1
|
Shan B, Yu G, Wang L, Liu Y, Yang C, Liu M, Sun D. Genetic Signature of Pinctada fucata Inferred from Population Genomics: Source Tracking of the Invasion in Mischief Reef of Nansha Islands. BIOLOGY 2023; 12:biology12010097. [PMID: 36671789 PMCID: PMC9855575 DOI: 10.3390/biology12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Among the anthropogenic stresses that marine ecosystems face, biological invasions are one of the major threats. Recently, as a result of increasingly intense anthropogenic disturbance, numerous marine species have been introduced to their non-native ranges. However, many introduced species have uncertain original sources. This prevents the design and establishment of methods for controlling or preventing these introduced species. In the present study, genomic sequencing and population genetic analysis were performed to detect the geographic origin of the introduced Pinctada fucata population in the Mischief Reef of the South China Sea. The results of population genetic structure analysis showed a close relationship between the Mischief Reef introduced population and the Lingshui population, indicating that Lingshui may be the potential geographical origin. Furthermore, lower heterozygosity and nucleotide diversity were observed in the introduced population in Mischief Reef, indicating lower genetic diversity than in other native populations. We also identified some selected genomic regions and genes of the introduced population, including genes related to temperature and salinity tolerance. These genes may play important roles in the adaptation of the introduced population. Our study will improve our understanding of the invasion history of the P. fucata population. Furthermore, the results of the present study will also facilitate further control and prevention of invasion in Mischief Reef, South China Sea.
Collapse
Affiliation(s)
- Binbin Shan
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Yan Liu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Changping Yang
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Manting Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-020-8910-0850
| |
Collapse
|
2
|
Ruan X, Wang Z, Su Y, Wang T. Population Genomics Reveals Gene Flow and Adaptive Signature in Invasive Weed Mikania micrantha. Genes (Basel) 2021; 12:1279. [PMID: 34440453 PMCID: PMC8394975 DOI: 10.3390/genes12081279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
A long-standing and unresolved issue in invasion biology concerns the rapid adaptation of invaders to nonindigenous environments. Mikania micrantha is a notorious invasive weed that causes substantial economic losses and negative ecological consequences in southern China. However, the contributions of gene flow, environmental variables, and functional genes, all generally recognized as important factors driving invasive success, to its successful invasion of southern China are not fully understood. Here, we utilized a genotyping-by-sequencing approach to sequence 306 M. micrantha individuals from 21 invasive populations. Based on the obtained genome-wide single nucleotide polymorphism (SNP) data, we observed that all the populations possessed similar high levels of genetic diversity that were not constrained by longitude and latitude. Mikania micrantha was introduced multiple times and subsequently experienced rapid-range expansion with recurrent high gene flow. Using FST outliers, a latent factor mixed model, and the Bayesian method, we identified 38 outlier SNPs associated with environmental variables. The analysis of these outlier SNPs revealed that soil composition, temperature, precipitation, and ecological variables were important determinants affecting the invasive adaptation of M. micrantha. Candidate genes with outlier signatures were related to abiotic stress response. Gene family clustering analysis revealed 683 gene families unique to M. micrantha which may have significant implications for the growth, metabolism, and defense responses of M. micrantha. Forty-one genes showing significant positive selection signatures were identified. These genes mainly function in binding, DNA replication and repair, signature transduction, transcription, and cellular components. Collectively, these findings highlight the contribution of gene flow to the invasion and spread of M. micrantha and indicate the roles of adaptive loci and functional genes in invasive adaptation.
Collapse
Affiliation(s)
- Xiaoxian Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510641, China
| |
Collapse
|
3
|
Flanagan BA, Krueger-Hadfield SA, Murren CJ, Nice CC, Strand AE, Sotka EE. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader. Mol Ecol 2021; 30:1962-1978. [PMID: 33604965 DOI: 10.1111/mec.15854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.
Collapse
Affiliation(s)
- Ben A Flanagan
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX, USA
| | - Allan E Strand
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Erik E Sotka
- Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|