1
|
Maturi A, Sastry KNV, Kumar S, Pogaku V, Kwon HJ, Ahn SM, Kim MH. Side Chain Investigation of Imidazopyridazine as a Hinge Binder for Targeting Actionable Mutations of RET Kinase. ACS Med Chem Lett 2024; 15:1566-1574. [PMID: 39291010 PMCID: PMC11403754 DOI: 10.1021/acsmedchemlett.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Actionable mutations of RET kinase have been identified as oncogenic drivers of solid tumors, including thyroid cancer, metastatic colorectal cancer, and nonsmall cell lung cancer. Although multikinase inhibitors and RET selective inhibitors are used to treat patients with RET alterations, there is insufficient research addressing certain issues: which actionable mutations arise from these therapies, how to improve the clinical response rate to RET inhibitors, and how to design new inhibitors to overcome drug resistance. Therefore, the development of sophisticated tool compounds is required to investigate the molecular mechanisms of actionable mutations and to develop breakthrough therapeutics for different RET alterations. Herein, we present our investigation into the side chains of imidazopyridazine hinge binders that are capable of inducing protein-ligand interaction patterns from the gatekeeper to the waterfront regions. Extending the substituents at the second and sixth positions enhanced the IC50 up to < 0.5 nM for diverse RET alterations.
Collapse
Affiliation(s)
- Arunkranthi Maturi
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kasinathuni Naga Visweswara Sastry
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Vinay Pogaku
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| | | | - Sung-Min Ahn
- Gachon Institute of Genome Medicine and Sciences, Gachon University Gil Medical Center, Incheon 21936, Republic of Korea
- Immunoforge, Seoul 08591, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
2
|
Gupta A, Avadhanula S, Bashyam MD. Evaluation of the gene fusion landscape in early onset sporadic rectal cancer reveals association with chromatin architecture and genome stability. Oncogene 2024; 43:2449-2462. [PMID: 38937601 DOI: 10.1038/s41388-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Gene fusions represent a distinct class of structural variants identified frequently in cancer genomes across cancer types. Several gene fusions exhibit gain of oncogenic function and thus have been the focus of development of efficient targeted therapies. However, investigation of fusion landscape in early-onset sporadic rectal cancer, a poorly studied colorectal cancer subtype prevalent in developing countries, has not been performed. Here, we present a comprehensive landscape of gene fusions in EOSRC and CRC using patient derived tumor samples and data from The Cancer Genome Atlas, respectively. Gene Ontology analysis revealed enrichment of unique biological process terms associated with 5'- and 3'- fusion partner genes. Extensive network analysis highlighted genes exhibiting significant promiscuity in fusion formation and their association with chromosome fragile sites. Investigation of fusion formation in the context of global chromatin architecture unraveled a novel mode of gene activation that arose from fusion between genes located in orthogonal chromatin compartments. The study provides novel evidence linking fusions to genome stability and architecture and unearthed a hitherto unidentified mode of gene activation in cancer.
Collapse
Affiliation(s)
- Asmita Gupta
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sumedha Avadhanula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
3
|
Baranov E, Nowak JA. Pathologic Evaluation of Therapeutic Biomarkers in Colorectal Adenocarcinoma. Surg Pathol Clin 2023; 16:635-650. [PMID: 37863556 DOI: 10.1016/j.path.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Molecular testing is an essential component of the pathologic evaluation of colorectal carcinoma providing diagnostic, prognostic, and predictive therapeutic information. Mismatch repair status evaluation is required for all tumors. Advanced and metastatic tumors also require determination of tumor mutational burden, KRAS, NRAS, and BRAF mutation status, ERBB2 amplification status, and NTRK and RET gene rearrangement status to guide therapy. Multiple assays, including immunohistochemistry, microsatellite instability testing, MLH1 promoter methylation, and next-generation sequencing, are typically needed. Pathologists must be aware of these requirements to optimally triage tissue. Advances in colorectal cancer molecular diagnostics will continue to drive refinements in colorectal cancer personalized therapy.
Collapse
Affiliation(s)
- Esther Baranov
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Qin H, Wan Y, Dong Y, Sun Q. A Metastatic Pulmonary Sarcomatoid Carcinoma Patient Harboring KIF5B-RET Fusion Responds to First-Line Pralsetinib Treatment: A Case Report. Cancer Manag Res 2023; 15:765-769. [PMID: 37525669 PMCID: PMC10387260 DOI: 10.2147/cmar.s414077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is a rare subtype of non-small cell lung cancer (NSCLC), accounting for about 1% of cases. These tumors are characterized by their high malignancy and frequent resistance to chemotherapy, resulting in a worse prognosis compared to other NSCLC subtypes. Currently, there is no established therapeutic strategy for PSC. Recent advancements in targeted therapies have led to the development of ret proto-oncogene (RET) inhibitors, such as selpercatinib and pralsetinib, which have been approved for the treatment of RET fusion-positive NSCLC patients. Despite their effectiveness in RET fusion-positive NSCLC is observed, the efficacy of these inhibitors in PSC remains unclear. In this context, we present a case of metastatic PSC harboring de novo KIF5B-RET fusion. The patient responded to first-line trametinib treatment. These findings suggest that RET inhibitors could be a potential treatment option for metastatic PSC patients with RET fusion-positive tumors.
Collapse
Affiliation(s)
- Hao Qin
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People’s Republic of China
| | - Yuxiang Wan
- Department of Laboratory Diagnosis, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People’s Republic of China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People’s Republic of China
| | - Qinying Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Kucharczyk T, Krawczyk P, Kowalski DM, Płużański A, Kubiatowski T, Kalinka E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers (Basel) 2022; 14:5298. [PMID: 36358717 PMCID: PMC9657474 DOI: 10.3390/cancers14215298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2023] Open
Abstract
Mutations and fusions of RET (rearranged during transfection) gene are detected in a few common types of tumors including thyroid or non-small cells lung cancers. Multiple kinase inhibitors (MKIs) do not show spectacular effectiveness in patients with RET-altered tumors. Hence, recently, two novel RET-specific inhibitors were registered in the US and in Europe. Selpercatinib and pralsetinib showed high efficacy in clinical trials, with fewer adverse effects, in comparison to previously used MKIs. However, the effectiveness of these new drugs may be reduced by the emergence of resistance mutations in RET gene and activation of different activating signaling pathways. This review presents the function of the normal RET receptor, types of molecular disturbances of the RET gene in patients with various cancers, methods of detecting these abnormalities, and the effectiveness of modern anticancer therapies (ranging from immunotherapies, through MKIs, to RET-specific inhibitors).
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dariusz M. Kowalski
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Adam Płużański
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Tomasz Kubiatowski
- Oncology and Immunology Clinic, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 10-228 Olsztyn, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 90-302 Lodz, Poland
| |
Collapse
|
7
|
Yang L, WenTao T, ZhiYuan Z, Qi L, YuXiang L, Peng Z, Ke L, XiaoNa J, YuZhi P, MeiLing J, QingYang F, GuoDong H, YueXiang W, JianMin X. Cullin-9/p53 mediates HNRNPC degradation to inhibit erastin-induced ferroptosis and is blocked by MDM2 inhibition in colorectal cancer. Oncogene 2022; 41:3210-3221. [PMID: 35505093 DOI: 10.1038/s41388-022-02284-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/27/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer associated death worldwide. Ferroptosis is a newly defined form of regulated cell death characterized by the accumulation of lipid hydroperoxides and exerts an increased attention for cancer treatment. However, little is known about ferroptosis in CRC. In this study, through whole genome sequencing and external differential differentiated expression analysis, we identify CUL9 as a novel important modulator for ferroptosis in CRC. Here we demonstrated that CUL9 can binds p53 to ubiquitylate heterogeneous nuclear ribonucleoprotein C for degradation. Overexpression of CUL9 increases resistance to erastin-induced ferroptosis. Then, we discovered this resistance was mediated by CUL9-HNRNPC-MATE1 negative loop, which can provide us with a novel target to overcome drug resistance to ferroptosis activators. Finally, we found that targeting MDM2 was developed as an effective strategy to destroy precious drug-resistant CRC cells.
Collapse
Affiliation(s)
- Lv Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tang WenTao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Zhang ZhiYuan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Lin Qi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Luo YuXiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Peng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Li Ke
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia XiaoNa
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pang YuZhi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji MeiLing
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Feng QingYang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - He GuoDong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China
| | - Wang YueXiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xu JianMin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Surgery, Shanghai, China.
| |
Collapse
|
8
|
Abdullah M, Meilany S, Trimarsanto H, Malik SG, Sukartini N, Idrus F, Nursyirwan SA, Muzellina VN, Pribadi RR, Utari AP, Maulahela H, Syam AF. Genomic profiles of Indonesian colorectal cancer patients. F1000Res 2022; 11:443. [PMID: 37125020 PMCID: PMC10133825 DOI: 10.12688/f1000research.109136.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide and genetic mutation plays a vital role in CRC development. A previous study has suggested that genetic alterations among Indonesian patients with CRC might differ from those known in developed countries. This study aimed to describe the genomic profiles of Indonesian patients with CRC. Methods: A total of 13 patients were recruited for this study from May to July 2019. Tissue samples were collected, and genomic DNA was extracted from the samples. AmpliSeq for Illumina Cancer HotSpot Panel v2 Next-generation sequencing was used for DNA sequencing and a genome analysis toolkit was used for local realignment around the discovered variants. Results: A total of 45 genes comprising 391 single nucleotide variants (SNVs) with a depth >10 were observed. The genes with the most variants were STK11, SMAD4, EGFR, and ERBB4 and the genes with the most non-synonymous variants were SMAD4, TP53, FGFR3, CDKN2A, and STK11. Genes and SNVs in at least 90% of all samples consisted of 43 genes comprising 286 variants. Genes with the most non-synonymous SNVs were EGFR, SMO, FGFR3, TP53, STK11, CDKN2A. Genes related to the chromosomal instability pathway, such as TP53, SMAD4, KRAS, and APC, are also found in the analysis. Conclusions: Our findings showed that all patients with CRC in this study had genetic mutations in the chromosomal instability pathway. Analysis of genetic mutation of Indonesian patients with CRC might be crucial for advanced targeted therapy and for better clinical outcomes.
Collapse
Affiliation(s)
- Murdani Abdullah
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
- Human Cancer Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Sofy Meilany
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Safarina G. Malik
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Ninik Sukartini
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Firhat Idrus
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Saskia A. Nursyirwan
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Virly N. Muzellina
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Rabbinu R. Pribadi
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Amanda P. Utari
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Hasan Maulahela
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Ari F. Syam
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| |
Collapse
|
9
|
Abdullah M, Meilany S, Trimarsanto H, Malik SG, Sukartini N, Idrus F, Nursyirwan SA, Muzellina VN, Pribadi RR, Utari AP, Maulahela H, Syam AF. Genomic profiles of Indonesian colorectal cancer patients. F1000Res 2022; 11:443. [PMID: 37125020 PMCID: PMC10133825 DOI: 10.12688/f1000research.109136.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide and genetic mutation plays a vital role in CRC development. A previous study has suggested that genetic alterations among Indonesian patients with CRC might differ from those known in developed countries. This study aimed to describe the genomic profiles of Indonesian patients with CRC. Methods: A total of 13 patients were recruited for this study from May to July 2019. Tissue samples were collected, and genomic DNA was extracted from the samples. AmpliSeq for Illumina Cancer HotSpot Panel v2 Next-generation sequencing was used for DNA sequencing and a genome analysis toolkit was used for local realignment around the discovered variants. Results: A total of 45 genes comprising 391 single nucleotide variants (SNVs) with a depth >10 were observed. The genes with the most variants were STK11, SMAD4, EGFR, and ERBB4 and the genes with the most non-synonymous variants were SMAD4, TP53, FGFR3, CDKN2A, and STK11. Genes and SNVs in at least 90% of all samples consisted of 43 genes comprising 286 variants. Genes with the most non-synonymous SNVs were EGFR, SMO, FGFR3, TP53, STK11, CDKN2A. Genes related to the chromosomal instability pathway, such as TP53, SMAD4, KRAS, and APC, are also found in the analysis. Conclusions: Our findings showed that all patients with CRC in this study had genetic mutations in the chromosomal instability pathway. Analysis of genetic mutation of Indonesian patients with CRC might be crucial for advanced targeted therapy and for better clinical outcomes.
Collapse
Affiliation(s)
- Murdani Abdullah
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
- Human Cancer Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Sofy Meilany
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Safarina G. Malik
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jakarta, 10430, Indonesia
| | - Ninik Sukartini
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Firhat Idrus
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Saskia A. Nursyirwan
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Virly N. Muzellina
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Rabbinu R. Pribadi
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Amanda P. Utari
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Hasan Maulahela
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| | - Ari F. Syam
- Division of Gastroenterology, Pancreatobiliary, and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, 10430, Indonesia
| |
Collapse
|
10
|
Parate S, Kumar V, Chan Hong J, Lee KW. Investigating natural compounds against oncogenic RET tyrosine kinase using pharmacoinformatic approaches for cancer therapeutics. RSC Adv 2022; 12:1194-1207. [PMID: 35425116 PMCID: PMC8978841 DOI: 10.1039/d1ra07328a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
Rearranged during transfection (RET) tyrosine kinase is a transmembrane receptor tyrosine kinase regulating vital aspects of cellular proliferation, differentiation, and survival. An outstanding challenge in designing protein kinase inhibitors is due to the development of drug resistance. The “gain of function” mutations in the RET gate-keeper residue, Val804, confers resistance to the majority of known RET inhibitors, including vandetanib. To curtail this resistance, researchers developed selpercatinib (LOXO-292) against the RET gate-keeper mutant forms – V804M and V804L. In the present in silico investigation, a receptor–ligand pharmacophore model was generated to identify small molecule inhibitors effective for wild-type (WT) as well as mutant RET kinase variants. The generated model was employed to screen 144 766 natural products (NPs) available in the ZINC database and the retrieved NPs were filtered for their drug-likeness. The resulting 2696 drug-like NPs were subjected to molecular docking with the RET WT kinase domain and a total of 27 molecules displayed better dock scores than the reference inhibitors – vandetanib and selpercatinib. From 27 NPs, an aggregate of 12 compounds demonstrated better binding free energy (BFE) scores than the reference inhibitors, towards RET. Thus, the 12 NPs were also subjected to docking, simulation, and BFE estimation towards the constructed gate-keeper RET mutant structures. The BFE calculations revealed 3 hits with better BFE scores than the reference inhibitors towards WT, V804M, and V804L RET variants. Thus, the scaffolds of hit compounds presented in this study could act as potent RET inhibitors and further provide insights for drug optimization targeting aberrant activation of RET signaling, specifically the mutation of gate-keeper residue – Val804. Identification of natural product inhibitors against rearranged during transfection (RET) tyrosine kinase as cancer therapeutics using combination of in silico techniques.![]()
Collapse
Affiliation(s)
- Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Jong Chan Hong
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| |
Collapse
|
11
|
Abstract
INTRODUCTION Unresectable metastatic colorectal cancer (mCRC) has a poor prognosis. Emerging treatment paradigms have improved outcomes in selected unresectable mCRC cases. Recent therapeutic advancements are due in part to a shift in trial designs. By examining CRC as a heterogeneous group of various tumor subtypes, researchers have identified molecular distinctions that have led to promising targets. AREAS COVERED Nineteen antineoplastic agents are included in the National Comprehensive Cancer Network guidelines for the palliative management of mCRC. However, not all patients will be candidates for each agent. New therapies for rare mCRC subtypes have emerged. Herein, the authors review these rare mCRC subtypes: microsatellite instability-high/deficient mismatch repair, BRAFV600E-mutant, and human epidermal growth factor receptor 2-positive tumors. Additionally, they provide an overview of unresectable mCRC management and future directions. EXPERT OPINION Treatment in the majority of mCRC patients (RAS wild-type or RAS-mutant, microsatellite instability-stable or -low/mismatch repair-proficient, BRAFV600E wild-type, or HER2-negative) needs further advancement and remains an unmet need. The authors believe that the key to identifying more breakthroughs in these mCRC patients is to continue to differentiate their tumors molecularly and clinically.
Collapse
Affiliation(s)
- Jane E Rogers
- Pharmacy Clinical Programs, The University of Texas Md Anderson Cancer Center, Houston, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas Md Anderson Cancer Center, Houston, USA
| |
Collapse
|
12
|
João Pissarra A, Abreu C, Mansinho A, Lúcia Costa A, Dâmaso S, Lobo-Martins S, Martins M, Costa L. Landscape of Current Targeted Therapies for Advanced Colorectal Cancer. COLORECTAL CANCER 2021. [DOI: 10.5772/intechopen.93978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent and lethal cancer types worldwide. While surgery with chemotherapy and radiotherapy remains the only curative approach for localized CRC, for metastatic disease the therapeutic landscape has significantly evolved over the last years. Development and approval of novel targeted therapies, such as monoclonal antibodies against EGFR and VEGF, have significantly increased the median survival of patients with metastatic disease, with some trials reporting a benefit over 40 months. Increasing accessibility of high throughput sequencing has unraveled several new therapeutic targets. Actionable alterations, such as HER2 overexpression, BRAF mutations, and NTRK fusions, are currently available in metastatic disease, providing significant therapeutic opportunities for these patients, while new emerging agents, as immune checkpoint inhibitors, promise better treatment options in the near future. In this chapter, an overview of established and future CRC targeted therapies in the clinical setting is provided, as well as their mechanism of action, limitations, and future applicability.
Collapse
|
13
|
Sun F, McCoach CE. Therapeutic Advances in the Management of Patients with Advanced RET Fusion-Positive Non-Small Cell Lung Cancer. Curr Treat Options Oncol 2021; 22:72. [PMID: 34165651 DOI: 10.1007/s11864-021-00867-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Screening for activating driver gene alterations at the time of diagnosis is the standard of care for advanced non-small cell lung cancer (NSCLC). Activating RET fusions are identified in approximately 1-2% of NSCLCs and have emerged as a targetable driver alteration. Selpercatinib and pralsetinib are RET-selective tyrosine kinase inhibitors (TKIs) with encouraging efficacy, intracranial activity, and tolerability that we recommend as first-line therapy. As with use of TKIs in other oncogene-addicted NSCLCs, development of acquired resistance is pervasive and should be specifically delineated through use of repeat tissue biopsy with genetic profiling at the time of disease progression. If an actionable resistance mechanism emerges for which there is a candidate targeted therapy, combination inhibition should be considered. Alternatively, or in the absence of such findings, platinum doublet chemotherapy or particularly platinum-pemetrexed therapy with or without bevacizumab demonstrates a moderate effect.We would not recommend the routine use of nonselective multi-targeted TKIs such as cabozantinib and vandetanib, which have modest activity but limited tolerability due to predictable off-target effects. Single-agent immunotherapy has minimal activity in RET fusion-positive NSCLC. The role of combination chemotherapy and immunotherapy requires further study but may be considered, particularly in the presence of an activating KRAS alteration. While further development of novel RET-selective TKIs may address common RET-specific resistance mutations, they will not have activity against off-target, RET-independent resistance mechanisms. This again highlights the importance of serial biopsy and next-generation sequencing for the rational choice of sequential therapy in RET fusion-positive NSCLC.
Collapse
Affiliation(s)
- Fangdi Sun
- Department of Medicine, University of California, San Francisco, CA, 94143, USA.
| | - Caroline E McCoach
- Department of Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
14
|
Martínez-Fernández P, Pose P, Dolz-Gaitón R, García A, Trigo-Sánchez I, Rodríguez-Zarco E, Garcia-Ruiz MJ, Barba I, Izquierdo-García M, Valero-Garcia J, Ruiz C, Lázaro M, Carbonell P, Gargallo P, Méndez C, Ríos-Martín JJ, Palmeiro-Uriach A, Camarasa-Lillo N, Forteza-Vila J, Calabria I. Comprehensive NGS Panel Validation for the Identification of Actionable Alterations in Adult Solid Tumors. J Pers Med 2021; 11:jpm11050360. [PMID: 33947144 PMCID: PMC8145002 DOI: 10.3390/jpm11050360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
The increasing identification of driver oncogenic alterations and progress of targeted therapies addresses the need of comprehensive alternatives to standard molecular methods. The translation into clinical practice of next-generation sequencing (NGS) panels is actually challenged by the compliance of high quality standards for clinical accreditation. Herein, we present the analytical and clinical feasibility study of a hybridization capture-based NGS panel (Action OncoKitDx) for the analysis of somatic mutations, copy number variants (CNVs), fusions, pharmacogenetic SNPs and Microsatellite Instability (MSI) determination in formalin-fixed paraffin-embedded (FFPE) tumor samples. A total of 64 samples were submitted to extensive analytical validation for the identification of previously known variants. An additional set of 166 tumor and patient-matched normal samples were sequenced to assess the clinical utility of the assay across different tumor types. The panel demonstrated good specificity, sensitivity, reproducibility, and repeatability for the identification of all biomarkers analyzed and the 5% limit of detection set was validated. Among the clinical cohorts, the assay revealed pathogenic genomic alterations in 97% of patient cases, and in 82.7%, at least one clinically relevant variant was detected. The validation of accuracy and robustness of this assay supports the Action OncoKitDx's utility in adult solid tumors.
Collapse
Affiliation(s)
- Paula Martínez-Fernández
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Patricia Pose
- Servicio de Anatomía Patológica, Hospital Universitario de la Ribera, 46600 Alcira, Spain; (P.P.); (R.D.-G.)
| | - Raquel Dolz-Gaitón
- Servicio de Anatomía Patológica, Hospital Universitario de la Ribera, 46600 Alcira, Spain; (P.P.); (R.D.-G.)
| | - Arantxa García
- Servicio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia, 15009 A Coruña, Spain;
| | - Inmaculada Trigo-Sánchez
- Servicio de Anatomía Patológica, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (I.T.-S.); (E.R.-Z.); (J.J.R.-M.)
| | - Enrique Rodríguez-Zarco
- Servicio de Anatomía Patológica, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (I.T.-S.); (E.R.-Z.); (J.J.R.-M.)
| | - MJose Garcia-Ruiz
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Ibon Barba
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Marta Izquierdo-García
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Jennifer Valero-Garcia
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Carlos Ruiz
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Marián Lázaro
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Paula Carbonell
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Pablo Gargallo
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
| | - Carlos Méndez
- Servicio de Oncología Médica, Centro Oncológico de Galicia, 15009 A Coruña, Spain;
| | - Juan José Ríos-Martín
- Servicio de Anatomía Patológica, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (I.T.-S.); (E.R.-Z.); (J.J.R.-M.)
| | - Alberto Palmeiro-Uriach
- Laboratorio de Anatomía Patológica, Hospital General Universitario de Castellón, 12004 Castellón, Spain;
| | | | - Jerónimo Forteza-Vila
- Anatomía Patológica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Inés Calabria
- Imegen-Health in Code Group, 46980 Paterna, Spain; (P.M.-F.); (M.G.-R.); (I.B.); (M.I.-G.); (J.V.-G.); (C.R.); (M.L.); (P.C.); (P.G.)
- Correspondence:
| |
Collapse
|
15
|
Fancelli S, Caliman E, Mazzoni F, Brugia M, Castiglione F, Voltolini L, Pillozzi S, Antonuzzo L. Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051091. [PMID: 33806299 PMCID: PMC7961559 DOI: 10.3390/cancers13051091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary REarranged during Transfection (RET) is an emerging target for several types of cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical settings and accordingly, the state-of-the-art in new drugs or combination of drugs development. Abstract The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib, are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause resistance at the solvent front RET G810 residue have been found, pointing to the need for the development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and feasible drugs combinations and strategies viable in the near future.
Collapse
Affiliation(s)
- Sara Fancelli
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Enrico Caliman
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Francesca Mazzoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-7948406
| |
Collapse
|
16
|
Han Q, Kono TJY, Knutson CG, Parry NM, Seiler CL, Fox JG, Tannenbaum SR, Tretyakova NY. Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2-/-/ Il10-/- Mouse Model. Int J Mol Sci 2020; 22:ijms22010364. [PMID: 33396408 PMCID: PMC7795000 DOI: 10.3390/ijms22010364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: ; Tel.: +1-612-626-3432
| |
Collapse
|
17
|
Sveen A, Kopetz S, Lothe RA. Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat Rev Clin Oncol 2020; 17:11-32. [PMID: 31289352 PMCID: PMC7577509 DOI: 10.1038/s41571-019-0241-1] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
The number of molecularly stratified treatment options available to patients with colorectal cancer (CRC) is increasing, with a parallel rise in the use of biomarkers to guide prognostication and treatment decision-making. The increase in both the number of biomarkers and their use has resulted in a progressively complex situation, evident both from the extensive interactions between biomarkers and from their sometimes complex associations with patient prognosis and treatment benefit. Current and emerging biomarkers also reflect the genomic complexity of CRC, and include a wide range of aberrations such as point mutations, amplifications, fusions and hypermutator phenotypes, in addition to global gene expression subtypes. In this Review, we provide an overview of current and emerging clinically relevant biomarkers and their role in the management of patients with CRC, illustrating the intricacies of biomarker interactions and the growing treatment opportunities created by the availability of comprehensive molecular profiling.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research & K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research & K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|