1
|
Chen Q, He Y, Wang Y, Li C, Zhang Y, Guo Q, Zhang Y, Chu Y, Liu P, Chen H, Zhou Z, Zhou W, Zhao Z, Li X, Sun T, Jiang C. Penetrable Nanoplatform for "Cold" Tumor Immune Microenvironment Reeducation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000411. [PMID: 32995118 PMCID: PMC7503208 DOI: 10.1002/advs.202000411] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Lack of tumor-infiltration lymphocytes (TILs) and resistances by overexpressed immunosuppressive cells (principally, myeloid-derived suppressor cells (MDSCs)) in tumor milieu are two major challenges hindering the effectiveness of immunotherapy for "immune-cold" tumors. In addition, the natural physical barrier existing in solid cancer also limits deeper delivery of drugs. Here, a tumor-targeting and light-responsive-penetrable nanoplatform (Apt/PDGs^s@pMOF) is developed to elicit intratumoral infiltration of cytotoxic T cells (CTLs) and reeducate immunosuppressive microenvironment simultaneously. In particular, porphyrinic metal-organic framework (pMOF)-based photodynamic therapy (PDT) induces tumor immunogenic cell death (ICD) to promote CTLs intratumoral infiltration and hot "immune-cold" tumor. Upon being triggered by PDT, the nearly 10 nm adsorbed drug-loaded dendrimer de-shields from the nanoplatform and spreads into the deeper tumor, eliminating MDSCs and reversing immunosuppression, eventually reinforcing immune response. Meanwhile, the designed nanoplatform also has a systemic MDSC inhibition effect and moderate improvement of overall antitumor immune responses, resulting in effective suppression of distal tumors within less significant immune-related adverse effects (irAEs) induced.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongqing He
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced MaterialsFudan UniversityShanghai200433P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| |
Collapse
|
2
|
Elaskalani O, Domenchini A, Abdol Razak NB, E. Dye D, Falasca M, Metharom P. Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers (Basel) 2020; 12:cancers12010250. [PMID: 31968611 PMCID: PMC7016832 DOI: 10.3390/cancers12010250] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Extensive research has reported that extracellular ADP in the tumour microenvironment can stimulate platelets through interaction with the platelet receptor P2Y12. In turn, activated platelets release biological factors supporting cancer progression. Experimental data suggest that the tumour microenvironment components, of which platelets are integral, can promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Thus, overcoming chemoresistance requires combining multiple inhibitors that simultaneously target intrinsic pathways in cancer cells and extrinsic factors related to the tumour microenvironment. We aimed to determine whether ticagrelor, an inhibitor of the ADP–P2Y12 axis and a well-known antiplatelet drug, could be a therapeutic option for PDAC. Methods: We investigated a functional P2Y12 receptor and its downstream signalling in a panel of PDAC cell lines and non-cancer pancreatic cells termed hTERT-HPNE. We tested the synergistic effect of ticagrelor, a P2Y12 inhibitor, in combination with chemotherapeutic drugs (gemcitabine, paclitaxel and cisplatin), in vitro and in vivo. Results: Knockdown studies revealed that P2Y12 contributed to epidermal growth factor receptor (EGFR) activation and the expression of SLUG and ZEB1, which are transcriptional factors implicated in metastasis and chemoresistance. Studies using genetic and pharmacological inhibitors showed that the P2Y12–EGFR crosstalk enhanced cancer cell proliferation. Inhibition of P2Y12 signalling significantly reduced EGF-dependent AKT activation and promoted the anticancer activity of anti-EGFR treatment. Importantly, ticagrelor significantly decreased the proliferative capacity of cancer but not normal pancreatic cells. In vitro, synergism was observed when ticagrelor was combined with several chemodrugs. In vivo, a combination of ticagrelor with gemcitabine significantly reduced tumour growth, whereas gemcitabine or ticagrelor alone had a minimal effect. Conclusions: These findings uncover a novel effect and mechanism of action of the antiplatelet drug ticagrelor in PDAC cells and suggest a multi-functional role for ADP-P2Y12 signalling in the tumour microenvironment.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
| | - Alice Domenchini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Danielle E. Dye
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Pat Metharom
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
- Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: ; Tel.: +61-(08)-9266-9271
| |
Collapse
|
3
|
Connell CM, Brais R, Whitaker H, Upponi S, Beh I, Risdall J, Corrie P, Janowitz T, Jodrell DI. Early relapse on adjuvant gemcitabine associated with an exceptional response to 2nd line capecitabine chemotherapy in a patient with pancreatic adenosquamous carcinoma with strong intra-tumoural expression of cytidine deaminase: a case report. BMC Cancer 2020; 20:38. [PMID: 31941506 PMCID: PMC6964020 DOI: 10.1186/s12885-020-6516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic adenosquamous carcinoma has a poor prognosis, with limited prospective trial data to guide optimal treatment. The potential impact of drug metabolism on the treatment response of patients with pancreatic adenosquamous carcinoma is largely unknown. CASE PRESENTATION We describe the case of a 51 year old woman with pancreatic adenosquamous carcinoma who, following surgical resection, experienced early disease relapse during adjuvant gemcitabine therapy. Paradoxically, this was followed by an exceptional response to capecitabine therapy lasting 34.6 months. Strong expression of cytidine deaminase was detected within the tumour. CONCLUSIONS This case study demonstrates that early relapse during adjuvant chemotherapy for pancreatic adenosquamous carcinoma may be compatible with a subsequent exceptional response to second line chemotherapy, an important observation given the poor overall prognosis of patients with adenosquamous carcinoma. Cytidine deaminase is predicted to inactivate gemcitabine and, conversely, catalyze capecitabine activation. We discuss strong intra-tumoural expression of cytidine deaminase as a potential mechanism to explain this patient's disparate responses to gemcitabine and capecitabine therapy, and highlight the benefit that may be gained from considering similar determinants of response to chemotherapy in clinical practice.
Collapse
Affiliation(s)
- Claire M. Connell
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
- Department of Oncology, CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE UK
| | - Rebecca Brais
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Hayley Whitaker
- Research Department for Tissue & Energy, Division of Surgery & Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS UK
| | - Sara Upponi
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Ian Beh
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Jane Risdall
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Pippa Corrie
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
| | - Tobias Janowitz
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
- Department of Oncology, CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE UK
| | - Duncan I. Jodrell
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ UK
- Department of Oncology, CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE UK
| |
Collapse
|