Chen Y, Li Z. Protective Effects of Propofol on Rats with Cerebral Ischemia-Reperfusion Injury Via the PI3K/Akt Pathway.
J Mol Neurosci 2020;
71:810-820. [PMID:
32984935 DOI:
10.1007/s12031-020-01703-8]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
In this study, we explored the effects of propofol on oxidative stress response, cytokine secretion, and autophagy in rats with ischemia-reperfusion (I/R) injury and oxygen-glucose deprivation (OGD)-stimulated primary microglia and analyzed the role of the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in this process. Rat models of I/R injury and OGD models of primary microglia were established. Neurobehavioral scores were evaluated 24 h after reperfusion, and oxidative stress indicators, cytokine levels, and autophagy-related markers of rats and OGD-activated primary microglia were evaluated. Activation of the PI3K/Akt pathway was also assessed. The results showed that propofol pretreatment can improve nerve function in rats with I/R injury, inhibit oxidative stress response and inflammatory cytokine secretion, and promote autophagy in rats with I/R injury and OGD-activated primary microglia, and that the PI3K-Akt pathway was activated in this process. Following the addition of a PI3K/Akt pathway inhibitor, the effects of propofol on autophagy in rats with I/R injury and primary microglia were inhibited significantly. The results indicate that propofol promotes autophagy via the PI3K/Akt pathway in cerebral I/R injury.
Collapse