) of hepatocellular carcinoma (HCC) has increasingly been seen due to improved survival with effective management of intrahepatic lesions. The presence of EHM indicates an advanced stage of HCC, for which systemic therapy serves as the standard treatment modality. Since the approval of Sorafenib as the first systemic agent in 2007, it took almost a decade to show its efficacy in both first and further lines of setting until the landscape of systemic drugs was finally expanded. Moreover, with inspiring results from immunotherapy trials in HCC, it appears that the introduction of immunotherapy may lead to an evolution in the portfolio of HCC treatment. Although the locoregional approach in the management of EHM is not recommended for advanced-stage HCC, efforts have been made to demonstrate its efficacy in symptom relief and potential benefit for overall survival. This review provides a summary of recent updates of the systemic agents in the treatment of advanced HCC, with an emphasis on aggressive locoregional management of EHM by various treatment modalities.
Collapse
Affiliation(s)
- Hai-Yi Long
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Tong-Yi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Jian-Ting Long
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Bao-Xian Liu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
32
|
Meng W, Chen T. Association between the HGF/c‑MET signaling pathway and tumorigenesis, progression and prognosis of hepatocellular carcinoma (Review). Oncol Rep 2021; 46:191. [PMID: 34278495 DOI: 10.3892/or.2021.8142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and lethal malignancies with a rising incidence, and is characterized by rapid progression, frequent metastasis, late diagnosis, high postoperative recurrence and poor prognosis. Therefore, novel treatment strategies for HCC, particularly advanced HCC, are urgently required. The hepatocyte growth factor (HGF)/c‑mesenchymal‑epithelial transition receptor (c‑MET) axis is a key signaling pathway in HCC and is strongly associated with its highly malignant features. Available treatments based on HGF/c‑MET inhibition may prolong the lifespan of patients with HCC; however, they do not achieve the desired therapeutic effects. The aim of the present article was to review the basic knowledge regarding the role of the HGF/c‑MET signaling pathway in HCC, and examine the association between the HGF/c‑MET signaling pathway and the tumorigenesis, progression and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Meng
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Tao Chen
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
33
|
Szeligo BM, Ivey AD, Boone BA. Poor Response to Checkpoint Immunotherapy in Uveal Melanoma Highlights the Persistent Need for Innovative Regional Therapy Approaches to Manage Liver Metastases. Cancers (Basel) 2021; 13:3426. [PMID: 34298647 PMCID: PMC8307800 DOI: 10.3390/cancers13143426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is a cancer that develops from melanocytes in the posterior uveal tract. Metastatic uveal melanoma is an extremely rare disease that has a poor long-term prognosis, limited treatment options and a strong predilection for liver metastasis. Median overall survival has been reported to be 6 months and 1 year mortality of 80%. Traditional chemotherapy used in cutaneous melanoma is ineffective in uveal cases. Surgical resection and ablation is the preferred therapy for liver metastasis but is often not feasible due to extent of disease. In this review, we will explore treatment options for liver metastases from uveal melanoma, with a focus on isolated hepatic perfusion (IHP). IHP offers an aggressive regional therapy approach that can be used in bulky unresectable disease and allows high-dose chemotherapy with melphalan to be delivered directly to the liver without systemic effects. Long-term median overall survival has been reported to be as high as 27 months. We will also highlight the poor responses associated with checkpoint inhibitors, including an overview of the biological rationale driving this lack of immunotherapy effect for this disease. The persistent failure of traditional treatments and immunotherapy suggest an ongoing need for regional surgical approaches such as IHP in this disease.
Collapse
Affiliation(s)
- Brett M. Szeligo
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV 26508, USA;
| | - Abby D. Ivey
- Cancer Cell Biology, West Virginia University, Morgantown, WV 26508, USA;
| | - Brian A. Boone
- Division of Surgical Oncology, Department of Surgery, West Virginia University, Morgantown, WV 26508, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26508, USA
| |
Collapse
|
34
|
Concurrent detection of cabozantinib as an anticancer agent and its major metabolites in human serum using fluorescence-coupled micellar liquid chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
36
|
Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Curr Med Chem 2021; 28:3107-3146. [PMID: 33050856 DOI: 10.2174/0929867327666201013162144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Liu
- Department of Pharmacy, the PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
37
|
Marasco G, Poggioli F, Colecchia A, Cabibbo G, Pelizzaro F, Giannini EG, Marinelli S, Rapaccini GL, Caturelli E, Di Marco M, Biasini E, Marra F, Morisco F, Foschi FG, Zoli M, Gasbarrini A, Svegliati Baroni G, Masotto A, Sacco R, Raimondo G, Azzaroli F, Mega A, Vidili G, Brunetto MR, Nardone G, Alemanni LV, Dajti E, Ravaioli F, Festi D, Trevisani F. A Nomogram-Based Prognostic Model for Advanced Hepatocellular Carcinoma Patients Treated with Sorafenib: A Multicenter Study. Cancers (Basel) 2021; 13:2677. [PMID: 34072309 PMCID: PMC8199276 DOI: 10.3390/cancers13112677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Among scores and staging systems used for HCC, none showed a good prognostic ability in patients with advanced HCC treated with Sorafenib. We aimed to evaluate predictive factors of overall survival (OS) and drug response in HCC patients undergoing Sorafenib included in the Italian Liver Cancer (ITA.LI.CA.) multicenter cohort. Patients in the ITA.LI.CA database treated with Sorafenib and updated on 30 June 2019 were included. Demographic and clinical data before starting Sorafenib treatment were considered. For the evaluation of predictive factors for OS, a time-dependent Cox proportional hazard model was used. A total of 1107 patients were included in our analysis. The mean age was 64.3 years and 81.7% were male. Most patients were staged as BCLC B (205, 18.9%) or C (706, 65.1%). The median time of Sorafenib administration was 4 months (interquartile range (IQR) 2-12), and the median OS was 10 months (IQR: 4-20). A total of 263 patients (33.8%) out of 780 with available evaluation experienced objective tumoral response to Sorafenib. The Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) (hazard ratio (HR) 1.284), maximum tumoral diameter (HR 1.100), plasma total bilirubin (HR 1.119), aspartate amino transferase assessed as multiple of the upper normal value (HR 1.032), alpha-fetoprotein ≥200 ng/mL (HR 1.342), hemoglobin (HR 0.903) and platelet count (HR 1.002) were associated with OS at multivariate Cox regression analysis. Drug response was predicted by maximum tumoral diameter and platelet count. A novel prognostic nomogram for patients undergoing Sorafenib is hereby proposed. The novelty introduced is the comprehensive patient's assessment using common markers of patient's general status, liver damage and function and HCC biology. Further studies are required to test its accuracy and provide external validation.
Collapse
Affiliation(s)
- Giovanni Marasco
- Division of Internal Medicine and Digestive Pathophysiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
| | - Francesco Poggioli
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
| | - Antonio Colecchia
- Gastroenterology Unit, Borgo Trento University Hospital Verona, 37126 Verona, Italy;
| | - Giuseppe Cabibbo
- Gastroenterology & Hepatology Unit, Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, PROMISE, University of Palermo, 90133 Palermo, Italy;
| | - Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy;
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergologic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Gian Ludovico Rapaccini
- Division of Internal Medicine and Gastroenterology, Complesso Integrato Columbus, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | | | | | - Elisabetta Biasini
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Fabio Marra
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50139 Florence, Italy;
| | - Filomena Morisco
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Napoli “Federico II”, 80138 Napoli, Italy;
| | | | - Marco Zoli
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
- Division of Internal Medicine, Neurovascular and Hepatometabolic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonio Gasbarrini
- Division of Internal Medicine and Gastroenterology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | | | - Alberto Masotto
- Gastroenterology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, 37024 Verona, Italy;
| | - Rodolfo Sacco
- Gastroenterology and Digestive Endoscopy Unit, Foggia University Hospital, 71100 Foggia, Italy;
| | - Giovanni Raimondo
- Division of Clinical and Molecular Hepatology, University of Messina, 98124 Messina, Italy;
| | - Francesco Azzaroli
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
- Division of Gastroenterology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Mega
- Division of Gastroenterology, Bolzano Regional Hospital, 39100 Bolzano, Italy;
| | - Gianpaolo Vidili
- U.O.C. Clinica Medica, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Maurizia Rossana Brunetto
- Hepatology and Liver Physiopathology Laboratory and Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Gerardo Nardone
- Hepato-Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Luigina Vanessa Alemanni
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
- Division of Gastroenterology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elton Dajti
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
- Division of Gastroenterology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
| | - Davide Festi
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
| | - Franco Trevisani
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (F.P.); (M.Z.); (F.A.); (L.V.A.); (E.D.); (F.R.); (D.F.); (F.T.)
- Division of Semeiotics, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | | |
Collapse
|
38
|
Koulouris A, Tsagkaris C, Spyrou V, Pappa E, Troullinou A, Nikolaou M. Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options. J Hepatocell Carcinoma 2021; 8:387-401. [PMID: 34012929 PMCID: PMC8128500 DOI: 10.2147/jhc.s300182] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The last three years have seen remarkable progress in comprehending predisposing factors and upgrading our treatment arsenal concerning hepatocellular carcinoma (HCC). Until recently, there were no means to withstand the progression of viral hepatitis-associated liver cirrhosis to HCC. A deeper understanding of the molecular mechanism of the disease, the use of biomarkers, and the follow-up, allowed us to realize that conventional chemotherapy failing to increase survival in patients with advanced HCC tends to be exiled from clinical practice. Multi-kinase inhibitors (TKIs) such as sorafenib, lenvatinib targeting mainly the vascular endothelial growth factor receptors 1–3 VEGFRs 1–3 provided until recently the standard of care for these patients, as first- or second-line treatment. Since May 2020, the atezolizumab plus bevacizumab combination (immunotherapy plus anti-VEGF) has become the new reference standard in first-line HCC treatment. Additionally, anti-programmed cell death protein 1 (anti-PD-1) immunotherapy can be used as a second-line treatment following first-line treatment’s failure. Phase III clinical trials have recently suggested the efficacy of novel anti-angiogenic factors such as cabozantinib and ramucirumab as a second-line treatment option. With considerations about toxicity arising, clinical trials are investigating combinations of the aforementioned targeted therapies with immunotherapy as first-line treatment. This paper aims to perform a systematic review describing the evolving treatment options for HCC over the last decades, ranging from neoadjuvant treatment to systemic therapy of advanced-stage HCC. With the landscape of HCC treatment shifting towards novel agents the forming of a new therapeutic algorithm for HCC seems to be imperative.
Collapse
Affiliation(s)
- Andreas Koulouris
- Resident of Medical Oncology, University General Hospital of Heraklion, University of Crete, Crete, Greece
| | | | | | - Eleni Pappa
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michail Nikolaou
- 1st Oncology Department, "Saint Savas" Anticancer - Oncology Hospital, Athens, Greece
| |
Collapse
|
39
|
El-Khoueiry AB, Hanna DL, Llovet J, Kelley RK. Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treat Rev 2021; 98:102221. [PMID: 34029957 DOI: 10.1016/j.ctrv.2021.102221] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is rising in incidence and remains a leading cause of cancer-related death. After a decade of disappointing trials following the approval of sorafenib for patients with advanced HCC, a number of tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting angiogenesis and immune checkpoints have recently been approved. The phase 3 CELESTIAL trial demonstrated improved progression-free and overall survival with the TKI cabozantinib compared to placebo, supporting it as a treatment option for patients with advanced HCC previously treated with sorafenib. Cabozantinib blocks multiple key pathways of HCC pathogenesis, including VEGFR, MET, and the TAM (TYRO3, AXL, MER) family of receptor kinases, and promotes an immune-permissive tumor microenvironment. Here, we review the mechanisms of action of cabozantinib, including effects on tumor growth and its immunomodulatory properties, providing pre-clinical rationale for combination strategies with checkpoint inhibitors. We discuss the design and outcomes of CELESTIAL including improved survival across subgroups defined by age, disease etiology, baseline AFP level, prior therapies (including duration of prior sorafenib), and tumor burden. Cabozantinib had a manageable safety profile with dose modification. Studies combining cabozantinib with atezolizumab (COSMIC-312) and durvalumab (CAMILLA) in the first and second-line settings are ongoing, as well as a neoadjuvant study of cabozantinib with nivolumab. Future investigations are warranted to define the use of cabozantinib in patients with Child-Pugh B liver function and identify markers predictive of clinical benefit. The role of cabozantinib in HCC continues to evolve with an anticipated role in immunotherapy combinations.
Collapse
Affiliation(s)
| | - Diana L Hanna
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; Hoag Cancer Center, Newport Beach, CA, USA
| | - Josep Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Robin Kate Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| |
Collapse
|
40
|
Xiong W, Friese-Hamim M, Johne A, Stroh C, Klevesath M, Falchook GS, Hong DS, Girard P, El Bawab S. Translational pharmacokinetic-pharmacodynamic modeling of preclinical and clinical data of the oral MET inhibitor tepotinib to determine the recommended phase II dose. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:428-440. [PMID: 33818908 PMCID: PMC8129711 DOI: 10.1002/psp4.12602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Tepotinib is a highly selective and potent MET inhibitor in development for the treatment of patients with solid tumors. Given the favorable tolerability and safety profiles up to the maximum tested dose in the first‐in‐human (FIH) trial, an efficacy‐driven translational modeling approach was proposed to establish the recommended phase II dose (RP2D). To study the in vivo pharmacokinetics (PKs)/target inhibition/tumor growth inhibition relationship, a subcutaneous KP‐4 pancreatic cell‐line xenograft model in mice with sensitivity to MET pathway inhibition was selected as a surrogate tumor model. Further clinical PK and target inhibition data (derived from predose and postdose paired tumor biopsies) from a FIH study were integrated with the longitudinal PKs and target inhibition profiles from the mouse xenograft study to establish a translational PK/pharmacodynamic (PD) model. Preclinical data showed that tumor regression with tepotinib treatment in KP‐4 xenograft tumors corresponded to 95% target inhibition. We therefore concluded that a PD criterion of sustained, near‐to‐complete (>95%) phospho‐MET inhibition in tumors should be targeted for tepotinib to be effective. Simulations of dose‐dependent target inhibition profiles in human tumors that exceeded the PD threshold in more than 90% of patients established an RP2D of tepotinib 500 mg once daily. This translational mathematical modeling approach supports an efficacy‐driven rationale for tepotinib phase II dose selection of 500 mg once daily. Tepotinib at this dose has obtained regulatory approval for the treatment of patients with non‐small cell lung cancer harboring MET exon 14 skipping.
Collapse
Affiliation(s)
- Wenyuan Xiong
- Merck Institute of Pharmacokinetics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | | | | | | | | | | | - Pascal Girard
- Merck Institute of Pharmacokinetics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | |
Collapse
|
41
|
Cerrito L, Santopaolo F, Monti F, Pompili M, Gasbarrini A, Ponziani FR. Advances in pharmacotherapeutics for hepatocellular carcinoma. Expert Opin Pharmacother 2021; 22:1343-1354. [PMID: 33637024 DOI: 10.1080/14656566.2021.1892074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, there are limited therapeutic options for the advanced stages. Sorafenib was the first tyrosine-kinase inhibitor (TKI) approved for unresectable HCC and remained the only effective choice for a decade. The horizon of systemic treatments drastically expanded in the latest years, opening new interesting possibilities. AREAS COVERED In this manuscript, the authors have analysed the recent advances in pharmacotherapy for HCC, discussing their mechanisms of action, the clinical efficacy and the safety profile of currently available first, second-and third-line treatments. The authors have also analysed the role of immune system modulators, in particular immune checkpoints inhibitors (ICIs), based on the limited data published so far. EXPERT OPINION The emergence of new targeted therapies, such as lenvatinib, have changed the landscape of HCC therapy. Tumor extension, differences in objective response rates and adverse events profiles should be considered to tailor the choice of the first-line agent. Sorafenib remains the most studied drug, with much real-world data available. The efficacy of second line therapies has only been proven in non-responder or sorafenib-intolerant patients. Unfortunately, studies directly comparing the second-line agents regorafenib, ramucirumab and cabozantinib are still lacking.
Collapse
Affiliation(s)
- Lucia Cerrito
- Internal Medicine, Gastroenterology And Hepatology, Fondazione Policlinico Universitario Agostino Gemelli Irccs, Università Cattolica Del Sacro Cuore, ROMA, ITALY
| | - Francesco Santopaolo
- Internal Medicine, Gastroenterology And Hepatology, Fondazione Policlinico Universitario Agostino Gemelli Irccs, Università Cattolica Del Sacro Cuore, ROMA, ITALY
| | | | - Maurizio Pompili
- Internal Medicine, Gastroenterology And Hepatology, Fondazione Policlinico Universitario Agostino Gemelli Irccs, Università Cattolica Del Sacro Cuore, ROMA, ITALY
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology And Hepatology, Fondazione Policlinico Universitario Agostino Gemelli Irccs, Università Cattolica Del Sacro Cuore, ROMA, ITALY
| | - Francesca Romana Ponziani
- Internal Medicine, Gastroenterology And Hepatology, Fondazione Policlinico Universitario Agostino Gemelli Irccs, Università Cattolica Del Sacro Cuore, ROMA, ITALY
| |
Collapse
|
42
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
43
|
Chen S, Peng Z, Zhang Y, Chen M, Li J, Guo R, Li J, Li B, Mei J, Feng S, Kuang M. Lack of Response to Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma: Abandon or Repeat? Radiology 2021; 298:680-692. [PMID: 33464183 DOI: 10.1148/radiol.2021202289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Transarterial chemoembolization (TACE) is the standard treatment for intermediate-stage hepatocellular carcinoma (HCC). It is unknown whether conventional TACE (cTACE) should be continued or abandoned after initial nonresponse for intermediate-stage HCC. The optimal number of sessions before abandoning cTACE remains debated. Purpose To define the number of sessions that patients who do not respond to treatment (hereafter, nonresponders, with stable disease [SD] or progressive disease [PD]) should undergo before abandoning cTACE. Materials and Methods Patients with intermediate-stage HCC and Child-Pugh A liver function who underwent consecutive cTACE sessions between January 2005 and December 2012 were retrospectively included from three centers. Radiologic response rate to each session and its correlation with overall survival were evaluated. Response was assessed by modified Response Evaluation Criteria in Solid Tumors. A nomogram constructed by using tumor size, tumor capsule, and α-fetoprotein to predict patients who responded to treatment (hereafter, responders) was validated with sensitivity and specificity. Results This study evaluated 4154 patients (mean age, 58 years ± 6 [standard deviation]; 3777 men; primary cohort, 3442 patients [mean age, 58 years ± 6; 3129 men]; validation cohort, 712 patients [mean age, 58 years ± 7; 648 men]). Response rate to first cTACE was 35.6% (1227 of 3442, primary cohort) and 36.7% (261 of 712, validation cohort). For patients with SD who were nonresponders to first cTACE, the response rates after second cTACE were 46.1% (719 of 1560) and 48.4% (147 of 304); for patients with SD who were nonresponders to the second cTACE session, the response rates after the third cTACE session were 58.3% (591 of 1014) and 48.5% (98 of 202). For patients with SD who were nonresponders to third, fourth, and fifth cTACE sessions, response rates after fourth, fifth, and sixth cTACE sessions were less than 10%. All response rates in patients with PD who were nonresponders to the next cTACE were less than 5%. Responders to first, second, and third cTACE had higher 5-year overall survival than nonresponders (all P < .001) but responders to the fourth cTACE did not (P = .21). The sensitivity and specificity of a nomogram predicted responders to third cTACE: 75.0% and 79.4% (internal validation) and 78.6% and 87.0% (external validation), respectively. Conclusion Three sessions were recommended before abandoning conventional transarterial embolization (cTACE) for intermediate-stage hepatocellular carcinoma. The nomogram developed in this study identified responders to third cTACE. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Georgiades in this issue.
Collapse
Affiliation(s)
- Shuling Chen
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Zhenwei Peng
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Yaojun Zhang
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Minshan Chen
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Jiaping Li
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Rongping Guo
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Jiali Li
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Bin Li
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Jie Mei
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Shiting Feng
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| | - Ming Kuang
- From the Division of Interventional Ultrasound (S.C., M.K.), Cancer Center (S.C., M.K.), Department of Radiation Oncology (Z.P.), Clinical Trial Unit (Z.P., B.L., J.M.), Institute of Precision Medicine (Z.P., M.K.), Department of Interventional Oncology (Jiaping Li), Department of Radiology (S.F.), and Department of Liver Surgery (M.K.), The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Road 2, Guangzhou, China 510080; Department of Hepatobiliary Surgery, Cancer Centre, Sun Yat-sen University, Guangzhou, China (Y.Z., M.C., R.G.); and Department of Liver Surgery, Dongguan People's Hospital, Dongguan, China (Jiali Li)
| |
Collapse
|
44
|
Gryziak M, Woźniak K, Kraj L, Stec R. Milestones in the treatment of hepatocellular carcinoma: A systematic review. Crit Rev Oncol Hematol 2021; 157:103179. [DOI: 10.1016/j.critrevonc.2020.103179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
|
45
|
Zhou C, Shi Q, Liu J, Huang S, Yang C, Xiong B. Effect of Inhibiting Tumor Angiogenesis After Embolization in the Treatment of HCC with Apatinib-Loaded p( N-Isopropyl-Acrylamide- co-Butyl Methyl Acrylate) Temperature-Sensitive Nanogel. J Hepatocell Carcinoma 2020; 7:447-456. [PMID: 33409168 PMCID: PMC7780989 DOI: 10.2147/jhc.s282209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Background Transcatheter arterial embolization (TAE) is widely used in hepatocellular carcinoma (HCC) therapy. Tumor hypoxia often correlates with the recurrence and metastasis of the tumor and is the critical factor limiting the treatment effect of TAE. Purpose To investigate the underlying mechanism and therapeutic potential of TAE combined with apatinib-loaded p(N-isopropyl-acrylamide-co-butyl methyl acrylate) temperature-sensitive (PIB) nanogel for the suppression of rabbit VX2 liver tumor growth. Materials and Methods Sixty-five VX2 tumor-burdened rabbits were randomly divided into five groups and treated transarterially with apatinib-loaded PIB (Group PA, 0.4 mL, n=13), PIB alone (Group P, 0.4 mL, n=13), iodized oil alone (Group I, 0.4 mL, n=13), apatinib solution (Group A, 0.4 mL, n=13) or saline (Group NS, 0.4 mL, n=13). The dose of apatinib was 2 mg/kg. Tumors were harvested, sectioned and immunohistochemically stained, and the tumor growth rates and survival times in each group were measured. Blood samples and liver tissues were collected for pharmacokinetic analysis. Results The tumor growth rate in Group PA was considerably lower than the other four groups (P=0.000<0.01), and the survival time was significantly prolonged (P=0.000<0.01). The immunohistochemistry results showed that CD31 expression was significantly lower in Group PA than that of the other four groups (P=0.000<0.01). The apatinib concentration in the blood fell below 10 ng/mL within 10 min after TAE and dropped below 1 ng/mL after 8 h. The drug was released continuously in the liver for 36 days, with the highest concentration at the tumor junction (P=0.045<0.05). Conclusion PIB effectively targeted apatinib to HCC tissues, achieved a slow and sustained release of the drug in the tumor and considerably reduced the systemic drug concentration. Further experiments showed significantly prolonged survival times and an inhibitory effect on tumor growth.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Qin Shi
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Songjiang Huang
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Chongtu Yang
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| | - Bin Xiong
- Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Department of Radiology Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, People's Republic of China
| |
Collapse
|
46
|
Abstract
The incidence and mortality related to hepatocellular carcinoma (HCC) continue to increase in the United States, with most patients presenting at advanced stages where curative therapy and long-term survival is unlikely. Fortunately, significant progress has been made in identifying the landscape of HCC mutations due to advances in whole genome expression profiling. Drug development has also evolved in recent years with multiple first- and second-line systemic chemotherapy agents approved for HCC for the first time in over a decade. However, despite advances in molecular profiling, mutations that were identified at the highest frequency were not amenable to drug development, and curative therapy for advanced HCC remains elusive. This review focuses on the current understanding of HCC genomics and the limitations of translating the current HCC molecular profiling into clinical practice and examines the effectiveness and benefits of approved systemic therapies for advanced HCC.
Collapse
|
47
|
Indra R, Vavrová K, Pompach P, Heger Z, Hodek P. Identification of Enzymes Oxidizing the Tyrosine Kinase Inhibitor Cabozantinib: Cabozantinib Is Predominantly Oxidized by CYP3A4 and Its Oxidation Is Stimulated by cyt b 5 Activity. Biomedicines 2020; 8:biomedicines8120547. [PMID: 33260548 PMCID: PMC7759869 DOI: 10.3390/biomedicines8120547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied using hepatic microsomal samples of different human donors, human recombinant cytochromes P450 (CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4 activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we examined the kinetics of this oxidation. The present study provides substantial insights into the metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics towards possible utilization in personalized medicine.
Collapse
Affiliation(s)
- Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
- Correspondence: ; Tel.: +420-221-951-285
| | - Katarína Vavrová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic;
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200 Brno, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| |
Collapse
|
48
|
Winters AC, Bedier F, Saab S. Management of Side Effects of Systemic Therapies for Hepatocellular Carcinoma: Guide for the Hepatologist. Clin Liver Dis 2020; 24:755-769. [PMID: 33012457 DOI: 10.1016/j.cld.2020.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Historically, systemic treatment of advanced hepatocellular carcinoma was limited to the tyrosine kinase inhibitor sorafenib. With the recent approval of several new agents the armamentarium of treatment options available to providers and patients has expanded. Although these promising advances offer hope for patients with advanced hepatocellular carcinoma, they also present new and challenging adverse effects that threaten to limit their efficacy. Immunotherapy with checkpoint inhibitors introduce immune-related adverse events, which may affect a wide array of organ systems. With prompt recognition, however, common side effects of systemic therapies for hepatocellular carcinoma are predictable, manageable, and many improve with appropriate intervention.
Collapse
Affiliation(s)
- Adam C Winters
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA
| | - Fatima Bedier
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA
| | - Sammy Saab
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Shao Z, Pan H, Tu S, Zhang J, Yan S, Shao A. HGF/c-Met Axis: The Advanced Development in Digestive System Cancer. Front Cell Dev Biol 2020; 8:801. [PMID: 33195182 PMCID: PMC7649216 DOI: 10.3389/fcell.2020.00801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have indicated that abnormal activation of the HGF/c-Met signaling pathway can lead to cell proliferation, invasiveness, and metastasis of cancers of the digestive system. Moreover, overexpression of c-Met has been implicated in poor prognosis of patients with these forms of cancer, suggesting the possibility for HGF/c-Met axis as a potential therapeutic target. Despite the large number of clinical and preclinical trials worldwide, no significant positive success in the use of anti-HGF/c-Met treatments on cancers of the digestive system has been achieved. In this review, we summarize advanced development of clinical research on HGF/c-Met antibody and small-molecule c-Met inhibitors of cancers of the digestive system and provide a possible direction for future research.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoqi Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingying Zhang
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Yu J, Chen GG, Lai PBS. Targeting hepatocyte growth factor/c-mesenchymal-epithelial transition factor axis in hepatocellular carcinoma: Rationale and therapeutic strategies. Med Res Rev 2020; 41:507-524. [PMID: 33026703 DOI: 10.1002/med.21738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. The outcome of current standard treatments, as well as targeted therapies in advanced stages, are still unsatisfactory. Attention has been drawn to novel strategies for better treatment efficacy. Hepatocyte growth factor/c-mesenchymal-epithelial transition factor (HGF/c-Met) axis has been known as an essential element in the regulation of liver diseases and as an oncogenic factor in HCC. In this review, we collected the evidence of HGF/c-Met as a tumor progression and prognostic marker, discussed the anti-c-Met therapy in vitro, summarized the outcome of c-Met inhibitors in clinical trials, and identified potential impetus for future anti-c-Met treatments. We also analyzed the inconsistency of HGF/c-Met from various publications and offered reasonable explanations based on the current understanding in this area. In conclusion, HGF/c-Met plays a crucial role in the progression and growth of HCC, and the strategies to inhibit this pathway may facilitate the development of new and effective treatments for HCC patients.
Collapse
Affiliation(s)
- Jianqing Yu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - George G Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|