1
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Moffitt LR, Karimnia N, Wilson AL, Stephens AN, Ho GY, Bilandzic M. Challenges in Implementing Comprehensive Precision Medicine Screening for Ovarian Cancer. Curr Oncol 2024; 31:8023-8038. [PMID: 39727715 PMCID: PMC11674382 DOI: 10.3390/curroncol31120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Precision medicine has revolutionised targeted cancer treatments; however, its implementation in ovarian cancer remains challenging. Diverse tumour biology and extensive heterogeneity in ovarian cancer can limit the translatability of genetic profiling and contribute to a lack of biomarkers of treatment response. This review addresses the barriers in precision medicine for ovarian cancer, including obtaining adequate and representative tissue samples for analysis, developing functional and standardised screening methods, and navigating data infrastructure and management. Ethical concerns related to patient consent, data privacy and health equity are also explored. We highlight the socio-economic complexities for precision medicine and propose strategies to overcome these challenges with an emphasis on accessibility and education amongst patients and health professionals and the development of regulatory frameworks to support clinical integration. Interdisciplinary collaboration is essential to drive progress in precision medicine to improve disease management and ovarian cancer patient outcomes.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton 3168, Australia;
- Department of Oncology, Monash Health, Bentleigh 3165, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
3
|
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, Xiao J, Lin KK, Molinero L, Guan Y, Ray-Coquard I, Mileshkin L. PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer 2024; 131:820-831. [PMID: 38971950 PMCID: PMC11369183 DOI: 10.1038/s41416-024-02776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Combining PARP inhibitors (PARPis) with immune checkpoint inhibitors may improve clinical outcomes in selected cancers. We evaluated rucaparib and atezolizumab in advanced gynaecological or triple-negative breast cancer (TNBC). METHODS After identifying the recommended dose, patients with PARPi-naive BRCA-mutated or homologous recombination-deficient/loss-of-heterozygosity-high platinum-sensitive ovarian cancer or TNBC received rucaparib plus atezolizumab. Tumour biopsies were collected pre-treatment, during single-agent rucaparib run-in, and after starting combination therapy. RESULTS The most common adverse events with rucaparib 600 mg twice daily and atezolizumab 1200 mg on Day 1 every 3 weeks were gastrointestinal effects, fatigue, liver enzyme elevations, and anaemia. Responding patients typically had BRCA-mutated tumours and higher pre-treatment tumour levels of PD-L1 and CD8 + T cells. Markers of DNA damage repair decreased during rucaparib run-in and combination treatment in responders, but typically increased in non-responders. Apoptosis signature expression showed the reverse. CD8 + T-cell activity and STING pathway activation increased during rucaparib run-in, increasing further with atezolizumab. CONCLUSIONS In this small study, rucaparib plus atezolizumab demonstrated acceptable safety and activity in BRCA-mutated tumours. Increasing anti-tumour immunity and inflammation might be a key mechanism of action for clinical benefit from the combination, potentially guiding more targeted development of such regimens. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03101280).
Collapse
Affiliation(s)
- Rebecca Kristeleit
- University College London Cancer Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | | | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andres Redondo
- Medical Oncology Department, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angela George
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Chui
- Product Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | | - Jenna Willis
- Product Development Safety, Roche Products Ltd, Welwyn Garden City, UK
| | - Colby S Shemesh
- Clinical Pharmacology Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clovis Oncology, San Francisco, CA, USA
| | | | - Luciana Molinero
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Yinghui Guan
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Isabelle Ray-Coquard
- Centre Leon Bérard, HESPER laboratory EA 7425, Université Claude Bernard Lyon Est, Lyon, France
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
5
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
6
|
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O, Ray-Coquard I. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. Front Oncol 2024; 14:1354427. [PMID: 38544832 PMCID: PMC10965616 DOI: 10.3389/fonc.2024.1354427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
BRCA1/2 genes are part of homologous recombination (HR) DNA repair pathways in charge of error-free double-strand break (DSB) repair. Loss-of-function mutations of BRCA1/2 genes have been associated for a long time with breast and ovarian cancer hereditary syndrome. Recently, polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) have revolutionized the therapeutic landscape of BRCA1/2-mutated tumors, especially of BRCA1/2 high-grade serous ovarian cancer (HGSC), taking advantage of HR deficiency through the synthetic lethality concept. However, PARPi efficiency differs among patients, and most of them will develop resistance, particularly in the relapse setting. In the current proposal, we aim to review primary and secondary resistance to PARPi in HGSC owing to BRCA1/2 alterations. Of note, as several mechanisms of primary or secondary resistance to PARPi have been described, BRCA1/2 reversion mutations that restore HR pathways are by far the most reported. First, the type and location of the BRCA1/2 primary mutation have been associated with PARPi and platinum-salt sensitivity and impact the probability of the occurrence and the type of secondary reversion mutation. Furthermore, the presence of multiple reversion mutations and the variation of allelic frequency under treatment underline the role of intratumor heterogeneity (ITH) in treatment resistance. Of note, circulating tumor DNA might help us to detect and characterize reversion mutations and ITH to finally refine the treatment strategy. Importantly, forthcoming therapeutic strategies, including combination with antiangiogenics or with targeted therapies, may help us delay and overcome PARPi resistance secondary to BRCA1/2 reversion mutations. Also, progression despite PARPi therapy does not preclude PARPi rechallenge in selected patients.
Collapse
Affiliation(s)
- Laetitia Collet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Brunhilde Hanvic
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Olivia Le Saux
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Freyer G, Floquet A, Tredan O, Carrot A, Langlois-Jacques C, Lopez J, Selle F, Abdeddaim C, Leary A, Dubot-Poitelon C, Fabbro M, Gladieff L, Lamuraglia M. Bevacizumab, olaparib, and durvalumab in patients with relapsed ovarian cancer: a phase II clinical trial from the GINECO group. Nat Commun 2024; 15:1985. [PMID: 38443333 PMCID: PMC10914754 DOI: 10.1038/s41467-024-45974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Most patients with advanced ovarian cancer (AOC) ultimately relapse after platinum-based chemotherapy. Combining bevacizumab, olaparib, and durvalumab likely drives synergistic activity. This open-label phase 2 study (NCT04015739) aimed to assess activity and safety of this triple combination in female patients with relapsed high-grade AOC following prior platinum-based therapy. Patients were treated with olaparib (300 mg orally, twice daily), the bevacizumab biosimilar FKB238 (15 mg/kg intravenously, once-every-3-weeks), and durvalumab (1.12 g intravenously, once-every-3-weeks) in nine French centers. The primary endpoint was the non-progression rate at 3 months for platinum-resistant relapse or 6 months for platinum-sensitive relapse per RECIST 1.1 and irRECIST. Secondary endpoints were CA-125 decline with CA-125 ELIMination rate constant K (KELIM-B) per CA-125 longitudinal kinetics over 100 days, progression free survival and overall survival, tumor response, and safety. Non-progression rates were 69.8% (90%CI 55.9%-80.0%) at 3 months for platinum-resistant relapse patients (N = 41), meeting the prespecified endpoint, and 43.8% (90%CI 29.0%-57.4%) at 6 months for platinum-sensitive relapse (N = 33), not meeting the prespecified endpoint. Median progression-free survival was 4.1 months (95%CI 3.5-5.9) and 4.9 months (95%CI 2.9-7.0) respectively. Favorable KELIM-B was associated with better survival. No toxic deaths or major safety signals were observed. Here we show that further investigation of this triple combination may be considered in AOC patients with platinum-resistant relapse.
Collapse
Affiliation(s)
- Gilles Freyer
- Department of Medical Oncology, Lyon 1 University, Lyon, France.
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France.
- Institut de Cancérologie des HCL, Lyon, France.
| | - Anne Floquet
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology - Gynecological Tumors, Institut Bergonié, Bordeaux, France
| | - Olivier Tredan
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Aurore Carrot
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- EMR 3738, UFR Lyon-Sud, Université Lyon1, Lyon, France
| | - Carole Langlois-Jacques
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Biostatistics and Bioinformatics Department, Hospices Civils de Lyon, Lyon, France
| | - Jonathan Lopez
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Selle
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology, Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France
| | - Cyril Abdeddaim
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Gynecologic Oncology Department, Centre Oscar Lambret, Lille, France
| | - Alexandra Leary
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Coraline Dubot-Poitelon
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut Curie Saint Cloud, Paris, France
| | - Michel Fabbro
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Laurence Gladieff
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut Claudius Regaud IUCT-Oncopole, Toulouse, France
| | - Michele Lamuraglia
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut de Cancérologie du CHUSE, Saint-Etienne, France
| |
Collapse
|
8
|
Wang S, Liu Y, Xiao H, Chen Z, Yang X, Yin J, Li Y, Yuan C, Yan S, Chen G, Gao Q, Kong B, Sun C, Song K. Inhibition of SF3B1 improves the immune microenvironment through pyroptosis and synergizes with αPDL1 in ovarian cancer. Cell Death Dis 2023; 14:775. [PMID: 38012150 PMCID: PMC10682409 DOI: 10.1038/s41419-023-06301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Ovarian cancer is resistant to immune checkpoint blockade (ICB) treatment. Combination of targeted therapy and immunotherapy is a promising strategy for ovarian cancer treatment benefit from an improved immune microenvironment. In this study, Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) cohorts were used to screen prognosis and cytotoxic lymphocyte infiltration-associated genes in upregulated genes of ovarian cancer, tissue microarrays were built for further verification. In vitro experiments and mouse (C57/BL6) ovarian tumor (ID8) models were built to evaluate the synergistic effect of the combination of SF3B1 inhibitor and PD-L1 antibody in the treatment of ovarian cancer. The results show that SF3B1 is shown to be overexpressed and related to low cytotoxic immune cell infiltration in ovarian cancer. Inhibition of SF3B1 induces pyroptosis in ovarian cancer cells and releases mitochondrial DNA (mtDNA), which is englobed by macrophages and subsequently activates them (polarization to M1). Moreover, pladienolide B increases cytotoxic immune cell infiltration in the ID8 mouse model as a SF3B1 inhibitor and increases the expression of PD-L1 which can enhance the antitumor effect of αPDL1 in ovarian cancer. The data suggests that inhibition of SF3B1 improves the immune microenvironment of ovarian cancer and synergizes ICB immunotherapy, which provides preclinical evidence for the combination of SF3B1 inhibitor and ICB to ovarian cancer treatment.
Collapse
Affiliation(s)
- Shourong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Huimin Xiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Yin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Friedlander M, Mileshkin L, Lombard J, Frentzas S, Gao B, Wilson M, Meniawy T, Baron-Hay S, Briscoe K, McCarthy N, Fountzilas C, Cervantes A, Ge R, Wu J, Spira A. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-expansion stage of a multicentre, open-label, phase I trial. Br J Cancer 2023; 129:797-810. [PMID: 37474720 PMCID: PMC10449784 DOI: 10.1038/s41416-023-02349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the antitumour activity, safety, and tolerability of pamiparib plus tislelizumab in patients with previously treated advanced solid tumours. METHODS In this study, patients were enrolled into eight arms by tumour type. All received pamiparib 40 mg orally twice daily plus tislelizumab 200 mg intravenously every 3 weeks. The primary endpoint was objective response rate (ORR), assessed by the investigator per Response Evaluation Criteria in Solid Tumours v1.1. Secondary endpoints included duration of response (DoR), safety, and tolerability. RESULTS Overall, 180 patients were enrolled. In the overall population, the ORR was 20.0% (range: 0-47.4 across study arms), with median DoR of 17.1 months (95% confidence interval [CI]: 6.2, not estimable [NE]). The highest ORR was observed in the triple-negative breast cancer (TNBC) arm (patients with BRCA1/2 mutations and/or homologous recombination deficiency) (ORR: 47.4%; median DoR: 17.1 months [95% CI: 3.0, NE]). Treatment-emergent adverse events (TEAEs) of ≥Grade 3 occurred in 61.7% of patients. Serious TEAEs occurred in 50.0% of patients. CONCLUSIONS Pamiparib plus tislelizumab showed a variable level of antitumour activity in patients with advanced solid tumours, with the highest ORR in TNBC and was associated with a manageable safety profile. CLINICAL TRIAL REGISTRATION ClinicalTrial.gov: NCT02660034.
Collapse
Affiliation(s)
- Michael Friedlander
- University of New South Wales Clinical School and Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia.
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Parkville, VIC, Australia
| | - Janine Lombard
- Medical Oncology, Calvary Mater Newcastle, NSW, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Bo Gao
- Medical Oncology Department, Blacktown Hospital, Sydney, NSW, Australia
| | - Michelle Wilson
- Department of Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
| | - Tarek Meniawy
- Department of Medical Oncology, Linear Clinical Research and University of Western Australia, Nedlands, WA, Australia
| | - Sally Baron-Hay
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
- GenesisCare, Melbourne, VIC, Australia
| | - Karen Briscoe
- Department of Medical Oncology, Mid North Coast Cancer Institute, Coffs Harbour, NSW, Australia
| | - Nicole McCarthy
- Department of Medical Oncology, Icon Cancer Centre Wesley, Auchenflower, QLD, Australia
| | - Christos Fountzilas
- Department of Medicine/Division of GI Medicine and Early Phase Clinical Trial Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andres Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - Ruimin Ge
- Department of Clinical Development, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - John Wu
- Department of Biostatistics, BeiGene USA, Inc., San Mateo, CA, USA
| | - Alexander Spira
- Department of Medical Oncology, Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- NEXT Oncology-Virginia, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
| |
Collapse
|
10
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
11
|
Thavaneswaran S, Kansara M, Lin F, Espinoza D, Grady JP, Lee CK, Ballinger ML, Sebastian L, Corpuz T, Qiu MR, Mundra P, Bailey CG, Schmitz U, Simes J, Joshua AM, Thomas DM. A signal-seeking Phase 2 study of olaparib and durvalumab in advanced solid cancers with homologous recombination repair gene alterations. Br J Cancer 2023; 129:475-485. [PMID: 37365284 PMCID: PMC10403555 DOI: 10.1038/s41416-023-02311-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.
Collapse
Affiliation(s)
- Subotheni Thavaneswaran
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia.
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | - Maya Kansara
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Frank Lin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Sydney, NSW, Australia
| | - David Espinoza
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - John P Grady
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chee Khoon Lee
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Mandy L Ballinger
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Lucille Sebastian
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Theresa Corpuz
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Min Ru Qiu
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Department of Anatomical Pathology and Cancer Genetics, SydPath, St Vincent's Hospital, Sydney, NSW, Australia
| | - Piyushkumar Mundra
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Charles G Bailey
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
- Computational Biomedicine Lab Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Department of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Anthony M Joshua
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biomedical Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Cordani N, Bianchi T, Ammoni LC, Cortinovis DL, Cazzaniga ME, Lissoni AA, Landoni F, Canova S. An Overview of PARP Resistance in Ovarian Cancer from a Molecular and Clinical Perspective. Int J Mol Sci 2023; 24:11890. [PMID: 37569269 PMCID: PMC10418869 DOI: 10.3390/ijms241511890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC), a primarily high-grade serous carcinoma (HGSOC), is one of the major causes of high death-to-incidence ratios of all gynecological cancers. Cytoreductive surgery and platinum-based chemotherapy represent the main treatments for this aggressive disease. Molecular characterization of HGSOC has revealed that up to 50% of cases have a deficiency in the homologous recombination repair (HRR) system, which makes these tumors sensitive to poly ADP-ribose inhibitors (PARP-is). However, drug resistance often occurs and overcoming it represents a big challenge. A number of strategies are under investigation, with the most promising being combinations of PARP-is with antiangiogenetic agents and immune checkpoint inhibitors. Moreover, new drugs targeting different pathways, including the ATR-CHK1-WEE1, the PI3K-AKT and the RAS/RAF/MEK, are under development both in phase I and II-III clinical trials. Nevertheless, there is still a long way to go, and the next few years promise to be exciting.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | - Tommaso Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Carlofrancesco Ammoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | | | - Marina Elena Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Alberto Lissoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Fabio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Canova
- Medical Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| |
Collapse
|
13
|
Gonzalez-Ochoa E, Oza AM. An Attempt to Stretch the Benefit: Rechallenge with PARP Inhibitors in Ovarian Cancer. Clin Cancer Res 2023; 29:2563-2566. [PMID: 37191665 DOI: 10.1158/1078-0432.ccr-23-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
PARP inhibitors exploit synthetic lethality in homologous recombination-deficient (HDR) cells and are standard-of-care treatment in newly diagnosed and relapsed epithelial ovarian cancer (EOC). A recent article demonstrated that a second course of olaparib can be safely administered to women with BRCA-mutated EOC. See related article by Morgan et al., p. 2602.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Plaja A, Teruel I, Ochoa-de-Olza M, Cucurull M, Arroyo ÁJ, Pardo B, Ortiz I, Gil-Martin M, Piulats JM, Pla H, Fina C, Carbó A, Barretina-Ginesta MP, Martínez-Román S, Carballas E, González A, Esteve A, Romeo M. Prognostic Role of Neutrophil, Monocyte and Platelet to Lymphocyte Ratios in Advanced Ovarian Cancer According to the Time of Debulking Surgery. Int J Mol Sci 2023; 24:11420. [PMID: 37511180 PMCID: PMC10380459 DOI: 10.3390/ijms241411420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Despite a multimodal radical treatment, mortality of advanced epithelial ovarian cancer (AEOC) remains high. Host-related factors, such as systemic inflammatory response and its interplay with the immune system, remain underexplored. We hypothesized that the prognostic impact of this response could vary between patients undergoing primary debulking surgery (PDS) and those undergoing interval debulking surgery (IDS). Therefore, we evaluated the outcomes of two surgical groups of newly diagnosed AEOC patients according to the neutrophil, monocyte and platelet to lymphocyte ratios (NLR, MLR, PLR), taking median ratio values as cutoffs. In the PDS group (n = 61), low NLR and PLR subgroups showed significantly better overall survival (not reached (NR) vs. 72.7 months, 95% confidence interval [CI]: 40.9-95.2, p = 0.019; and NR vs. 56.1 months, 95% CI: 40.9-95.2, p = 0.004, respectively) than those with high values. Similar results were observed in progression free survival. NLR and PLR-high values resulted in negative prognostic factors, adjusting for residual disease, BRCA1/2 status and stage (HR 2.48, 95% CI: 1.03-5.99, p = 0.043, and HR 2.91, 95% CI: 1.11-7.64, p = 0.03, respectively). In the IDS group (n = 85), ratios were not significant prognostic factors. We conclude that NLR and PLR may have prognostic value in the PDS setting, but none in IDS, suggesting that time of surgery can modulate the prognostic impact of baseline complete blood count (CBC).
Collapse
Affiliation(s)
- Andrea Plaja
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Iris Teruel
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Maria Ochoa-de-Olza
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Marc Cucurull
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Álvaro Javier Arroyo
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-L'Hospitalet, Hospital Duran i Reynals, Institut d'Investigació de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Beatriz Pardo
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-L'Hospitalet, Hospital Duran i Reynals, Institut d'Investigació de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Irene Ortiz
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-L'Hospitalet, Hospital Duran i Reynals, Institut d'Investigació de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Marta Gil-Martin
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-L'Hospitalet, Hospital Duran i Reynals, Institut d'Investigació de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Josep María Piulats
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-L'Hospitalet, Hospital Duran i Reynals, Institut d'Investigació de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Helena Pla
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Girona, Girona Biomedical Research Institut d'Investigació Biomèdica de Girona (IDIBGi), 17007 Girona, Spain
| | - Claudia Fina
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Girona, Girona Biomedical Research Institut d'Investigació Biomèdica de Girona (IDIBGi), 17007 Girona, Spain
| | - Anna Carbó
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Girona, Girona Biomedical Research Institut d'Investigació Biomèdica de Girona (IDIBGi), 17007 Girona, Spain
| | - Maria-Pilar Barretina-Ginesta
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Girona, Girona Biomedical Research Institut d'Investigació Biomèdica de Girona (IDIBGi), 17007 Girona, Spain
| | - Sergio Martínez-Román
- Obstetrics and Gynecologycal Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Elvira Carballas
- Obstetrics and Gynecologycal Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Andrea González
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Margarita Romeo
- Medical Oncology Department, Institut Català d'Oncologia (ICO)-Badalona, Badalona Applied Research Group in Oncology (BARGO), Institut d'Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| |
Collapse
|
15
|
Colombo I, Karakasis K, Suku S, Oza AM. Chasing Immune Checkpoint Inhibitors in Ovarian Cancer: Novel Combinations and Biomarker Discovery. Cancers (Basel) 2023; 15:3220. [PMID: 37370830 DOI: 10.3390/cancers15123220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A deep understanding of the tumor microenvironment and the recognition of tumor-infiltrating lymphocytes as a prognostic factor have resulted in major milestones in immunotherapy that have led to therapeutic advances in treating many cancers. Yet, the translation of this knowledge to clinical success for ovarian cancer remains a challenge. The efficacy of immune checkpoint inhibitors as single agents or combined with chemotherapy has been unsatisfactory, leading to the exploration of alternative combination strategies with targeted agents (e.g., poly-ADP-ribose inhibitors (PARP)and angiogenesis inhibitors) and novel immunotherapy approaches. Among the different histological subtypes, clear cell ovarian cancer has shown a higher sensitivity to immunotherapy. A deeper understanding of the mechanism of immune resistance within the context of ovarian cancer and the identification of predictive biomarkers remain central discovery benchmarks to be realized. This will be critical to successfully define the precision use of immune checkpoint inhibitors for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Via A. Gallino, 6500 Bellinzona, Switzerland
| | - Katherine Karakasis
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Sneha Suku
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
16
|
Krebs MG, Delord JP, Jeffry Evans TR, De Jonge M, Kim SW, Meurer M, Postel-Vinay S, Lee JS, Angell HK, Rocher-Ros V, Meyer K, Ah-See ML, Herbolsheimer P, Lai Z, Nunes A, Domchek SM. Olaparib and durvalumab in patients with relapsed small cell lung cancer (MEDIOLA): An open-label, multicenter, phase 1/2, basket study. Lung Cancer 2023; 180:107216. [PMID: 37146473 DOI: 10.1016/j.lungcan.2023.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION Preclinical studies have demonstrated increased efficacy with combined DNA damage response inhibition and immune checkpoint blockade compared with either alone. We assessed olaparib in combination with durvalumab in patients with relapsed small cell lung cancer (SCLC). METHODS Patients with previously treated limited or extensive-stage SCLC received oral olaparib 300 mg twice daily, as run-in for 4 weeks, then with durvalumab (1500 mg intravenously every 4 weeks) until disease progression. Primary endpoints were safety, tolerability, and 12-week disease control rate (DCR). Secondary endpoints included 28-week DCR, objective response rate (ORR), duration of response, progression-free survival, overall survival, change in tumor size, and programmed death-ligand 1 (PD-L1) expression subgroup analyses. RESULTS Forty patients were enrolled and analyzed for safety; 38 were analyzed for efficacy. Eleven patients (28.9% [90% confidence interval (CI), 17.2-43.3]) had disease control at 12 weeks. ORR was 10.5% (95% CI, 2.9-24.8). Median progression-free and overall survival were 2.4 (95% CI, 0.9-3.0)months and 7.6(95% CI, 5.6-8.8)months, respectively. The most common adverse events (≥40.0%) were anemia, nausea, and fatigue. Grade ≥ 3 adverse events occurred in 32 patients (80.0%). PD-L1 levels, tumor mutational burden, and other genetic mutations were evaluated, but no significant correlations with clinical outcomes wereobserved. CONCLUSIONS Tolerability of olaparib with durvalumab was consistent with the safety profile of each agent alone. Although the 12-week DCR did not meet the prespecified target (60%), four patients responded, and median overall survival was promising for a pretreated SCLC population. Further analyses are required to identify patients most likely to benefit from this treatment approach.
Collapse
Affiliation(s)
- Matthew G Krebs
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.
| | | | | | - Maja De Jonge
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Marie Meurer
- Centre d'Essais Précoces en Cancérologie de Marseille, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Sophie Postel-Vinay
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jong-Seok Lee
- Seoul National University College of Medicine, Bundang Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | - Susan M Domchek
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Hockings H, Miller RE. The role of PARP inhibitor combination therapy in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231173183. [PMID: 37215065 PMCID: PMC10196552 DOI: 10.1177/17588359231173183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The use of PARP inhibitors (PARPi) has transformed the care of advanced high-grade serous/endometrioid ovarian cancer. PARPi are now available to patients in both the first-line and recurrent platinum-sensitive disease settings; therefore, most patients will receive PARPi at some point in their treatment pathway. The majority of this expanding population of patients eventually acquire resistance to PARPi, in addition to those with primary PARPi resistance. We discuss the rationale behind developing combination therapies, to work synergistically with PARPi and overcome mechanisms of resistance to restore drug sensitivity, and clinical evidence of their efficacy to date.
Collapse
Affiliation(s)
- Helen Hockings
- Department of Medical Oncology, St
Bartholomew’s Hospital, London, UK
| | | |
Collapse
|
19
|
Keane F, Bajwa R, Selenica P, Park W, Roehrl MH, Reis-Filho JS, Mandelker D, O'Reilly EM. Dramatic, durable response to therapy in gBRCA2-mutated pancreas neuroendocrine carcinoma: opportunity and challenge. NPJ Precis Oncol 2023; 7:40. [PMID: 37087482 PMCID: PMC10122663 DOI: 10.1038/s41698-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Poorly differentiated pancreatic neuroendocrine tumors (PDNEC), are a subtype of pancreatic cancer encompassing both small cell and large cell neuroendocrine carcinoma subtypes, and are characterized as distinct in terms of biology and prognosis compared to the more common pancreatic adenocarcinoma. Until recently, there has been a paucity of data on the genomic features of this cancer type. We describe a male patient diagnosed with PDNEC and extensive metastatic disease in the liver at diagnosis. Genomic analysis demonstrated a germline pathogenic variant in BRCA2 with somatic loss-of-heterozygosity of the BRCA2 wild-type allele. Following a favorable response to platinum-based chemotherapy (and the addition of immunotherapy), the patient received maintenance therapy with olaparib, which resulted in a further reduction on follow-up imaging (Fig. 1). After seventeen months of systemic control with olaparib, the patient developed symptomatic central nervous system metastases, which harboured a BRCA2 reversion mutation. No other sites of disease progression were observed. Herein, we report an exceptional outcome through the incorporation of a personalized management approach for a patient with a pancreatic PDNEC, guided by comprehensive genomic sequencing.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Raazi Bajwa
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael H Roehrl
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diagnostic Molecular Genetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
20
|
Tang H, Kulkarni S, Peters C, Eddison J, Al-Ani M, Madhusudan S. The Current Status of DNA-Repair-Directed Precision Oncology Strategies in Epithelial Ovarian Cancers. Int J Mol Sci 2023; 24:7293. [PMID: 37108451 PMCID: PMC10138422 DOI: 10.3390/ijms24087293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Survival outcomes for patients with advanced ovarian cancer remain poor despite advances in chemotherapy and surgery. Platinum-based systemic chemotherapy can result in a response rate of up to 80%, but most patients will have recurrence and die from the disease. Recently, the DNA-repair-directed precision oncology strategy has generated hope for patients. The clinical use of poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA germ-line-deficient and/or platinum-sensitive epithelial ovarian cancers has improved survival. However, the emergence of resistance is an ongoing clinical challenge. Here, we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in epithelial ovarian cancers.
Collapse
Affiliation(s)
- Hiu Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Christina Peters
- Department of Oncology, Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BD, UK
| | - Jasper Eddison
- College of Medical & Dental Sciences, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | - Maryam Al-Ani
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
21
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
22
|
New Approaches in Early-Stage NSCL Management: Potential Use of PARP Inhibitors and Immunotherapy Combination. Int J Mol Sci 2023; 24:ijms24044044. [PMID: 36835456 PMCID: PMC9961654 DOI: 10.3390/ijms24044044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world, being the first cause of cancer-related mortality. Surgery remains the only potentially curative treatment for Non-Small Cell Lung Cancer (NSCLC), but the recurrence risk remains high (30-55%) and Overall Survival (OS) is still lower than desirable (63% at 5 years), even with adjuvant treatment. Neoadjuvant treatment can be helpful and new therapies and pharmacologic associations are being studied. Immune Checkpoint Inhibitors (ICI) and PARP inhibitors (PARPi) are two pharmacological classes already in use to treat several cancers. Some pre-clinical studies have shown that its association can be synergic and this is being studied in different settings. Here, we review the PARPi and ICI strategies in cancer management and the information will be used to develop a clinical trial to evaluate the potential of PARPi association with ICI in early-stage neoadjuvant setting NSCLC.
Collapse
|
23
|
Shu T, Zhou Z, Bai J, Xiao X, Gao M, Zhang N, Wang H, Xia X, Gao Y, Zheng H. Circulating T-cell receptor diversity as predictive biomarker for PARP inhibitors maintenance therapy in high grade serous ovarian cancer. Gynecol Oncol 2023; 168:135-143. [PMID: 36442424 DOI: 10.1016/j.ygyno.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) repertoire diversity is getting increasing attention as a predictive biomarker in cancer patients. However, the characteristics of the TCR together with its predictive significance for high grade serous ovarian cancer (HGSOC) patients receiving poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance therapy remain unknown. METHODS Twenty-seven patients with HGSOC were analyzed including 22 patients receiving PARPi maintenance therapy and 5 untreated patients as control. Peripheral blood samples were collected for TCR sequencing at baseline as well as one month and three months after the exposure to PARPi. To determine whether TCR diversity was related to PARPi efficacy, we compared the TCR repertoire between patients who had received PARPi and those who had not. RESULTS For patients receiving PARPi treatment or not, we evaluated changes in clone abundance during PARPi maintenance and the similarity of the TCR repertoire before and after the treatment. The results revealed that patients receiving PARPi had TCR repertoires that were more stable than those of untreated cases. We next correlated TCR diversity with the efficacy of PARPi in the treatment group. The rising trend of TCR diversity after three months with PARPi treatment was associated with a longer PFS (21.7 vs 7.4 months, hazard ratio = 0.19, p < 0.001) and a better response to PARPi (91.7% vs 25.0%, p = 0.004). Furthermore, we discovered that the primary characteristic with predictive value for the effectiveness of PARPi is the considerable reduction of the high-frequency T cell clones. CONCLUSION We suggested that the circulating TCR diversity could be a potential predictive biomarker for PARPi maintenance therapy in HGSOC.
Collapse
Affiliation(s)
- Tong Shu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xiao Xiao
- Geneplus-Shenzhen Institute, Guangdong 518118, China
| | - Min Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongguo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Yunong Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Hong Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
24
|
Shapiro GI, Barry SM. Combining PARP Inhibition and Immunotherapy in BRCA-Associated Cancers. Cancer Treat Res 2023; 186:207-221. [PMID: 37978138 DOI: 10.1007/978-3-031-30065-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have significantly improved treatment outcomes of homologous recombination (HR) repair-deficient cancers. While the activity of these agents is largely linked to multiple mechanisms underlying the synthetic lethality of PARP inhibition and HR deficiency, emerging data suggest that their efficacy is also tied to their effects on the immune microenvironment and dependent upon cytotoxic T-cell activation. Effects observed in preclinical models are currently being validated in on-treatment biopsy samples procured from patients enrolled in clinical trials. Although this work has stimulated the development of combinations of PARP inhibitors with immunomodulatory agents, results to date have not demonstrated the superiority of combined PARP inhibition and immune checkpoint blockade compared with PARP inhibition alone. These results have stimulated a more comprehensive assessment of the immunosuppressive components of the tumor microenvironment that must be addressed so that the efficacy of PARP inhibitor agents can be maximized.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA.
| | - Suzanne M Barry
- Department of Medical Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| |
Collapse
|
25
|
Maiorano BA, Maiorano MFP, Maiello E. Olaparib and advanced ovarian cancer: Summary of the past and looking into the future. Front Pharmacol 2023; 14:1162665. [PMID: 37153769 PMCID: PMC10160416 DOI: 10.3389/fphar.2023.1162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Ovarian cancer (OC) is women's eighth most common cancer, bearing the highest mortality rates of all female reproductive system malignancies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have reshaped the treatment scenario of metastatic OC as a maintenance post platinum-based chemotherapy. Olaparib is the first PARPi developed for this disease. Results from Study 42, Study 19, SOLO2, OPINION, SOLO1, and PAOLA-1 clinical trials, led to the FDA and EMA approval of olaparib for the maintenance treatment of women with high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer without platinum progression: in the platinum-sensitive recurrent OC; in the newly diagnosed setting in case Breast Cancer (BRCA) mutations and, in combination with bevacizumab, in case of BRCA mutation or deficiency of homologous recombination genes. In this review, we synthetized olaparib's pharmacokinetic and pharmacodynamic properties and its use in special populations. We summarized the efficacy and safety of the studies leading to the current approvals and discussed the future developments of this agent.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Mauro Francesco Pio Maiorano,
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| |
Collapse
|
26
|
Cioffi R, Galli F, Rabaiotti E, Candiani M, Pella F, Candotti G, Bocciolone L, De Marzi P, Mangili G, Bergamini A. Experimental drugs for fallopian cancer: promising agents in the clinical trials and key stumbling blocks for researchers. Expert Opin Investig Drugs 2022; 31:1339-1357. [PMID: 36537209 DOI: 10.1080/13543784.2022.2160313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fallopian tube carcinoma (FC) as a single entity is a rare disease. Although its diagnosis is increasing thanks to the widespread use of prophylactic salpingectomy, there are no clinical trials exclusively designed for FC. AREAS COVERED This review aims at identifying the most promising trials and future therapeutic pathways in the setting of FC. EXPERT OPINION Hot topics in FC treatment include the consequences of using PARP inhibitors (PARPi) as first-line therapy, ways to overcome platinum resistance, and the role of immunotherapy. Patient selection is a key point for future development of target therapies. Next-generation sequencing (NGS) is one of the most investigated technologies both for drug discovery and identification of reverse mutations, involved in resistance to PARPi and platinum. New, promising molecular targets are emerging. Notwithstanding the disappointing outcomes when used by itself, immunotherapy in FC treatment could still have a role in combination with other agents, exploiting synergistic effects at the molecular level. The development of cancer vaccines is currently hampered by the high variability of tumor neoantigens in FC. Genomic profiling could be a solution, allowing the synthesis of individualized vaccines.
Collapse
Affiliation(s)
- Raffaella Cioffi
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Federica Galli
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Emanuela Rabaiotti
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Pella
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgio Candotti
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Bocciolone
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Patrizia De Marzi
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgia Mangili
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Alice Bergamini
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
27
|
Catalano M, Francesco Iannone L, Cosso F, Generali D, Mini E, Roviello G. Combining inhibition of immune checkpoints and PARP: rationale and perspectives in cancer treatment. Expert Opin Ther Targets 2022; 26:923-936. [PMID: 36519314 DOI: 10.1080/14728222.2022.2158813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Genomic instability resulting from the inability of cells to repair DNA damage is a breeding ground for immune checkpoint inhibitors (ICIs) and targeted treatments. Poly (ADP-ribose) polymerase inhibitors (PARPi) interfere with the efficient repair of DNA single-strand break damage inducing, mainly in tumors with existing defects in double strand DNA repair system, synthetic lethality. AREAS COVERED By amplifying the DNA damage and inducing immunogenic cell death PARPi leads tumor neoantigens to increase, upregulation of programmed death-ligand 1, and modulation of the tumor microenvironment facilitating a more intense antitumor immune response. In this review, we reported the immunological role of PARPi and the rational use of the combination with ICIs, evaluating data from combination clinical trials and discussing perspectives. EXPERT OPINION Several prospective combination studies to overcome existing limitations to PARPi and ICI single agents are currently ongoing. The identification of the different resistance mechanisms to PARPi and ICI as well as the development of accurate and predictive biomarkers of response should be a priority to identify the patients who may most benefit from this combination. Similarly, clarifying the role and interaction between the DNA damage repair pathways and the tumor immune microenvironment would increase success of the combination.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Luigi Francesco Iannone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Federica Cosso
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Gueble SE, Vasquez JC, Bindra RS. The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1566-1589. [PMID: 36242713 DOI: 10.1007/s11864-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Primary malignant central nervous (CNS) tumors are a devastating group of diseases with urgent need for improved treatment options. Surgery, radiation, and cytotoxic chemotherapy remain the primary standard treatment modalities, with molecularly targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-ribose) polymerase (PARP) inhibitors, which have had immense success in the treatment of extracranial cancers with homologous recombination deficiency (HRD), are emerging as a potential targeted treatment for various CNS tumors. Although few primary CNS tumors display canonical BRCA gene defects, preclinical evidence suggests that PARP inhibitors may benefit certain CNS tumors with functional HRD or elevated replication stress. In addition, other preclinical studies indicate that PARP inhibitors may synergize with standard therapies used for CNS tumors including radiation and alkylating agents and may prevent or overcome drug resistance. Thus far, initial clinical trials with early-generation PARP inhibitors, typically as monotherapy or in the absence of selective biomarkers, have shown limited efficacy. However, the scientific rationale remains promising, and many clinical trials are ongoing, including investigations of more CNS penetrant or more potent inhibitors and of combination therapy with immune checkpoint inhibitors. Early phase trials are also critically focusing on determining active drug CNS penetration and identifying biomarkers of therapy response. In this review, we will discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS tumors and clinical trial results to date, highlighting ongoing trials and future directions in the field that may yield important findings and potentially impact the treatment of these devastating malignancies in the coming years.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
29
|
Ashraf R, Kumar S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling. Cell Mol Life Sci 2022; 79:573. [DOI: 10.1007/s00018-022-04595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
|
30
|
Bound NT, Vandenberg CJ, Kartikasari AER, Plebanski M, Scott CL. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Front Genet 2022; 13:886170. [PMID: 36159999 PMCID: PMC9505691 DOI: 10.3389/fgene.2022.886170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
Collapse
Affiliation(s)
- Nirashaa T. Bound
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cassandra J. Vandenberg
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Apriliana E. R. Kartikasari
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Cancer Ageing and Vaccines (CAVA), Translational Immunology & Nanotechnology Research Program, School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Clare L. Scott
- Cancer Biology and Stem Cells, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
| |
Collapse
|
31
|
Kepenekian V, Bhatt A, Péron J, Alyami M, Benzerdjeb N, Bakrin N, Falandry C, Passot G, Rousset P, Glehen O. Advances in the management of peritoneal malignancies. Nat Rev Clin Oncol 2022; 19:698-718. [PMID: 36071285 DOI: 10.1038/s41571-022-00675-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
Peritoneal surface malignancies (PSMs) are usually associated with a poor prognosis. Nonetheless, in line with advances in the management of most abdominopelvic metastatic diseases, considerable progress has been made over the past decade. An improved understanding of disease biology has led to the more accurate prediction of neoplasia aggressiveness and the treatment response and has been reflected in the proposal of new classification systems. Achieving complete cytoreductive surgery remains the cornerstone of curative-intent treatment of PSMs. Alongside centralization in expert centres, enabling the delivery of multimodal and multidisciplinary strategies, preoperative management is a crucial step in order to select patients who are most likely to benefit from surgery. Depending on the specific PSM, the role of intraperitoneal chemotherapy and of perioperative systemic chemotherapy, in particular, in the neoadjuvant setting, is established in certain scenarios but questioned in several others, although more prospective data are required. In this Review, we describe advances in all aspects of the management of PSMs including disease biology, assessment and improvement of disease resectability, perioperative management, systemic therapy and pre-emptive management, and we speculate on future research directions.
Collapse
Affiliation(s)
- Vahan Kepenekian
- Surgical Oncology Department, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France
| | - Aditi Bhatt
- Department of Surgical Oncology, Zydus hospital, Ahmedabad, Gujarat, India
| | - Julien Péron
- Medical Oncology Department, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, UCBL1, Lyon, France
| | - Mohammad Alyami
- Department of General Surgery and Surgical Oncology, Oncology Center, King Khalid Hospital, Najran, Saudi Arabia
| | - Nazim Benzerdjeb
- CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France.,Department of Pathology, Institut de Pathologie Multisite, Hospices Civils de Lyon, UCBL1, Lyon, France
| | - Naoual Bakrin
- Surgical Oncology Department, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France
| | - Claire Falandry
- Department of Onco-Geriatry, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Passot
- Surgical Oncology Department, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.,CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France
| | - Pascal Rousset
- CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France.,Department of Radiology, Hôpital Lyon Sud, Hospices Civils de Lyon, UCBL1, Lyon, France
| | - Olivier Glehen
- Surgical Oncology Department, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France. .,CICLY - EA3738, Université Claude Bernard Lyon I (UCBL1), Lyon, France.
| |
Collapse
|
32
|
Bonadio RC, Tarantino P, Testa L, Punie K, Pernas S, Barrios C, Curigliano G, Tolaney SM, Barroso-Sousa R. Management of patients with early-stage triple-negative breast cancer following pembrolizumab-based neoadjuvant therapy: What are the evidences? Cancer Treat Rev 2022; 110:102459. [PMID: 35998514 DOI: 10.1016/j.ctrv.2022.102459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
New therapy options have changed the treatment landscape of early-stage triple-negative breast cancer (TNBC) in recent years. Most patients are candidates for neoadjuvant chemotherapy, which helps to downstage the tumor and tailor adjuvant systemic therapy based on pathologic response. Capecitabine, pembrolizumab, and olaparib have been incorporated into the armamentarium of adjuvant treatment for selected patients. The KEYNOTE-522 trial, that demonstrated the benefit of pembrolizumab, given in addition to neoadjuvant chemotherapy and adjuvantly after surgery, represented a paradigm shift for early-stage TNBC treatment. Pembrolizumab was continued in the adjuvant setting irrespective of response to neoadjuvant therapy, and other adjuvant therapies were not administered in the trial. Many questions were then raised on the selection of adjuvant therapy regimens for patients with residual disease (RD). Prior to the routine use of immune-checkpoint inhibitors (ICI), the value of adjuvant capecitabine for patients with RD after neoadjuvant polychemotherapy was demonstrated. Given the poor prognosis of some patients with RD after neoadjuvant chemo-immunotherapy, while the survival advantage of adding capecitabine during the adjuvant phase of pembrolizumab is unknown, it does appear safe and can be considered. Regarding patients harboring germline BRCA mutations with RD after neoadjuvant ICI-containing regimens, the combination of olaparib with pembrolizumab can be an option based on existing safety data.
Collapse
Affiliation(s)
- Renata Colombo Bonadio
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Paulo, Brazil; Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; European Institute of Oncology, IRCCS
| | - Laura Testa
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Paulo, Brazil; Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Sonia Pernas
- Catalan Institute of Oncology; IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Carlos Barrios
- Latin American Cooperative Oncology Group (LACOG), Grupo Oncoclínicas, Porto Alegre, Brazil
| | | | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Oncology Center, Hospital Sirio-Libanes, Brasília, Brazil; DASA Oncology, Brasília, Brazil.
| |
Collapse
|
33
|
Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance therapy for newly diagnosed epithelial ovarian cancer- a review. J Ovarian Res 2022; 15:88. [PMID: 35902911 PMCID: PMC9331490 DOI: 10.1186/s13048-022-01020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 02/11/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer among women worldwide, with the 5-year survival rate ranging between 30 and 40%. Due to the asymptomatic nature of the condition, it is more likely to be diagnosed at an advanced stage, requiring an aggressive therapeutic approach. Cytoreductive surgery (CRS) along with systemic chemotherapy with paclitaxel and carboplatin has been the mainstay of the treatment in the frontline management of EOC. In recent years, neo-adjuvant chemotherapy, followed by interval CRS has become an important strategy for the management of advanced EOC. Due to the high rate of recurrence, the oncology community has begun to shift its focus to molecular-targeted agents and maintenance therapy in the frontline settings. The rationale for maintenance therapy is to delay the progression or relapse of the disease, as long as possible after first-line treatment, irrespective of the amount of residual disease. Tumours with homologous recombination deficiency (HRD) including BReast CAncer gene (BRCA) mutations are found to be sensitive to polyadenosine diphosphate-ribose polymerase (PARP) inhibitors and understanding of HRD status has become important in the frontline setting. PARP inhibitors are reported to provide a significant improvement in progression-free survival and have an acceptable safety profile. PARP inhibitors have also been found to act regardless of BRCA status. Recently, PARP inhibitors as maintenance therapy in the frontline settings showed encouraging results in EOC; however, the results from further trials and survival data from ongoing trials are awaited for understanding the role of this pathway in treatment of EOC. This review discusses an overview of maintenance strategies in newly diagnosed EOC along with considerations for maintenance therapy in EOC with a focus on PARP inhibitors.
Collapse
Affiliation(s)
- Shona Nag
- Sahyadri Speciality Hospitals, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
34
|
Wijaya ST, Tan DSP. A step towards the ambition of precision oncology in recurrent ovarian cancer. J Gynecol Oncol 2022; 33:e64. [PMID: 35712974 PMCID: PMC9250860 DOI: 10.3802/jgo.2022.33.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Silvana Talisa Wijaya
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore
| | - David Shao Peng Tan
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore.,Cancer Science Institute, National University of Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
35
|
Kyo S, Kanno K, Takakura M, Yamashita H, Ishikawa M, Ishibashi T, Sato S, Nakayama K. Clinical Landscape of PARP Inhibitors in Ovarian Cancer: Molecular Mechanisms and Clues to Overcome Resistance. Cancers (Basel) 2022; 14:2504. [PMID: 35626108 PMCID: PMC9139943 DOI: 10.3390/cancers14102504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The survival of patients with advanced or recurrent ovarian cancer has improved tremendously in the past decade, mainly due to the establishment of maintenance therapy with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) after conservative chemotherapies. Despite their superior efficacy, resistance to PARPis has been reported, and patients with resistance have a much worse prognosis. Therefore, the development of novel treatment strategies to overcome PARPi resistance is urgently needed. The present review article focuses on the molecular mechanisms of how PARPis exert cytotoxic effects on cancer cells through DNA repair processes, especially the genetic background and tumor microenvironment favored by PARPis. Furthermore, currently available information on PARPi resistance mechanisms is introduced and discussed to develop a novel therapeutic approach against them.
Collapse
Affiliation(s)
- Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kanazawa 920-0293, Japan;
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (K.K.); (H.Y.); (M.I.); (T.I.); (S.S.); (K.N.)
| |
Collapse
|
36
|
Maiorano BA, Lorusso D, Maiorano MFP, Ciardiello D, Parrella P, Petracca A, Cormio G, Maiello E. The Interplay between PARP Inhibitors and Immunotherapy in Ovarian Cancer: The Rationale behind a New Combination Therapy. Int J Mol Sci 2022; 23:3871. [PMID: 35409229 PMCID: PMC8998760 DOI: 10.3390/ijms23073871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has a high impact on morbidity and mortality in the female population. Survival is modest after platinum progression. Therefore, the search for new therapeutic strategies is of utmost importance. BRCA mutations and HR-deficiency occur in around 50% of OC, leading to increased response and survival after Poly (ADP-ribose) polymerase inhibitors (PARPis) administration. PARPis represent a breakthrough for OC therapy, with three different agents approved. On the contrary, immune checkpoint inhibitors (ICIs), another breakthrough therapy for many solid tumors, led to modest results in OC, without clinical approvals and even withdrawal of clinical trials. Therefore, combinations aiming to overcome resistance mechanisms have become of great interest. Recently, PARPis have been evidenced to modulate tumor microenvironment at the molecular and cellular level, potentially enhancing ICIs responsiveness. This represents the rationale for the combined administration of PARPis and ICIs. Our review ought to summarize the preclinical and translational features that support the contemporary administration of these two drug classes, the clinical trials conducted so far, and future directions with ongoing studies.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, Scientific Directorate, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Paola Parrella
- Oncology Laboratory, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gennaro Cormio
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
| |
Collapse
|
37
|
CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer. Br J Cancer 2022; 126:1470-1480. [PMID: 35314795 PMCID: PMC9090786 DOI: 10.1038/s41416-022-01763-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Background Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. Methods Impact of Cxcl9 overexpression in the murine ID8-Trp53−/− and ID8-Trp53−/–Brca2−/− ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. Results CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. Conclusions CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.
Collapse
|
38
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
39
|
Pirš B, Škof E, Smrkolj V, Smrkolj Š. Overview of Immune Checkpoint Inhibitors in Gynecological Cancer Treatment. Cancers (Basel) 2022; 14:631. [PMID: 35158899 PMCID: PMC8833536 DOI: 10.3390/cancers14030631] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
In the last ten years, clinical oncology has been revolutionized by the introduction of oncological immunotherapy, mainly in the form of immune checkpoint inhibitors (ICIs) that transformed the standard of care of several advanced solid malignancies. Using ICIs for advanced gynecological cancers has yielded good results, especially for endometrial cancer. In ovarian or cervical cancer, combining ICIs with other established agents has shown some promise. Concurrently with the clinical development of ICIs, biomarkers that predict responses to such therapy have been discovered and used in clinical trials. The translation of these biomarkers to clinical practice was somewhat hampered by lacking assay standardization and non-comprehensive reporting of biomarker status in trials often performed on a small number of gynecological cancer patients. We can expect increased use of ICIs combined with other agents in gynecological cancer in the near future. This will create a need for reliable response prediction tools, which we believe will be based on biomarker, clinical, and tumor characteristics. In this article, we review the basic biology of ICIs and response prediction biomarkers, as well as the latest clinical trials that focus on subgroup effectiveness based on biomarker status in gynecological cancer patients.
Collapse
Affiliation(s)
- Boštjan Pirš
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.P.); (E.Š.); (V.S.)
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia
| | - Erik Škof
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.P.); (E.Š.); (V.S.)
- Department of Medical Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Vladimir Smrkolj
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.P.); (E.Š.); (V.S.)
| | - Špela Smrkolj
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.P.); (E.Š.); (V.S.)
- Division of Gynaecology and Obstetrics, University Medical Centre, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
The Clinical Challenges, Trials, and Errors of Combatting Poly(ADP-Ribose) Polymerase Inhibitors Resistance. Cancer J 2021; 27:491-500. [PMID: 34904812 DOI: 10.1097/ppo.0000000000000562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitor (PARPi) exploits synthetic lethality in solid tumors with homologous recombination repair (HRR) defects. Significant clinical benefit has been established in breast and ovarian cancers harboring BRCA1/2 mutations, as well as tumors harboring characteristics of "BRCAness." However, the durability of treatment responses is limited, and emerging data have demonstrated the clinical challenge of PARPi resistance. With the expanding use of PARPi, the significance of PARP therapy in patients pretreated with PARPi remains in need of significant further investigation. Molecular mechanisms contributing to this phenomenon include restoration of HRR function, replication fork stabilization, BRCA1/2 reversion mutations, and epigenetic changes. Current studies are evaluating the utility of combination therapies of PARPi with cell cycle checkpoint inhibitors, antiangiogenic agents, phosphatidylinositol 3-kinase/AKT pathway inhibitors, MEK inhibitors, and epigenetic modifiers to overcome this resistance. In this review, we address the mechanisms of PARPi resistance supported by preclinical models, examine current clinical trials applying combination therapy to overcome PARPi resistance, and discuss future directions to enhance the clinical efficacy of PARPi.
Collapse
|
41
|
With Our Powers Combined: Exploring PARP Inhibitors and Immunotherapy. Cancer J 2021; 27:511-520. [PMID: 34904815 DOI: 10.1097/ppo.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The use of poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapies has seen substantial clinical success in oncology therapeutic development. Although multiple agents within these classes have achieved regulatory approval globally-in several malignancies in early and advanced stages-drug resistance remains an issue. Building on preclinical evidence, several early trials and late-phase studies are underway. This review explores the therapeutic potential of combination poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitor therapy in solid tumors, including the scientific and therapeutic rationale, available clinical evidence, and considerations for future trial and biomarker development across different malignancies using ovarian and other solid cancer subtypes as key examples.
Collapse
|
42
|
Bonadio RC, Estevez-Diz MDP. Perspectives on PARP Inhibitor Combinations for Ovarian Cancer. Front Oncol 2021; 11:754524. [PMID: 34976801 PMCID: PMC8715945 DOI: 10.3389/fonc.2021.754524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors constitute an important treatment option for ovarian cancer nowadays. The magnitude of benefit from PARP inhibitors is influenced by the homologous recombination status, with greater benefit observed in patients with BRCA mutated or BRCA wild-type homologous recombination deficient (HRD) tumors. Although some PARP inhibitor activity has been shown in homologous recombination proficient (HRP) ovarian tumors, its clinical relevance as a single agent is unsatisfactory in this population. Furthermore, even HRD tumors present primary or secondary resistance to PARP inhibitors. Strategies to overcome treatment resistance, as well as to enhance PARP inhibitors' efficacy in HRP tumors, are highly warranted. Diverse combinations are being studied with this aim, including combinations with antiangiogenics, immunotherapy, and other targeted therapies. This review discusses the rationale for developing therapy combinations with PARP inhibitors, the current knowledge, and the future perspectives on this issue.
Collapse
Affiliation(s)
- Renata Colombo Bonadio
- Instituto do Cancer do Estado de Sao Paulo, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Medical Oncology, Oncologia D’Or, Sao Paulo, Brazil
| | - Maria del Pilar Estevez-Diz
- Instituto do Cancer do Estado de Sao Paulo, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Medical Oncology, Oncologia D’Or, Sao Paulo, Brazil
| |
Collapse
|
43
|
Chardin L, Leary A. Immunotherapy in Ovarian Cancer: Thinking Beyond PD-1/PD-L1. Front Oncol 2021; 11:795547. [PMID: 34966689 PMCID: PMC8710491 DOI: 10.3389/fonc.2021.795547] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, affecting approximately 1 in 70 women with only 45% surviving 5 years after diagnosis. This disease typically presents at an advanced stage, and optimal debulking with platinum-based chemotherapy remains the cornerstone of management. Although most ovarian cancer patients will respond effectively to current management, 70% of them will eventually develop recurrence and novel therapeutic strategies are needed. There is a rationale for immune-oncological treatments (IO) in the managements of patients with OC. Many OC tumors demonstrate tumor infiltrating lymphocytes (TILs) and the degree of TIL infiltration is strongly and reproducibly correlated with survival. Unfortunately, results to date have been disappointing in relapsed OC. Trials have reported very modest single activity with various antibodies targeting PD-1 or PD-L1 resulting in response rate ranging from 4% to 15%. This may be due to the highly immunosuppressive TME of the disease, a low tumor mutational burden and low PD-L1 expression. There is an urgent need to improve our understanding of the immune microenvironment in OC in order to develop effective therapies. This review will discuss immune subpopulations in OC microenvironment, current immunotherapy modalities targeting these immune subsets and data from clinical trials testing IO treatments in OC and its combination with other therapeutic agents.
Collapse
Affiliation(s)
- Laure Chardin
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Alexandra Leary
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
- Department of Medical Oncology, Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| |
Collapse
|
44
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
45
|
Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers (Basel) 2021; 13:cancers13236063. [PMID: 34885169 PMCID: PMC8656861 DOI: 10.3390/cancers13236063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Ovarian cancer has remained the leading cause of death among gynecologic malignancies. The current standard of treatment, in most cases, is a combination of surgery and chemotherapy, based on platinum agents and taxanes. Despite the increasing usage of newer drug groups, such as bevacizumab and PARP inhibitors, and the expansion of patient groups for these drugs, ovarian cancer is characterized by recurrences, particularly in the form of peritoneal implants. This review focuses on immunotherapy for ovarian cancer. It considers the current state of knowledge in areas such as cancer vaccines, adoptive cell therapy, CAR-T therapy, and anti-CTLA-4 monotherapy. The paper specifically considers PD-1/PDL-1 as drug targets. Anti-PD-1/PD-L1 monotherapy, and anti-PD-1/PD-L1 immunotherapy in combination with other agents, are analyzed. Abstract Ovarian cancer is one of the most fatal cancers in women worldwide. Cytoreductive surgery combined with platinum-based chemotherapy has been the current first-line treatment standard. Nevertheless, ovarian cancer appears to have a high recurrence rate and mortality. Immunological processes play a significant role in tumorigenesis. The production of ligands for checkpoint receptors can be a very effective, and undesirable, immunosuppressive mechanism for cancers. The CTLA-4 protein, as well as the PD-1 receptor and its PD-L1 ligand, are among the better-known components of the control points. The aim of this paper was to review current research on immunotherapy in the treatment of ovarian cancer. The authors specifically considered immune checkpoints molecules such as PD-1/PDL-1 as targets for immunotherapy. We found that immune checkpoint-inhibitor therapy does not have an improved prognosis in ovarian cancer; although early trials showed that a combination of anti-PD-1/PD-L1 therapy with targeted therapy might have the potential to improve responses and outcomes in selected patients. However, we must wait for the final results of the trials. It seems important to identify a group of patients who could benefit significantly from treatment with immune checkpoints inhibitors. However, despite numerous trials, ICIs have not become part of routine clinical practice for the treatment of ovarian cancer.
Collapse
|
46
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021; 1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
47
|
Musacchio L, Salutari V, Pignata S, Braicu E, Cibula D, Colombo N, Frenel JS, Zagouri F, Carbone V, Ghizzoni V, Giolitto S, Giudice E, Perri MT, Ricci C, Scambia G, Lorusso D. Randomized phase III trial on niraparib-TSR-042 (dostarlimab) versus physician's choice chemotherapy in recurrent ovarian, fallopian tube, or primary peritoneal cancer patients not candidate for platinum retreatment: NItCHE trial (MITO 33). Int J Gynecol Cancer 2021; 31:1369-1373. [PMID: 34607820 DOI: 10.1136/ijgc-2021-002593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Platinum-resistant ovarian cancer patients have a poor prognosis and few treatment options are available. Preclinical and clinical data demonstrated that the combination of poly-ADP ribose polymerase inhibitors with immune checkpoint inhibitors could have a synergistic antitumor activity in this setting of patients. PRIMARY OBJECTIVE The primary objective is to assess the efficacy of niraparib plus dostarlimab compared with chemotherapy in recurrent ovarian cancer patients not suitable for platinum treatment. STUDY HYPOTHESIS This trial will assess the hypothesis that niraparib plus dostarlimab therapy is effective to increase overall survival, progression-free survival, and time to first subsequent therapy respect to chemotherapy alone, with an acceptable toxicity profile. TRIAL DESIGN This is a phase III, multicenter trial, where recurrent ovarian cancer patients not eligible for platinum re-treatment will be randomized 1:1 to receive niraparib plus dostarlimab vs physician's choice chemotherapy until disease progression, intolerable toxicity, or withdrawal of patient consent. The study will be performed according to European Network for Gynaecological Oncological Trial groups (ENGOT) model B and patients will be recruited from 40 sites across MITO, CEEGOG, GINECO, HeCOG, MANGO, and NOGGO groups. MAJOR INCLUSION/EXCLUSION CRITERIA Eligible patients must have recurrent epithelial ovarian cancer not eligible for platinum retreatment. Patients who received previous treatment with poly-ADP ribose polymerase inhibitors and/or immune checkpoint inhibitors will be eligible. No more than two prior lines of treatment are allowed. PRIMARY ENDPOINT The primary endpoint is overall survival defined as the time from the randomization to the date of death by any cause. SAMPLE SIZE 427 patients will be randomized. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS June 2024 TRIAL REGISTRATION NUMBER: NCT04679064.
Collapse
Affiliation(s)
- Lucia Musacchio
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Vanda Salutari
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Elena Braicu
- Department of Gynaecologic Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David Cibula
- Department of Obstetrics and Gynaecology, General University Hospital, Prague, Czech Republic
| | - Nicoletta Colombo
- Gynecologic Oncology Program; European Institute of Oncology, IRCCS, University of Milan-Bicocca, Milan, Italy
| | - Jean Sebastien Frenel
- Department of Medical Oncology, Institut de Cancerologie de l'Oust site Renè Gauducheau, Saint Herblain, France
| | - Flora Zagouri
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Vittoria Carbone
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Viola Ghizzoni
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Serena Giolitto
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Elena Giudice
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Maria Teresa Perri
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Caterina Ricci
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy
| | - Giovanni Scambia
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy.,Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| | - Domenica Lorusso
- Department of Women and Child Health, Division of Gynaecologic Oncology, Policlinico Universitario Fondazione Agostino Gemelli, IRCCS, Rome, Lazio, Italy .,Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome, Italy
| |
Collapse
|
48
|
Pham MM, Ngoi NYL, Peng G, Tan DSP, Yap TA. Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends Cancer 2021; 7:958-970. [PMID: 34158277 PMCID: PMC8458234 DOI: 10.1016/j.trecan.2021.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
The efficacy of poly(ADP-ribose) polymerase inhibitors (PARPi) is restricted by inevitable drug resistance, while their use in combination with chemotherapy and targeted agents is commonly associated with dose-limiting toxicities. Immune checkpoint blockade (ICB) has demonstrated durable responses in different solid tumors and is well-established across multiple cancers. Despite this, single agent activity is limited to a minority of patients and drug resistance remains an issue. Building on the monotherapy success of both drug classes, combining PARPi with ICB may be a safe and well-tolerated strategy with the potential to improve survival outcomes. In this review, we present the preclinical, translational, and clinical data supporting the combination of DNA damage response (DDR) and ICB as well as consider important questions to be addressed with future research.
Collapse
Affiliation(s)
- Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Y L Ngoi
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Guang Peng
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
Maiorano BA, Maiorano MFP, Lorusso D, Maiello E. Ovarian Cancer in the Era of Immune Checkpoint Inhibitors: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4438. [PMID: 34503248 PMCID: PMC8430975 DOI: 10.3390/cancers13174438] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) represents the eighth most common cancer and the fifth leading cause of cancer-related deaths among the female population. In an advanced setting, chemotherapy represents the first-choice treatment, despite a high recurrence rate. In the last ten years, immunotherapy based on immune checkpoint inhibitors (ICIs) has profoundly modified the therapeutic scenario of many solid tumors. We sought to summarize the main findings regarding the clinical use of ICIs in OC. METHODS We searched PubMed, Embase, and Cochrane Databases, and conference abstracts from international congresses (such as ASCO, ESMO, SGO) for clinical trials, focusing on ICIs both as monotherapy and as combinations in the advanced OC. RESULTS 20 studies were identified, of which 16 were phase I or II and 4 phase III trials. These trials used ICIs targeting PD1 (nivolumab, pembrolizumab), PD-L1 (avelumab, aterolizumab, durvalumab), and CTLA4 (ipilimumab, tremelimumab). There was no reported improvement in survival, and some trials were terminated early due to toxicity or lack of response. Combining ICIs with chemotherapy, anti-VEGF therapy, or PARP inhibitors improved response rates and survival in spite of a worse safety profile. CONCLUSIONS The identification of biomarkers with a predictive role for ICIs' efficacy is mandatory. Moreover, genomic and immune profiling of OC might lead to better treatment options and facilitate the design of tailored trials.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Scientific Directorate, Fondazione Policlinico “A.Gemelli” IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
50
|
Macchini M, Centonze F, Peretti U, Orsi G, Militello AM, Valente MM, Cascinu S, Reni M. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev 2021; 100:102262. [PMID: 34418781 DOI: 10.1016/j.ctrv.2021.102262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Personalized treatments and predictive biomarkers of pancreatic cancer (PDAC) are still lacking. Recently germline mutations in BRCA 1 and 2 genes, leading to homologous repair deficiency, have emerged as new targets for more specific and effective therapies, exploiting the increased susceptibility to platinum salts and PARP inhibitors. In addition to BRCA, pathogenic variants in PALB2 and in other genes involved in the DNA damage response pathway (DDR) represent potential targets, as well as their respective somatic alterations. This enlarged molecularly-selected population sharing the BRCAness phenotype, is expected to show a higher sensibility to a number of DNA damaging agents and DDR inhibitors. However, the possibility of new therapeutic opportunities for DDR defective PDAC patients has to face the lack of solid evidence about the proper type and timing of targeted-treatments, the potential combination strategies and most importantly, the lack of informations on the functional impact of each specific pathogenic variant on the DDR pathway. This review summarizes the current and near-future options for the clinical management of PDAC patients harboring a DDR deficiency, analyzing the state of the art of the indications of platinum salts and other cytotoxic agents in the advanced and early stage PDAC, the development of PARP inhibitors and the rational for new combinations with immunotherapy and cycle checkpoint inhibitors, as well as the strategy to overcome the development of resistance over treatments.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Federico Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Maddalena Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|