1
|
Trotta G, Vuerich M, Pellegrini E, Vilà M, Asquini E, Cingano P, Boscutti F. Containing alien plants in coastal dunes: Evidence from a soil manipulation experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121780. [PMID: 38996603 DOI: 10.1016/j.jenvman.2024.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biological invasion is recognised as one of the major threats to biodiversity, particularly in disturbance-prone ecosystems such as costal dunes. Many studies have associated alien plant invasion of dune ecosystem to human disturbances, but less is known about the role of soil properties in invasion after disturbance. Soil properties are crucial filters during plant succession and soil-related changes in the initial stage of species colonization might shape the final success of the invaders. We performed a manipulative experiment aimed at elucidating the effects of soil properties on plant colonization processes in highly invaded dune systems, as a proxy for plausible management actions to curb the success of exotic plant species over native ones, which was measured through species richness and abundance. In a barrier island of the Marano and Grado lagoon, Northern Adriatic Sea, we mechanically removed all the native and alien vegetation present in the back dune (also known as secondary dune), triggering a new ecological succession and further altered, for the following three months, soil properties by adding salt, nitrogen, and organic matter in a full factorial design with randomized blocks. The soil treatments reduced the overall species richness and abundance of alien plants. Further, soil treatment interactions strongly shaped community evenness and species richness. Soil salinity had a positive effect on native cover while decreasing the overall number of alien species, especially in soil with added organic matter. Our findings suggest that soil salinity, and its interplay with organic matter, might significantly reduce the initial success of alien species propagule pressure (i.e. alien plant germination), with likely implications for the trajectories of future plant communities. This study highlights that alien plant containment should be focused on early stages of succession, giving new perspective on future environmental management actions for dune restoration and conservation.
Collapse
Affiliation(s)
- Giacomo Trotta
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy.
| | - Marco Vuerich
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Montserrat Vilà
- Doñana Biological Station - Spanish National Research Council (EBD-CSIC), 41092, Sevilla, Spain; Department of Plant Biology and Ecology, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Edoardo Asquini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; University of Palermo, 90133, Palermo, Italy
| | - Paolo Cingano
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
2
|
Nikolić N, Ghirardelli A, Schiavon M, Masin R. Effects of the salinity-temperature interaction on seed germination and early seedling development: a comparative study of crop and weed species. BMC PLANT BIOLOGY 2023; 23:446. [PMID: 37736710 PMCID: PMC10515249 DOI: 10.1186/s12870-023-04465-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Weeds represent a great constraint for agricultural production due to their remarkable adaptability and their ability to compete with crops. Climate change exacerbates the abiotic stresses that plants encounter. Therefore, studying plant responses to adverse conditions is extremely important. Here, the response to saline stress at different temperatures of three weed species (Chenopodium album, Echinochloa crus-galli and Portulaca oleracea) and three crops (maize, soybean and rice) was investigated. RESULTS The germination percentage of soybean notably decreased as salinity and low temperatures increased. In contrast, maize and rice consistently maintained a high germination percentage, particularly when subjected to low salinity levels. Regarding weed species, the germination percentage of C. album was not significantly affected by salinity, but it decreased in E. crus-galli and P. oleracea with increasing salinity. The mean germination time for all species increased with salinity, especially at lower temperatures. This effect was most pronounced for soybean and E. crus-galli. C. album exhibited significant reduction in stem growth with high salinity and high temperatures, while in E. crus-galli stem growth was less reduced under similar conditions. CONCLUSION This study showed that successful germination under saline stress did not ensure successful early development and emphasizes the species-specific nature of the temperature-salinity interaction, perhaps influenced by intraspecific variability. Increasing salinity levels negatively impacted germination and seedling growth in most species, yet higher temperatures partially alleviated these effects.
Collapse
Affiliation(s)
- Nebojša Nikolić
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy.
| | - Aurora Ghirardelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences - DISAFA, University of Turin, Grugliasco, TO, 10095, Italy
| | - Roberta Masin
- Department of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Legnaro (PD), 35020, Italy
| |
Collapse
|
4
|
Seed Traits Research Is on the Rise: A Bibliometric Analysis from 1991–2020. PLANTS 2022; 11:plants11152006. [PMID: 35956484 PMCID: PMC9370117 DOI: 10.3390/plants11152006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Seed traits (ST) influence seedling establishment, population dynamics, community composition and ecosystem function and reflect the adaptability of plants and the environmental conditions they experienced. There has been a historical and global accumulation of studies on ST, but with few pertaining to visual and quantitative analyses. To understand the trends in the field of ST research in the past 30 years, we conducted a bibliometric analysis based on the Science Citation Index-Expanded (SCI-E) database. The analysis provided annual publications, time trends for keywords, the most productive journals, authors, institutions and countries, and a comprehensive overview of the ST field. Our results showed that in the past 30 years, the number of publications in ST research has increased at an average annual growth rate of 9.1%, while the average number of citations per paper per year showed a rapid increase–slow increase–decrease trend. Keyword analysis showed that “germination” was the most popular research section. Crop Science ranked first among the top journals and Theoretical and Applied Genetics had greater influence in this area and more citations than other journals. The 10 most productive institutions were mostly located in the United States, China and Australia. Furthermore, the three countries also had the largest number of publications and citations. Our analysis showed that the research interests in ST have evolved from genetics and agricultural science to ecological research over the last thirty years; as more fields embrace ST research, there are opportunities for international and interdisciplinary collaborations, cooperative institutions and new advances in the field.
Collapse
|
5
|
Liu Y, Zhang S, De Boeck HJ, Hou F. Effects of Temperature and Salinity on Seed Germination of Three Common Grass Species. FRONTIERS IN PLANT SCIENCE 2021; 12:731433. [PMID: 34956252 PMCID: PMC8702554 DOI: 10.3389/fpls.2021.731433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Temperature and salinity significantly affect seed germination, but the joint effects of temperature and salinity on seed germination are still unclear. To explore such effects, a controlled experiment was conducted, where three temperature levels (i.e., 15, 20, and 25°C) and five salinity levels (i.e., 0, 25, 50, 100, and 200 mmol/L) were crossed, resulting in 15 treatments (i.e., 3 temperature levels × 5 salinity levels). Three typical grass species (Festuca arundinacea, Bromus inermis, and Elymus breviaristatus) were used, and 25 seeds of each species were sown in petri dishes under these treatments. Germination percentages and germination rates were calculated on the basis of the daily recorded germinated seed numbers of each species. Results showed that temperature and salinity significantly affected seed germination percentage and germination rate, which differed among species. Specifically, F. arundinacea had the highest germination percentage, followed by E. breviaristatus and B. inermis, with a similar pattern also found regarding the accumulated germination rate and daily germination rate. Generally, F. arundinacea was not sensitive to temperature within the range of 15-25°C, while the intermediate temperature level improved the germination percentage of B. inermis, and the highest temperature level benefited the germination percentage of E. breviaristatus. Moreover, F. arundinacea was also not sensitive to salinity within the range of 0-200 mmol/L, whereas high salinity levels significantly decreased the germination percentage of B. inermis and E. breviaristatus. Thus, temperature and salinity can jointly affect seed germination, but these differ among plant species. These results can improve our understanding of seed germination in saline soils in the face of climate change.
Collapse
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shuang Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hans J. De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|