1
|
Chen L, Yu W, Zhao J, Jia S, Hu L. Molecular Imprinting of Phospholipids for Targeted Cell and Exosome Recognition. Anal Chem 2025; 97:9953-9960. [PMID: 40305851 DOI: 10.1021/acs.analchem.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Phospholipids, integral to the composition of cell membranes and extracellular vesicles, play a pivotal role in numerous biological processes. The precise identification, localization, and isolation of these membrane phospholipids are crucial for sophisticated imaging and liquid biopsy. However, the structural diversity and amphiphilic nature of phospholipids present significant challenges. In this study, we have developed a novel molecular imprinting strategy that integrates reversed-phase microemulsions with molecular imprinting of phosphoryl group-directed epitopes to prepare molecularly imprinted polymers (MIPs). Titanium dioxide is employed as the core material to orient the phosphoryl groups, thereby facilitating the efficient alignment of the hydrophilic polar heads and hydrophobic fatty acid tails of phospholipids at the oil-water interface and enabling specific imprinting of the polar heads of phospholipids. Utilizing various types of phospholipids as template molecules, including phosphatidylserine (PS), sphingomyelin (SM), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), the synthesized MIPs exhibit high efficiency and specificity in recognition. These MIPs hold great potential for the selective recognition of plasma membranes, offering an innovative strategy for the detection of low-abundance, specific phospholipids. Furthermore, PS-MIP demonstrates high specificity for targeting particular tumor cells, making it suitable for targeted drug delivery. The application of phospholipid-imprinted MIPs enables the efficient capture of exosomes from body fluids, thereby enabling the analysis of lipid metabolites via mass spectrometry in liver disease samples at various stages of the disease. This approach holds promise for a wide range of applications in exosome-based liquid biopsies, offering a novel method for the early detection and monitoring of diseases.
Collapse
Affiliation(s)
- Luxi Chen
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Li D, Jin P, Cai Y, Wu S, Guo X, Zhang Z, Liu K, Li P, Hu Y, Zhou Y. Clinical significance of lipid pathway-targeted therapy in breast cancer. Front Pharmacol 2025; 15:1514811. [PMID: 39834807 PMCID: PMC11743736 DOI: 10.3389/fphar.2024.1514811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis. In this study, we delve into the clinical implications of lipid pathway-targeted therapy in breast cancer. We highlight key enzymes and potential therapeutic targets involved in lipid metabolism reprogramming, and their associations with cancer progression and treatment outcomes. Furthermore, we detail the clinical trials exploring the anticancer and cancer chemopreventive activity of therapies targeting these molecules. However, the clinical efficacy of these therapies remains controversial, highlighting the urgent need for predictive biomarkers to identify patient subpopulations likely to benefit from such treatment. We propose the Selective Lipid Metabolism Therapy Benefit Hypothesis, emphasizing the importance of personalized medicine in optimizing lipid pathway-targeted therapy for breast cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Jin
- Department of Surgical Oncology, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Yiqi Cai
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Guo
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Liu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panni Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024; 476:1789-1802. [PMID: 38573347 PMCID: PMC11582130 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
5
|
N C, Jain A, C S, Shreevatsa B, Rajendrasozhan S, Dharmashekar C, Suresh KP, Patil SS, Singh P, Vishwanath P, Srinivasa C, Kollur SP, Shivamallu C. Progression-free survival estimation of docetaxel-based second-line treatment for advanced non-small cell lung cancer: a pooled analysis from 18 randomized control trials. Front Oncol 2024; 14:1298786. [PMID: 38807763 PMCID: PMC11130461 DOI: 10.3389/fonc.2024.1298786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Background Lung cancer is the foremost cause of cancer-related death globally, with non-small cell lung cancer (NSCLC) accounting for 85-90% of cases. Targeted therapy is the most essential therapeutic option for NSCLC, other common treatments include radiation therapy, surgery, chemotherapy, and immunotherapy. Objective Our study objective was to estimate whether progression-free survival (PFS) is an outcome of NSCLC extracted from 18 randomized control trials (RCTs) with docetaxel as experimental group and antineoplastic agent, kinase inhibitor, and monoclonal antibodies as a control group. Methods We selected relevant studies published between 2011 and 2022 using Google Scholar, PubMed, Scopus, Science Direct, and Cochrane Library. Advanced NSCLC, chemotherapy, RCT, docetaxel, and second-line treatment were the terms included in the search. A total of 9738 patients were evaluated from the 18 identified studies. We used the meta package of R Studio to perform the meta-analysis. Graphical funnel plots were used to evaluate publication bias visually. Results Patients who underwent docetaxel-based therapy had a considerably longer PFS than those who got antineoplastic agents, kinase inhibitors, or monoclonal antibodies-based treatment. Patients in the standard treatment arm had a slightly longer PFS than those in the experimental therapy arm in the overall meta-analysis. Conclusion Docetaxel outperformed monoclonal antibodies, antineoplastic agents, and kinase inhibitors in the second-line therapy of advanced NSCLC since PFS was extensively utilized.
Collapse
Affiliation(s)
- Chaithra N
- Division of Medical Statistics, Life Sciences and Natural Sciences Departments, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sahana C
- Division of Medical Statistics, Life Sciences and Natural Sciences Departments, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Pathology, Microbiology and Immunology Department, School of Medicine, University of South Carolina, Columbia, SC, United States
| | | | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Pranav Singh
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | | | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
6
|
Hsiehchen D, Beg MS, Kainthla R, Lohrey J, Kazmi SM, Khosama L, Maxwell MC, Kline H, Katz C, Hassan A, Kubota N, Siglinsky E, Pillai AK, Youssoufian H, Mockbee C, Culm K, Uhlik M, Benjamin L, Brekken RA, Ahn C, Singal AG, Zhu H, Hoshida Y, Yopp AC. The phosphatidylserine targeting antibody bavituximab plus pembrolizumab in unresectable hepatocellular carcinoma: a phase 2 trial. Nat Commun 2024; 15:2178. [PMID: 38467639 PMCID: PMC10928173 DOI: 10.1038/s41467-024-46542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Immune checkpoint inhibitors targeting PD-1/L1 have modest efficacy in hepatocellular carcinoma as single agents. Targeting membranous phosphatidylserine may induce pro-inflammatory and -immune stimulating effects that enhance immunotherapy activity. This hypothesis was tested in a single-arm phase 2 trial evaluating frontline bavituximab, a phosphatidylserine targeting antibody, plus pembrolizumab (anti-PD-1) in patients with unresectable hepatocellular carcinoma (NCT03519997). The primary endpoint was investigator-assessed objective response rate among evaluable patients, and secondary end points included progression-free survival, incidence of adverse events, overall survival, and duration of response. Among 28 evaluable patients, the confirmed response rate was 32.1%, which met the pre-specified endpoint, and the median progression-free survival was 6.3 months (95% CI, 1.3-11.3 months). Treatment related-adverse events of any grade occurred in 45.7% of patients, with grade 3 or greater adverse events in 14.3% of patients. Adverse events of any cause were observed in 33 patients (94.3%), with grade 3 or greater adverse events in 11 patients (31.4%). Prespecified exploratory analyses of baseline tumor specimens showed that a depletion of B cells, and the presence of fibrotic tissue and expression of immune checkpoints in stroma was associated with tumor response. These results suggest that targeting phosphatidylserine may lead to synergistic effects with PD-1 blockade without increasing toxicity rates, and future studies on this therapeutic strategy may be guided by biomarkers characterizing the pre-treatment tumor microenvironment.
Collapse
Affiliation(s)
- David Hsiehchen
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Muhammad S Beg
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Radhika Kainthla
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jay Lohrey
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syed M Kazmi
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leticia Khosama
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mary Claire Maxwell
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heather Kline
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Courtney Katz
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Digestive and Liver Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Asim Hassan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Digestive and Liver Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Kubota
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Digestive and Liver Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ellen Siglinsky
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anil K Pillai
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Vascular and Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chul Ahn
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amit G Singal
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Digestive and Liver Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Zhu
- Divison of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Hoshida
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Digestive and Liver Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam C Yopp
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Divison of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Ly KI, Richardson LG, Liu M, Muzikansky A, Cardona J, Lou K, Beers AL, Chang K, Brown JM, Ma X, Reardon DA, Arrillaga-Romany IC, Forst DA, Jordan JT, Lee EQ, Dietrich J, Nayak L, Wen PY, Chukwueke U, Giobbie-Hurder A, Choi BD, Batchelor TT, Kalpathy-Cramer J, Curry WT, Gerstner ER. Bavituximab Decreases Immunosuppressive Myeloid-Derived Suppressor Cells in Newly Diagnosed Glioblastoma Patients. Clin Cancer Res 2023; 29:3017-3025. [PMID: 37327319 DOI: 10.1158/1078-0432.ccr-23-0203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE We evaluated the efficacy of bavituximab-a mAb with anti-angiogenic and immunomodulatory properties-in newly diagnosed patients with glioblastoma (GBM) who also received radiotherapy and temozolomide. Perfusion MRI and myeloid-related gene transcription and inflammatory infiltrates in pre-and post-treatment tumor specimens were studied to evaluate on-target effects (NCT03139916). PATIENTS AND METHODS Thirty-three adults with IDH--wild-type GBM received 6 weeks of concurrent chemoradiotherapy, followed by 6 cycles of temozolomide (C1-C6). Bavituximab was given weekly, starting week 1 of chemoradiotherapy, for at least 18 weeks. The primary endpoint was proportion of patients alive at 12 months (OS-12). The null hypothesis would be rejected if OS-12 was ≥72%. Relative cerebral blood flow (rCBF) and vascular permeability (Ktrans) were calculated from perfusion MRIs. Peripheral blood mononuclear cells and tumor tissue were analyzed pre-treatment and at disease progression using RNA transcriptomics and multispectral immunofluorescence for myeloid-derived suppressor cells (MDSC) and macrophages. RESULTS The study met its primary endpoint with an OS-12 of 73% (95% confidence interval, 59%-90%). Decreased pre-C1 rCBF (HR, 4.63; P = 0.029) and increased pre-C1 Ktrans were associated with improved overall survival (HR, 0.09; P = 0.005). Pre-treatment overexpression of myeloid-related genes in tumor tissue was associated with longer survival. Post-treatment tumor specimens contained fewer immunosuppressive MDSCs (P = 0.01). CONCLUSIONS Bavituximab has activity in newly diagnosed GBM and resulted in on-target depletion of intratumoral immunosuppressive MDSCs. Elevated pre-treatment expression of myeloid-related transcripts in GBM may predict response to bavituximab.
Collapse
Affiliation(s)
- K Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Leland G Richardson
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Mofei Liu
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alona Muzikansky
- Department of Biostatistics Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jonathan Cardona
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Lou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew L Beers
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James M Brown
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Xiaoyue Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Isabel C Arrillaga-Romany
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Deborah A Forst
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Justin T Jordan
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jorg Dietrich
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bryan D Choi
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Hardy J, Bauzon M, Chan CKF, Makela AV, Kanada M, Schneider D, Blankenberg F, Contag CH, Hermiston T. Gla-domain mediated targeting of externalized phosphatidylserine for intracellular delivery. FASEB J 2023; 37:e23113. [PMID: 37486772 DOI: 10.1096/fj.202201250rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid normally localized to the inner leaflet of the plasma membrane of cells but is externalized onto the cell surface during apoptosis as well as in malignant and infected cells. Consequently, PS may comprise an important molecular target in diagnostics, imaging, and targeted delivery of therapeutic agents. While an array of PS-binding molecules exist, their utility has been limited by their inability to internalize diagnostic or therapeutic payloads. We describe the generation, isolation, characterization, and utility of a PS-binding motif comprised of a carboxylated glutamic acid (GLA) residue domain that both recognizes and binds cell surface-exposed PS, and then unlike other PS-binding molecules is internalized into these cells. Internalization is independent of the traditional endosomal-lysosomal pathway, directly entering the cytosol of the target cell rapidly. We demonstrate that this PS recognition extends to stem cells and that GLA-domain-conjugated probes can be detected upon intravenous administration in animal models of infectious disease and cancer. GLA domain binding and internalization offer new opportunities for specifically targeting cells with surface-exposed PS for imaging and delivery of therapeutics.
Collapse
Affiliation(s)
- Jonathan Hardy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Maxine Bauzon
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| | | | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Masamitsu Kanada
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Doug Schneider
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| | - Francis Blankenberg
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Radiology/MIPS, Stanford University, Stanford, California, USA
| | - Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
- Department of Surgery, Stanford University, Stanford, California, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Terry Hermiston
- Biologics Research US, Bayer HealthCare, San Francisco, California, USA
| |
Collapse
|
9
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
10
|
Yao Y, Fareed R, Zafar A, Saleem K, Huang T, Duan Y, Rehman MU. State-of-the-art combination treatment strategies for advanced stage non-small cell lung cancer. Front Oncol 2022; 12:958505. [PMID: 35978836 PMCID: PMC9376330 DOI: 10.3389/fonc.2022.958505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most abundant type of epithelial lung cancer being diagnosed after 40% of invasions of excrescence in pulmonary tissues. According to WHO, 30% of NSCLC patients can be cured if diagnosed and treated early. Mutations play an important role in advanced stage NSCLC treatment, which includes critical proteins necessary for cellular growth and replication. Restricting such mutations may improve survival in lung cancer patients. Newer technologies include endoscopic bronchial ultrasonography and esophageal ultrasonography. Currently, policymaking or decision-making for treatment regimens merely depends on the genomic alterations and mutations. DNA sequencing, methylation, protein, and fragmented DNA analysis do NSCLC screening. Achievement of these goals requires consideration of available therapeutics in current anticancer approaches for improving quality of life and treatment outcomes for NSCLC patient. The specific goals of this review are to discuss first-line and second-line therapies for advanced-stage NSCLC and molecularly targeted therapy including thoughtful discussion on precise role of treatment strategies in specific tumors. Also, concerned diagnostics, new clinical trial designs, and pursuing appropriate combinations of radiotherapy and/or chemotherapy with biological therapy for exceptional cases considering resistance mechanisms and palliative care will be discussed.
Collapse
Affiliation(s)
- Yongfang Yao
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aliya Zafar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
11
|
Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2536. [PMID: 35626139 PMCID: PMC9139557 DOI: 10.3390/cancers14102536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Harold W. Davis
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Andrei B. Kogan
- Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
12
|
Sekar D, Dillmann C, Sirait-Fischer E, Fink AF, Zivkovic A, Baum N, Strack E, Klatt S, Zukunft S, Wallner S, Descot A, Olesch C, da Silva P, von Knethen A, Schmid T, Grösch S, Savai R, Ferreirós N, Fleming I, Ghosh S, Rothlin CV, Stark H, Medyouf H, Brüne B, Weigert A. Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Res 2022; 82:1617-1632. [DOI: 10.1158/0008-5472.can-20-3870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Abstract
An altered lipidome in tumors may affect not only tumor cells themselves but also their microenvironment. In this study, a lipidomics screen reveals increased amounts of phosphatidylserine (PS), particularly ether-PS (ePS), in murine mammary tumors compared with normal tissue. PS was produced by phosphatidylserine synthase 1 (PTDSS1), and depletion of Ptdss1 from tumor cells in mice reduced ePS levels accompanied by stunted tumor growth and decreased tumor-associated macrophage (TAM) abundance. Ptdss1-deficient tumor cells exposed less PS during apoptosis, which was recognized by the PS receptor MERTK. Mammary tumors in macrophage-specific Mertk−/− mice showed similarly suppressed growth and reduced TAM infiltration. Transcriptomic profiles of TAMs from Ptdss1-knockdown tumors and Mertk−/− TAMs revealed that macrophage proliferation was reduced when the Ptdss1/Mertk pathway was targeted. Moreover, PTDSS1 expression correlated positively with TAM abundance but negatively with breast carcinoma patient survival. PTDSS1 thus may be a target to modify tumor-promoting inflammation.
Significance:
This study shows that inhibiting the production of ether-phosphatidylserine by targeting phosphatidylserine synthase PTDSS1 limits tumor-associated macrophage expansion and breast tumor growth.
Collapse
Affiliation(s)
- Divya Sekar
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Christina Dillmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Annika F. Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Stephan Klatt
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
| | - Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Arnaud Descot
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingrid Fleming
- Institute of Vascular Signalling, Department of Molecular Medicine, Goethe-University Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
| | - Carla V. Rothlin
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany,
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Tsai CH, Chiu TY, Chen CT, Hsu CY, Tsai YR, Yeh TK, Huang KH, Tsou LK. Click Chemistry and Multicomponent Reaction for Linker Diversification of Zinc Dipicolylamine-Based Drug Conjugates. Front Chem 2022; 9:822587. [PMID: 35242746 PMCID: PMC8886374 DOI: 10.3389/fchem.2021.822587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
An efficient Ugi multicomponent reaction with strain promoted azide-alkyne cycloaddition protocol has been utilized in concert or independently to prepare a small family of bioactive zinc(II) dipicolylamine (ZnDPA)-based SN-38 conjugates. With sequential click chemistry coupling between the cytotoxic payload and phosphatidylserine-targeting ZnDPA ligand derived from structurally diverse carboxylic acids, aldehyde or ketones, and isocyanides, we demonstrated that this convergent synthetic strategy could furnish conjugates harnessing diversified linkers that exhibited different pharmacokinetic profiles in systemic circulation in vivo. Among the eight new conjugates, comparative studies on in vitro cytotoxicities, plasma stabilities, in vivo pharmacokinetic properties, and maximum tolerated doses were then carried out to identify a potent ZnDPA-based SN-38 conjugate that resulted in pancreatic cancer growth regression with an 80% reduction of cytotoxic payload used when compared to that of the marketed irinotecan. Our work provided the roadmap to construct a variety of theranostic agents in a similar manner for cancer treatment.
Collapse
|
14
|
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 2021; 103:108499. [PMID: 34972068 DOI: 10.1016/j.intimp.2021.108499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zhang J, Dai Z, Yan C, Wang D, Tang D. Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy. J Cancer Res Clin Oncol 2021; 147:3639-3651. [PMID: 34499223 DOI: 10.1007/s00432-021-03792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is a major breakthrough in tumor therapy and has been used in monotherapy or combination therapy. However, it has been associated with poor immune tolerance in some patients or immune-related adverse events. Therefore, ideal and reliable tumor elimination strategies are urgently needed to overcome these shortcomings. Phosphatidylserine (PS) is a negatively charged phospholipid, usually present in the inner lobules of eukaryotic cell membranes. Under certain physiological or pathological conditions, PS may be exposed on the outer leaflets of apoptotic cells serving as recognition signals by phagocytes and modulating the immune response. On the contrary, increased exposure of PS in the tumor microenvironment can significantly antagonize the body's anti-tumor immunity, thereby promoting tumor growth and metastasis. During radiotherapy and chemotherapy, PS-mediated immunosuppression increases the PS levels in necrotic tissue in the tumor microenvironment, further suppressing tumor immunity. PS-targeted therapy is a promising strategy in cancer immunotherapy. It inhibits tumor growth and improves the anti-tumor activity of immune checkpoint inhibitors. A comprehensive understanding of the mechanism of PS-targeted therapy opens up a new perspective for future cancer immunotherapies.
Collapse
Affiliation(s)
- Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Cheng Yan
- Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
16
|
Calianese D, Kreiss T, Kasikara C, Davra V, Lahey KC, Gadiyar V, Geng K, Singh S, Honnen W, Jaijyan DK, Reichman C, Siekierka J, Gennaro ML, Kotenko SV, Ucker DS, Brekken RA, Pinter A, Birge RB, Choudhary A. Phosphatidylserine-Targeting Monoclonal Antibodies Exhibit Distinct Biochemical and Cellular Effects on Anti-CD3/CD28-Stimulated T Cell IFN-γ and TNF-α Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:436-448. [PMID: 34215655 DOI: 10.4049/jimmunol.2000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via β2-gp1 (β2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.
Collapse
Affiliation(s)
- David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Tamara Kreiss
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ.,Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Canan Kasikara
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Ke Geng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William Honnen
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Charles Reichman
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - John Siekierka
- Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Maria Laura Gennaro
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, Dallas, TX; and.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abraham Pinter
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Alok Choudhary
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ;
| |
Collapse
|
17
|
Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydr Polym 2021; 268:118237. [PMID: 34127219 DOI: 10.1016/j.carbpol.2021.118237] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
The application of traditional chemotherapy drugs for lung cancer has obvious limitations, such as toxic side effects, uncontrolled drug-release, poor bioavailability, and drug-resistance. Thus, to address the limitations of free drugs and improve treatment effects, we developed novel T7 peptide-modified nanoparticles (T7-CMCS-BAPE, CBT) based on carboxymethyl chitosan (CMCS), which is capable of targeted binding to the transferrin receptor (TfR) expressed on lung cancer cells and precisely regulating drug-release according to the pH value and reactive oxygen species (ROS) level. The results showed that the drug-loading content of docetaxel (DTX) and curcumin (CUR) was approximately 7.82% and 6.48%, respectively. Good biosafety was obtained even when the concentration was as high as 500 μg/mL. More importantly, the T7-CMCS-BAPE-DTX/CUR (CBT-DC) complexes exhibited better in vitro and in vivo anti-tumor effects than DTX monotherapy and other nanocarriers loaded with DTX and CUR alone. Furthermore, we determined that CBT-DC can ameliorate the immunosuppressive micro-environment to promote the inhibition of tumor growth. Collectively, the current findings help lay the foundation for combinatorial lung cancer treatment.
Collapse
|
18
|
Zhou X, Liu X, Huang L. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006220. [PMID: 33692665 PMCID: PMC7939128 DOI: 10.1002/adfm.202006220] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.
Collapse
Affiliation(s)
- Xuefei Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Chen YY, Lo CF, Chiu TY, Hsu CY, Yeh TK, Chen CP, Huang CL, Huang CY, Wang MH, Huang YC, Ho HH, Chao YS, Shih JC, Tsou LK, Chen CT. BPRDP056, a novel small molecule drug conjugate specifically targeting phosphatidylserine for cancer therapy. Transl Oncol 2020; 14:100897. [PMID: 33069101 PMCID: PMC7569237 DOI: 10.1016/j.tranon.2020.100897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Zinc(II)-dipicolylamine (Zn-DPA) has been shown to specifically identify and bind to phosphatidylserine (PS), which exists in bulk in the tumor microenvironment. BPRDP056, a Zn-DPA-SN38 conjugate was designed to provide PS-targeted drug delivery of a cytotoxic SN38 to the tumor microenvironment, thereby allowing a lower dosage of SN38 that induces apoptosis in cancer cells. Micro-Western assay showed that BPRDP056 exhibited apoptotic signal levels similar to those of CPT-11 in the treated tumors growing in mice. Pharmacokinetic study showed that BPRDP056 has excellent systemic stability in circulation in mice and rats. BPRDP056 is accumulated in tumors and thus increases the cytotoxic effects of SN38. The in vivo antitumor activities of BPRDP056 have been shown to be significant in subcutaneous pancreas, prostate, colon, liver, breast, and glioblastoma tumors, included an orthotopic pancreatic tumor, in mice. BPRDP056 shrunk tumors at a lower (~20% only) dosing intensity of SN38 compared to that of SN38 conjugated in CPT-11 in all tumor models tested. A wide spectrum of antitumor activities is expected to treat all cancer types of PS-rich tumor microenvironments. BPRDP056 is a first-in-class small molecule drug conjugate for cancer therapy.
Collapse
Affiliation(s)
- Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chung-Yu Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Min-Hsien Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Hsuan-Hui Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Joe C Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
20
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
21
|
Upadhya A, Yadav KS, Misra A. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-Part I. Expert Opin Drug Deliv 2020; 18:73-102. [PMID: 32954834 DOI: 10.1080/17425247.2021.1825377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) comprises of 84% of all lung cancer cases. The treatment options for NSCLC at advanced stages are chemotherapy and radiotherapy. Chemotherapy involves conventional nonspecific chemotherapeutics, and targeted-protein/receptor-specific small molecule inhibitors. Biologically targeted therapies such as an antibody-based immunotherapy have been approved in combination with conventional therapeutics. Approved targeted chemotherapy is directed against the kinase domains of mutated cellular receptors such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinases (ALK), neurotrophic receptor kinases (NTRK) and against downstream signaling molecules such as BRAF (v-raf murine sarcoma viral oncogene homolog B1). Approved biologically targeted therapy involves the use of anti-angiogenesis antibodies and antibodies against immune checkpoints. AREAS COVERED The rationale for the employment of targeted therapeutics and the resistance that may develop to therapy are discussed. Novel targeted therapeutics in clinical trials are also included. EXPERT OPINION Molecular and histological profiling of a given tumor specimen to determine the aberrant onco-driver is a must before deciding a targeted therapeutic regimen for the patient. Periodic monitoring of the patients response to a given therapeutic regimen is also mandatory so that any semblance of resistance to therapy can be deciphered and the regimen may be accordingly altered.
Collapse
Affiliation(s)
- Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| | - Ambikanandan Misra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS , Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
23
|
Chang W, Fa H, Xiao D, Wang J. Targeting phosphatidylserine for Cancer therapy: prospects and challenges. Theranostics 2020; 10:9214-9229. [PMID: 32802188 PMCID: PMC7415799 DOI: 10.7150/thno.45125] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Despite major improvements in current therapeutic methods, ideal therapeutic strategies for improved tumor elimination are still lacking. Recently, immunotherapy has attracted much attention, and many immune-active agents have been approved for clinical use alone or in combination with other cancer drugs. However, some patients have a poor response to these agents. New agents and strategies are needed to overcome such deficiencies. Phosphatidylserine (PS) is an essential component of bilayer cell membranes and is normally present in the inner leaflet. In the physiological state, PS exposure on the external leaflet not only acts as an engulfment signal for phagocytosis in apoptotic cells but also participates in blood coagulation, myoblast fusion and immune regulation in nonapoptotic cells. In the tumor microenvironment, PS exposure is significantly increased on the surface of tumor cells or tumor cell-derived microvesicles, which have innate immunosuppressive properties and facilitate tumor growth and metastasis. To date, agents targeting PS have been developed, some of which are under investigation in clinical trials as combination drugs for various cancers. However, controversial results are emerging in laboratory research as well as in clinical trials, and the efficiency of PS-targeting agents remains uncertain. In this review, we summarize recent progress in our understanding of the physiological and pathological roles of PS, with a focus on immune suppressive features. In addition, we discuss current drug developments that are based on PS-targeting strategies in both experimental and clinical studies. We hope to provide a future research direction for the development of new agents for cancer therapy.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
| | - Hongge Fa
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 2020; 18:29. [PMID: 32087708 PMCID: PMC7036251 DOI: 10.1186/s12964-020-0521-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for cancer is making impressive strides at improving survival of a subset of cancer patients. To increase the breadth of patients that benefit from immunotherapy, new strategies that combat the immunosuppressive microenvironment of tumors are needed. Phosphatidylserine (PS) signaling is exploited by tumors to enhance tumor immune evasion and thus strategies to inhibit PS-mediated immune suppression have potential to increase the efficacy of immunotherapy. PS is a membrane lipid that flips to the outer surface of the cell membrane during apoptosis and/or cell stress. Externalized PS can drive efferocytosis or engage PS receptors (PSRs) to promote local immune suppression. In the tumor microenvironment (TME) PS-mediated immune suppression is often termed apoptotic mimicry. Monoclonal antibodies (mAbs) targeting PS or PSRs have been developed and are in preclinical and clinical testing. The TIM (T-cell/transmembrane, immunoglobulin, and mucin) and TAM (Tyro3, AXL, and MerTK) family of receptors are PSRs that have been shown to drive PS-mediated immune suppression in tumors. This review will highlight the development of mAbs targeting PS, TIM-3 and the TAM receptors. Video Abstract
Collapse
Affiliation(s)
- Adam S Dayoub
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Hu Z, Li M, Chen Z, Zhan C, Lin Z, Wang Q. Advances in clinical trials of targeted therapy and immunotherapy of lung cancer in 2018. Transl Lung Cancer Res 2019; 8:1091-1106. [PMID: 32010587 DOI: 10.21037/tlcr.2019.10.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There were many clinical studies on lung cancer in 2018. In particular, significant progress has been made in immunotherapy and targeted therapy. Whether in small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) have shown good results. For patients with specific gene mutations, the new generation inhibitors also showed good results in clinical trials. In this review, we summarize the clinical trials in lung cancer in 2018 and describe the progress and prospects for lung cancer therapies.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Deneka AY, Boumber Y, Beck T, Golemis EA. Tumor-Targeted Drug Conjugates as an Emerging Novel Therapeutic Approach in Small Cell Lung Cancer (SCLC). Cancers (Basel) 2019; 11:E1297. [PMID: 31484422 PMCID: PMC6769513 DOI: 10.3390/cancers11091297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
There are few effective therapies for small cell lung cancer (SCLC), a highly aggressive disease representing 15% of total lung cancers. With median survival <2 years, SCLC is one of the most lethal cancers. At present, chemotherapies and radiation therapy are commonly used for SCLC management. Few protein-targeted therapies have shown efficacy in improving overall survival; immune checkpoint inhibitors (ICIs) are promising agents, but many SCLC tumors do not express ICI targets such as PD-L1. This article presents an alternative approach to the treatment of SCLC: the use of drug conjugates, where a targeting moiety concentrates otherwise toxic agents in the vicinity of tumors, maximizing the differential between tumor killing and the cytotoxicity of normal tissues. Several tumor-targeted drug conjugate delivery systems exist and are currently being actively tested in the setting of SCLC. These include antibody-drug conjugates (ADCs), radioimmunoconjugates (RICs), small molecule-drug conjugates (SMDCs), and polymer-drug conjugates (PDCs). We summarize the basis of action for these targeting compounds, discussing principles of construction and providing examples of effective versus ineffective compounds, as established by preclinical and clinical testing. Such agents may offer new therapeutic options for the clinical management of this challenging disease in the future.
Collapse
Affiliation(s)
- Alexander Y Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia.
| | - Yanis Boumber
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biochemistry, Kazan Federal University, 420000 Kazan, Russia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tim Beck
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
27
|
Liu YW, Chen YY, Hsu CY, Chiu TY, Liu KL, Lo CF, Fang MY, Huang YC, Yeh TK, Pak KY, Gray BD, Hsu TA, Huang KH, Shih C, Shia KS, Chen CT, Tsou LK. Linker Optimization and Therapeutic Evaluation of Phosphatidylserine-Targeting Zinc Dipicolylamine-based Drug Conjugates. J Med Chem 2019; 62:6047-6062. [PMID: 31181158 DOI: 10.1021/acs.jmedchem.9b00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report that compound 13, a novel phosphatidylserine-targeting zinc(II) dipicolylamine drug conjugate, readily triggers a positive feedback therapeutic loop through the in situ generation of phosphatidylserine in the tumor microenvironment. Linker modifications, pharmacokinetics profiling, in vivo antitumor studies, and micro-Western array of treated-tumor tissues were employed to show that this class of conjugates induced regeneration of apoptotic signals, which facilitated subsequent recruitment of the circulating conjugates through the zinc(II) dipicolylamine-phosphatidylserine association and resulted in compounding antitumor efficacy. Compared to the marketed compound 17, compound 13 not only induced regressions in colorectal and pancreatic tumor models, it also exhibited at least 5-fold enhancement in antitumor efficacy with only 40% of the drug employed during treatment, culminating in a >12.5-fold increase in therapeutic potential. Our study discloses a chemically distinct apoptosis-targeting theranostic, with built-in complementary functional moieties between the targeting module and the drug mechanism to expand the arsenal of antitumor therapy.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kuan-Liang Liu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Yu-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc. , West Chester , Pennsylvania 19380 , United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc. , West Chester , Pennsylvania 19380 , United States
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research , National Health Research Institutes , Miaoli 35053 , Taiwan , ROC
| |
Collapse
|
28
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
29
|
van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules 2018; 24:molecules24010009. [PMID: 30577495 PMCID: PMC6337345 DOI: 10.3390/molecules24010009] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is composed of extracellular matrix and non-mutated cells supporting tumour growth and development. Tumour-associated macrophages (TAMs) are among the most abundant immune cells in the TME and are responsible for the onset of a smouldering inflammation. TAMs play a pivotal role in oncogenic processes as tumour proliferation, angiogenesis and metastasis, and they provide a barrier against the cytotoxic effector function of T lymphocytes and natural killer (NK) cells. However, TAMs are highly plastic cells that can adopt either pro- or anti-inflammatory roles in response to environmental cues. Consequently, TAMs represent an attractive target to recalibrate immune responses in the TME. Initial TAM-targeted strategies, such as macrophage depletion or disruption of TAM recruitment, have shown beneficial effects in preclinical models and clinical trials. Alternatively, reprogramming TAMs towards a proinflammatory and tumouricidal phenotype has become an attractive strategy in immunotherapy. This work summarises the molecular wheelwork of macrophage biology and presents an overview of molecular strategies to repolarise TAMs in immunotherapy.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Marleen H M E van Stevendaal
- Department of Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Felix L Fennemann
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Olga Ilina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|