1
|
Musker SD, Nürk NM, Pirie MD. Maximising informativeness for target capture-based phylogenomics in Erica (Ericaceae). PHYTOKEYS 2025; 251:87-118. [PMID: 39867481 PMCID: PMC11758362 DOI: 10.3897/phytokeys.251.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Plant phylogenetics has been revolutionised in the genomic era, with target capture acting as the primary workhorse of most recent research in the new field of phylogenomics. Target capture (aka Hyb-Seq) allows researchers to sequence hundreds of genomic regions (loci) of their choosing, at relatively low cost per sample, from which to derive phylogenetically informative data. Although this highly flexible and widely applicable method has rightly earned its place as the field's de facto standard, it does not come without its challenges. In particular, users have to specify which loci to sequence-a surprisingly difficult task, especially when working with non-model groups, as it requires pre-existing genomic resources in the form of assembled genomes and/or transcriptomes. In the absence of taxon-specific genomic resources, target sets exist that are designed to work across broad taxonomic scales. However, the highly conserved loci that they target may lack informativeness for difficult phylogenetic problems, such as that presented by the rapid radiation of Erica in southern Africa. We designed a target set for Erica phylogenomics intended to maximise informativeness and minimise paralogy while maintaining universality by including genes from the widely used Angiosperms353 set. Comprising just over 300 genes, the targets had excellent recovery rates in roughly 90 Erica species as well as outgroups from Calluna, Daboecia, and Rhododendron, and had high information content as measured by parsimony informative sites and Quartet Internode Resolution Probability (QIRP) at shallow nodes. Notably, QIRP was positively correlated with intron content, while including introns in targets-rather than recovering them via exon-flanking "bycatch"-substantially improved intron recovery. Overall, our results show the value of building a custom target set, and we provide a suite of open-source tools that can be used to replicate our approach in other groups (https://github.com/SethMusker/TargetVet).
Collapse
Affiliation(s)
- Seth D. Musker
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South AfricaUniversity of BayreuthBayreuthGermany
- Department of Plant Systematics, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, GermanyUniversity of Cape TownCape TownSouth Africa
| | - Nicolai M. Nürk
- Department of Plant Systematics, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, GermanyUniversity of Cape TownCape TownSouth Africa
| | - Michael D. Pirie
- University Museum, The University of Bergen, Postboks 7800, N-5020, Bergen, NorwayThe University of BergenBergenNorway
| |
Collapse
|
2
|
Cornet C, Mora P, Augustijnen H, Nguyen P, Escudero M, Lucek K. Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol 2024; 33:e17100. [PMID: 37577951 PMCID: PMC11628661 DOI: 10.1111/mec.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
Collapse
Affiliation(s)
- Camille Cornet
- Biodiversity Genomics Laboratory, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Pablo Mora
- Department of Experimental Biology, Genetics AreaUniversity of JaénJaénSpain
- University of South BohemiaFaculty of ScienceČeské BudějoviceCzech Republic
| | | | - Petr Nguyen
- University of South BohemiaFaculty of ScienceČeské BudějoviceCzech Republic
| | - Marcial Escudero
- Department of Plant Biology and EcologyUniversity of SevilleSevilleSpain
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
3
|
Featherstone LA, McGaughran A. The effect of missing data on evolutionary analysis of sequence capture bycatch, with application to an agricultural pest. Mol Genet Genomics 2024; 299:11. [PMID: 38381254 PMCID: PMC10881687 DOI: 10.1007/s00438-024-02097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.
Collapse
Affiliation(s)
- Leo A Featherstone
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Angela McGaughran
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia.
- Te Aka Mātuatua, School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| |
Collapse
|
4
|
Mata-Sucre Y, Parteka LM, Ritz CM, Gatica-Arias A, Félix LP, Thomas WW, Souza G, Vanzela ALL, Pedrosa-Harand A, Marques A. Oligo-barcode illuminates holocentric karyotype evolution in Rhynchospora (Cyperaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1330927. [PMID: 38384757 PMCID: PMC10879424 DOI: 10.3389/fpls.2024.1330927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Holocentric karyotypes are assumed to rapidly evolve through chromosome fusions and fissions due to the diffuse nature of their centromeres. Here, we took advantage of the recent availability of a chromosome-scale reference genome for Rhynchospora breviuscula, a model species of this holocentric genus, and developed the first set of oligo-based barcode probes for a holocentric plant. These probes were applied to 13 additional species of the genus, aiming to investigate the evolutionary dynamics driving the karyotype evolution in Rhynchospora. The two sets of probes were composed of 27,392 (green) and 23,968 (magenta) oligonucleotides (45-nt long), and generated 15 distinct FISH signals as a unique barcode pattern for the identification of all five chromosome pairs of the R. breviuscula karyotype. Oligo-FISH comparative analyzes revealed different types of rearrangements, such as fusions, fissions, putative inversions and translocations, as well as genomic duplications among the analyzed species. Two rounds of whole genome duplication (WGD) were demonstrated in R. pubera, but both analyzed accessions differed in the complex chain of events that gave rise to its large, structurally diploidized karyotypes with 2n = 10 or 12. Considering the phylogenetic relationships and divergence time of the species, the specificity and synteny of the probes were maintained up to species with a divergence time of ~25 My. However, karyotype divergence in more distant species hindered chromosome mapping and the inference of specific events. This barcoding system is a powerful tool to study chromosomal variations and genomic evolution in holocentric chromosomes of Rhynchospora species.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Letícia Maria Parteka
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Londrina State University, Londrina, Brazil
| | - Christiane M. Ritz
- Department of Botany, Senckenberg Museum for Natural History Görlitz, Senckenberg – Member of the Leibniz Association, Görlitz, Germany
- Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Leonardo P. Félix
- Laboratory of Plant Cytogenetics, Department of Biosciences, Federal University of Paraíba, Areia, Brazil
| | - William Wayt Thomas
- Institute of Systematic Botany, New York Botanical Garden, Bronx, NY, United States
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - André L. L. Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Londrina State University, Londrina, Brazil
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
5
|
Mata-Sucre Y, Matzenauer W, Castro N, Huettel B, Pedrosa-Harand A, Marques A, Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol Phylogenet Evol 2023; 189:107930. [PMID: 37717642 DOI: 10.1016/j.ympev.2023.107930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - William Matzenauer
- Laboratório de Morfo-Taxonomia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Natália Castro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil.
| |
Collapse
|
6
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Costa L, Marques A, Buddenhagen CE, Pedrosa-Harand A, Souza G. Investigating the diversification of holocentromeric satellite DNA Tyba in Rhynchospora (Cyperaceae). ANNALS OF BOTANY 2023; 131:813-825. [PMID: 36815646 PMCID: PMC10184444 DOI: 10.1093/aob/mcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Satellite DNAs (satDNAs) are repetitive sequences composed by tandemly arranged, often highly homogenized units called monomers. Although satDNAs are usually fast evolving, some satDNA families can be conserved across species separated by several millions of years, probably because of their functional roles in the genomes. Tyba was the first centromere-specific satDNA described for a holocentric organism, until now being characterized for only eight species of the genus Rhynchospora Vahl. (Cyperaceae). Here, we characterized Tyba across a broad sampling of the genus, analysing and comparing its evolutionary patterns with other satDNAs. METHODS We characterized the structure and sequence evolution of satDNAs across a robust dadated phylogeny based on Hybrid Target-Capture Sequencing (hyb-seq) of 70 species. We mined the repetitive fraction for Tyba-like satellites to compare its features with other satDNAs and to construct a Tyba-based phylogeny for the genus. KEY RESULTS Our results show that Tyba is present in the majority of examined species of the genus, spanning four of the five major clades and maintaining intrafamily pairwise identity of 70.9% over 31 Myr. In comparison, other satellite families presented higher intrafamily pairwise identity but are phylogenetically restricted. Furthermore, Tyba sequences could be divided into 12 variants grouped into three different clade-specific subfamilies, showing evidence of traditional models of satDNA evolution, such as the concerted evolution and library models. Besides, a Tyba-based phylogeny showed high congruence with the hyb-seq topology. Our results show structural indications of a possible relationship of Tyba with nucleosomes, given its high curvature peaks over conserved regions and overall high bendability values compared with other non-centromeric satellites. CONCLUSIONS Overall, Tyba shows a remarkable sequence conservation and phylogenetic significance across the genus Rhynchospora, which suggests that functional roles might lead to long-term stability and conservation for satDNAs in the genome.
Collapse
Affiliation(s)
- Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife-PE, Brazil
| |
Collapse
|
8
|
Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P, Zhang M, Costa L, Castellani M, Scott A, Toegelová H, Fuchs J, Mata-Sucre Y, Dias Y, Vanzela AL, Huettel B, Almeida CC, Šimková H, Souza G, Pedrosa-Harand A, Macas J, Mayer KF, Houben A, Marques A. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 2022; 185:3153-3168.e18. [DOI: 10.1016/j.cell.2022.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023]
|
9
|
Jiménez‐Mena B, Flávio H, Henriques R, Manuzzi A, Ramos M, Meldrup D, Edson J, Pálsson S, Ásta Ólafsdóttir G, Ovenden JR, Nielsen EE. Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits. Mol Ecol Resour 2022; 22:2105-2119. [PMID: 35178874 PMCID: PMC9313901 DOI: 10.1111/1755-0998.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompasses our considerations and guidelines for bait design for the benefit of researchers and practitioners. The supeRbaits R-package is user-friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Hugo Flávio
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Romina Henriques
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alice Manuzzi
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Dorte Meldrup
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Janette Edson
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | | | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Einar Eg Nielsen
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
10
|
Schulte L, Meucci S, Stoof-Leichsenring KR, Heitkam T, Schmidt N, von Hippel B, Andreev AA, Diekmann B, Biskaborn BK, Wagner B, Melles M, Pestryakova LA, Alsos IG, Clarke C, Krutovsky KV, Herzschuh U. Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Commun Biol 2022; 5:570. [PMID: 35681049 PMCID: PMC9184489 DOI: 10.1038/s42003-022-03455-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate. Using ancient sedimentary DNA from up to 50 kya, dramatic distributional shifts are documented in two dominant boreal larch species, likely guided by environmental changes suggesting climate as a strong determinant of species distribution.
Collapse
|
11
|
Heitkam T, Garcia S. Can we have it all? Repurposing target capture for repeat genomics. A commentary on: 'Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA'. ANNALS OF BOTANY 2021; 128:iii-v. [PMID: 34289009 PMCID: PMC8577196 DOI: 10.1093/aob/mcab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on:
Lucas Costa, André Marques, Chris Buddenhagen, William Wayt Thomas, Bruno Huettel, Veit Schubert, Steven Dodsworth, Andreas Houben, Gustavo Souza and Andrea Pedrosa-Harand, Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA, Annals of Botany, Volume 128, Issue 7, 2 December 2021, Pages 835–848 https://doi.org/10.1093/aob/mcab063
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, D-o1069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|