1
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int J Mol Sci 2024; 25:6089. [PMID: 38892273 PMCID: PMC11173196 DOI: 10.3390/ijms25116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
2
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P. Do Cuticular Gaps Make It Possible to Study the Composition of the Cell Walls in the Glands of Drosophyllum lusitanicum? Int J Mol Sci 2024; 25:1320. [PMID: 38279320 PMCID: PMC10816202 DOI: 10.3390/ijms25021320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Carnivorous plants can survive in poor habitats because they have the ability to attract, capture, and digest prey and absorb animal nutrients using modified organs that are equipped with glands. These glands have terminal cells with permeable cuticles. Cuticular discontinuities allow both secretion and endocytosis. In Drosophyllum lusitanicum, these emergences have glandular cells with cuticular discontinuities in the form of cuticular gaps. In this study, we determined whether these specific cuticular discontinuities were permeable enough to antibodies to show the occurrence of the cell wall polymers in the glands. Scanning transmission electron microscopy was used to show the structure of the cuticle. Fluorescence microscopy revealed the localization of the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. We showed that Drosophyllum leaf epidermal cells have a continuous and well-developed cuticle, which helps the plant inhibit water loss and live in a dry environment. The cuticular gaps only partially allow us to study the composition of cell walls in the glands of Drosophyllum. We recoded arabinogalactan proteins, some homogalacturonans, and hemicelluloses. However, antibody penetration was only limited to the cell wall surface. The localization of the wall components in the cell wall ingrowths was missing. The use of enzymatic digestion improves the labeling of hemicelluloses in Drosophyllum glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
3
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P, Lichtscheidl I. Differences in the Occurrence of Cell Wall Components between Distinct Cell Types in Glands of Drosophyllum lusitanicum. Int J Mol Sci 2023; 24:15045. [PMID: 37894725 PMCID: PMC10606540 DOI: 10.3390/ijms242015045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carnivorous plants are mixotrophs that have developed the ability to lure, trap, and digest small organisms and utilize components of the digested bodies. Leaves of Drosophyllum lusitanicum have two kinds of glands (emergences): stalked mucilage glands and sessile digestive glands. The stalked mucilage glands perform the primary role in prey lure and trapping. Apart from their role in carnivory, they absorb water condensed from oceanic fog; thus, plants can survive in arid conditions. To better understand the function of carnivorous plant emergences, the molecular composition of their cell walls was investigated using immunocytochemical methods. In this research, Drosophyllum lusitanicum was used as a study system to determine whether cell wall immunocytochemistry differs between the mucilage and digestive glands of other carnivorous plant species. Light and electron microscopy were used to observe gland structure. Fluorescence microscopy revealed the localization of carbohydrate epitopes associated with the major cell wall polysaccharides and glycoproteins. The mucilage gland (emergence) consists of a glandular head, a connecting neck zone, and stalk. The gland head is formed by an outer and inner layer of glandular (secretory) cells and supported by a layer of endodermoid (barrier) cells. The endodermoid cells have contact with a core of spongy tracheids with spiral-shaped thickenings. Lateral tracheids are surrounded by epidermal and parenchymal neck cells. Different patterns of cell wall components were found in the various cell types of the glands. Cell walls of glandular cells generally are poor in both low and highly esterified homogalacturonans (HGs) but enriched with hemicelluloses. Cell walls of inner glandular cells are especially rich in arabinogalactan proteins (AGPs). The cell wall ingrowths in glandular cells are significantly enriched with hemicelluloses and AGPs. In the case of cell wall components, the glandular cells of Drosophyllum lusitanicum mucilage glands are similar to the glandular cells of the digestive glands of Aldrovanda vesiculosa and Dionaea muscipula.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Irene Lichtscheidl
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria;
| |
Collapse
|
4
|
Lustofin K, Świątek P, Miranda VFO, Płachno BJ. Phylogenetical Position versus Pollination Syndromes: Floral Trichomes of Central American and Mexican Pinguicula. Int J Mol Sci 2023; 24:ijms24098423. [PMID: 37176130 PMCID: PMC10179228 DOI: 10.3390/ijms24098423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.
Collapse
Affiliation(s)
- Krzysztof Lustofin
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Cracow, 9 Gronostajowa St., 30-387 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Cracow, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Cracow, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
5
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
6
|
Li YX, Chen A, Leu WM. Sessile Trichomes Play Major Roles in Prey Digestion and Absorption, While Stalked Trichomes Function in Prey Predation in Byblis guehoi. Int J Mol Sci 2023; 24:ijms24065305. [PMID: 36982381 PMCID: PMC10048915 DOI: 10.3390/ijms24065305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Carnivorous plants in the genus Byblis obtain nutrients by secreting viscous glue drops and enzymes that trap and digest small organisms. Here, we used B. guehoi to test the long-held theory that different trichomes play different roles in carnivorous plants. In the leaves of B. guehoi, we observed a 1:2.5:14 ratio of long-stalked, short-stalked, and sessile trichomes. We demonstrated that the stalked trichomes play major roles in the production of glue droplets, while the sessile trichomes secrete digestive enzymes, namely proteases and phosphatases. In addition to absorbing digested small molecules via channels/transporters, several carnivorous plants employ a more efficient system: endocytosis of large protein molecules. By feeding B. guehoi fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) to monitor protein transport, we found that sessile trichomes exhibited more endocytosis than long- and short-stalked trichomes. The uptaken FITC-BSA was delivered to the neighboring short epidermal cells in the same row as the sessile trichomes, then to the underlying mesophyll cells; however, no signals were detected in the parallel rows of long epidermis cells. The FITC control could be taken up by sessile trichomes but not transported out. Our study shows that B. guehoi has developed a well-organized system to maximize its food supply, consisting of stalked trichomes for prey predation and sessile trichomes for prey digestion. Moreover, the finding that sessile trichomes transfer large, endocytosed protein molecules to the underlying mesophyll, and putatively to the vascular tissues, but not laterally to the terminally differentiated epidermis, indicates that the nutrient transport system has evolved to maximize efficiency.
Collapse
Affiliation(s)
- You-Xian Li
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Alvin Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions. Int J Mol Sci 2022; 24:ijms24010553. [PMID: 36613996 PMCID: PMC9820793 DOI: 10.3390/ijms24010553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill in the gap regarding the structure of the stellate outer trichomes and their immunocytochemistry and to determine whether these data support the suggestions of other authors about the roles of these trichomes. Light and electron microscopy was used to show the trichomes' structure. Fluorescence microscopy was used to locate the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. The endodermal cells and internal head cells of the trichomes were differentiated as transfer cells, and this supports the idea that stellate trichomes transport solutes and are not only tomentose-like trichomes. Trichome cells differ in the composition of their cell walls, e.g., the cell walls of the internal head cells are enriched with arabinogalactan proteins (AGPs). The cell walls of the outer head cells are poor in both low and highly homogalacturonans (HGs), but the immature trichomes are rich in the pectic polysaccharide (1-4)-β-D-galactan. In the immature traps, young stellate trichomes produce mucilage which may protect the trap surface, and in particular, the trap entrance. However, the role of these trichomes is different when the outer head cells collapse. In the internal head cells, a thick secondary wall cell was deposited, which together with the thick cell walls of the outer head cells played the role of a large apoplastic space. This may suggest that mature stellate trichomes might function as hydathodes, but this should be experimentally proven.
Collapse
|
8
|
Freund M, Graus D, Fleischmann A, Gilbert KJ, Lin Q, Renner T, Stigloher C, Albert VA, Hedrich R, Fukushima K. The digestive systems of carnivorous plants. PLANT PHYSIOLOGY 2022; 190:44-59. [PMID: 35604105 PMCID: PMC9434158 DOI: 10.1093/plphys/kiac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Collapse
Affiliation(s)
- Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P, Strzemski M, Miranda VFO. Immunocytochemical Analysis of the Wall Ingrowths in the Digestive Gland Transfer Cells in Aldrovanda vesiculosa L. (Droseraceae). Cells 2022; 11:cells11142218. [PMID: 35883661 PMCID: PMC9322817 DOI: 10.3390/cells11142218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Carnivorous plants are unique due to their ability to attract small animals or protozoa, retain them in specialized traps, digest them, and absorb nutrients from the dissolved prey material; however, to this end, these plants need a special secretion-digestive system (glands). A common trait of the digestive glands of carnivorous plants is the presence of transfer cells. Using the aquatic carnivorous species Aldrovanda vesiculosa, we showed carnivorous plants as a model for studies of wall ingrowths/transfer cells. We addressed the following questions: Is the cell wall ingrowth composition the same between carnivorous plant glands and other plant system models? Is there a difference in the cell wall ingrowth composition between various types of gland cells (glandular versus endodermoid cells)? Fluorescence microscopy and immunogold electron microscopy were employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The cell wall ingrowths were enriched with arabinogalactan proteins (AGPs) localized with the JIM8, JIM13, and JIM14 epitopes. Both methylesterified and de-esterified homogalacturonans (HGs) were absent or weakly present in the wall ingrowths in transfer cells (stalk cells and head cells of the gland). Both the cell walls and the cell wall ingrowths in the transfer cells were rich in hemicelluloses: xyloglucan (LM15) and galactoxyloglucan (LM25). There were differences in the composition between the cell wall ingrowths and the primary cell walls in A. vesiculosa secretory gland cells in the case of the absence or inaccessibility of pectins (JIM5, LM19, JIM7, LM5, LM6 epitopes); thus, the wall ingrowths are specific cell wall microdomains. Even in the same organ (gland), transfer cells may differ in the composition of the cell wall ingrowths (glandular versus endodermoid cells). We found both similarities and differences in the composition of the cell wall ingrowths between the A. vesiculosa transfer cells and transfer cells of other plant species.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
- Correspondence: ; Tel.: +48-12-664-60-39
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Vitor F. O. Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal CEP 14884-900, Brazil;
| |
Collapse
|
10
|
Guedes FM, Miranda VFO, Alves M. Flora of Espírito Santo: Lentibulariaceae. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The present study comprises the taxonomic treatment of the Lentibulariaceae species in Espírito Santo state, as a continuation of a series of studies focused on the Flora of Espírito Santo. Herein we present an identification key, morphological descriptions, illustrations, distribution map, list of analysed material and comments about taxonomy and distribution of the species. We confirmed the occurrence of 16 species in Espírito Santo state, of which four are new records and only three are not found in protected areas.
Collapse
|
11
|
Carmesin CF, Fleischmann AS, Klepsch MM, Westermeier AS, Speck T, Jansen S, Poppinga S. Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.). AMERICAN JOURNAL OF BOTANY 2021; 108:2356-2370. [PMID: 34648183 DOI: 10.1002/ajb2.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Among the sophisticated trap types in carnivorous plants, the underground eel traps of corkskrew plants (Genlisea spp., Lentibulariaceae) are probably the least understood in terms of their functional principle. Here, we provide a detailed analysis of structural and hydraulic features of G. hispidula traps, contributing to the ongoing debate on whether these traps can actively generate water streams to promote prey capture. METHODS Anatomical and hydraulic traits of detached traps, including inner trap diameters, chamber line element, hair length, glandular pattern, and hydraulic conductivity, were investigated quantitatively using light and electron microscopy, x-ray microtomography, and hydraulic measurements. RESULTS Hydraulic resistivity in the neck of the trap, from the trap mouth toward the vesicle (digestive chamber) was 10 times lower than in the opposite direction. The comparison of measured and theoretical flow rates suggests that the retrorse hairs inside trap necks also provide considerable resistance against movement of matter toward the vesicle. Hairs showed a gradient in length along the neck, with the shortest hairs near the vesicle. Co-occurrence of quadrifid and bifid glands was limited to a small part of the neck, with quadrifids near the vesicle and bifids toward the trap mouth. CONCLUSIONS The combination of structural gradients with hydraulic anisotropy suggests the trap is a highly fine-tuned system based on likely trade-offs between efficient prey movement in the trap interior toward the vesicle, prey retention, and spatial digestion capacities and is not counter to the generation of water streams.
Collapse
Affiliation(s)
- Cora F Carmesin
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Andreas S Fleischmann
- Botanische Staatssammlung München, Menzinger Straße 67, Munich, 80638, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias M Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Anna S Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
- Cluster of Excellence livMatS @ FIT, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
- Cluster of Excellence livMatS @ FIT, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| |
Collapse
|
12
|
Lin Q, Ané C, Givnish TJ, Graham SW. A new carnivorous plant lineage ( Triantha) with a unique sticky-inflorescence trap. Proc Natl Acad Sci U S A 2021; 118:e2022724118. [PMID: 34373325 PMCID: PMC8379919 DOI: 10.1073/pnas.2022724118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year's leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.
Collapse
Affiliation(s)
- Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison WI 53706
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
13
|
Lustofin K, Świątek P, Miranda VFO, Płachno BJ. Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae). PROTOPLASMA 2020; 257:245-259. [PMID: 31428856 PMCID: PMC6982637 DOI: 10.1007/s00709-019-01433-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/07/2019] [Indexed: 05/22/2023]
Abstract
Pinguicula (Lentibulariaceae) is a genus comprising around 96 species of herbaceous, carnivorous plants, which are extremely diverse in flower size, colour and spur length and structure as well as pollination strategy. In Pinguicula, nectar is formed in the flower spur; however, there is a gap in the knowledge about the nectary trichome structure in this genus. Our aim was to compare the nectary trichome structure of various Pinguicula species in order to determine whether there are any differences among the species in this genus. The taxa that were sampled were Pinguicula moctezumae, P. moranensis, P. rectifolia, P. emarginata and P. esseriana. We used light microscopy, histochemistry, scanning and transmission electron microscopy to address those aims. We show a conservative nectary trichome structure and spur anatomy in various Mexican Pinguicula species. The gross structural similarities between the examined species were the spur anatomy, the occurrence of papillae, the architecture of the nectary trichomes and the ultrastructure characters of the trichome cells. However, there were some differences in the spur length, the size of spur trichomes, the occurrence of starch grains in the spur parenchyma and the occurrence of cell wall ingrowths in the terminal cells of the nectary trichomes. Similar nectary capitate trichomes, as are described here, were recorded in the spurs of species from other Lentibulariaceae genera. There are many ultrastructural similarities between the cells of nectary trichomes in Pinguicula and Utricularia.
Collapse
Affiliation(s)
- Krzysztof Lustofin
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Kraków, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, 9 Bankowa St, 40-007, Katowice, Poland
| | - Vitor F O Miranda
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Kraków, Poland.
| |
Collapse
|
14
|
Płachno BJ, Stpiczyńska M, Adamec L, Miranda VFO, Świątek P. Nectar trichome structure of aquatic bladderworts from the section Utricularia (Lentibulariaceae) with observation of flower visitors and pollinators. PROTOPLASMA 2018; 255:1053-1064. [PMID: 29404696 PMCID: PMC5994208 DOI: 10.1007/s00709-018-1216-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/26/2018] [Indexed: 05/09/2023]
Abstract
In Utricularia, the flower spur is a nectary and in this organ, nectar is produced and stored. This study aimed to examine the structure of the nectary trichomes in four Utricularia species (Utricularia vulgaris L., U. australis R.Br., U. bremii Heer and U. foliosa L.) from the generic section Utricularia. We have investigated whether species with different spur morphology had similar spur anatomy and nectary trichome structure. In Utricularia flowers, nectar is produced by spur capitate trichomes (sessile or stalked). Our results showed that regardless of the various spur morphology, trichomes have similar architecture and ultrastructure. Head cells of these trichomes are transfer cells with an eccrine nectar secretion. Examined species differed in the micromorphology of papillae in spurs. The fly Eristalis tenax was found to be a pollinator of U. vulgaris. Small Halictidae bees seem to be pollinators of U. foliosa.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland.
| | - Małgorzata Stpiczyńska
- Botanic Garden, Faculty of Biology, University of Warsaw, Al. Ujazdowskie 4, 00-478, Warsaw, Poland
| | - Lubomír Adamec
- Section of Plant Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, -37982, Třeboň, CZ, Czech Republic
| | - Vitor Fernandes Oliveira Miranda
- Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista (Unesp), São Paulo, Brazil
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, 9 Bankowa St, 40-007, Katowice, Poland
| |
Collapse
|
15
|
Płachno BJ, Świątek P, Stpiczyńska M, Miranda VFO. Flower palate ultrastructure of the carnivorous plant Genlisea hispidula Stapf with remarks on the structure and function of the palate in the subgenus Genlisea (Lentibulariaceae). PROTOPLASMA 2018; 255:1139-1146. [PMID: 29445970 PMCID: PMC5994213 DOI: 10.1007/s00709-018-1220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/29/2018] [Indexed: 05/11/2023]
Abstract
In the genus Genlisea as well as in its sister genus Utricularia, the palate probably plays a key role in providing the colour, mechanical and olfactory stimuli to attract insect pollinators and to guide them to the generative structures and the nectary spur. However, information about the micro-morphology of the palate of Genlisea is scarce. This study aims to examine the structure of the palate in Genlisea hispidula in detail as well as the palate from other five species from the subgenus Genlisea. In particular, its aim is to ascertain whether these palates function as an area for the osmophores in the flower or whether they produce nectar. We showed that the palate in all of the species that were examined was the glandular type and that it had capitate, glandular trichomes, which had a similar general architecture across the species that were examined. No nectar secretion was observed on the palates. The ultrastructure of the palate trichomes showed that the palate glandular trichomes most probably function as scent glands that produce an olfactory stimulus for flower pollinators.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa Str, 30-387, Kraków, Poland.
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, 9 Bankowa Str, 40-007, Katowice, Poland
| | - Małgorzata Stpiczyńska
- Botanic Garden, Faculty of Biology, University of Warsaw, Al. Ujazdowskie 4, 00-478, Warsaw, Poland
| | - Vitor Fernandes Oliveira Miranda
- Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| |
Collapse
|
16
|
Płachno BJ, Stpiczyńska M, Świątek P, Davies KL. Floral micromorphology of the Australian carnivorous bladderwort Utricularia dunlopii, a putative pseudocopulatory species. PROTOPLASMA 2016; 253:1463-1473. [PMID: 26497694 PMCID: PMC5069315 DOI: 10.1007/s00709-015-0900-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/16/2015] [Indexed: 05/11/2023]
Abstract
Flowers of sexually deceptive taxa generally possess a set of morphological and physiological characters that mimic their insect pollinators. These characters often include a specific insect-like floral configuration, together with scent glands (osmophores) that produce fragrances which chemically resemble insect sex pheromones. Furthermore, these flowers tend not to produce pollinator food rewards. According to some authors, flowers of the Australian bladderwort Utricularia dunlopii (and species of the Utricularia capilliflora complex) resemble insects, and pollination perhaps occurs by pseudocopulation. The aims of this paper are to compare the structure and distribution of floral glandular trichomes in the Australian carnivorous plant U. dunlopii with those of closely related species assigned to the same section and to discuss their putative function. Floral tissues of U. dunlopii P. Taylor, Utricularia paulinae Lowrie, Utricularia dichotoma Labill. and Utricularia uniflora R.Br. (section Pleiochasia) were investigated using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. In U. dunlopii, two long, erect, filiform appendages arising from the upper lip of the corolla, together with three arising from the lower lip, bear numerous glandular trichomes that may function as osmophores. In other species, such as U. uniflora and U. paulinae, glandular papillae on the corolla palate may also function as osmophores. The floral anatomical and morphological organisation of U. dunlopii differs from that of the other investigated species, indicating that its insect pollinators are also likely to differ. Morphological and ultrastructural observations, while generally contributing to our understanding of the flower of U. dunlopii, do not refute the possibility that pollination here may occur by pseudocopulation. Further field-based investigations, however, are now necessary to test this hypothesis.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387, Kraków, Poland.
| | - Małgorzata Stpiczyńska
- University of Warsaw, Faculty of Biology, Botanic Garden Al. Ujazdowskie 4, 00-478, Warsaw, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St., 40-007, Katowice, Poland
| | - Kevin L Davies
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
17
|
Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. ANNALS OF BOTANY 2016; 117:811-32. [PMID: 26589968 PMCID: PMC4845801 DOI: 10.1093/aob/mcv172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Various groups of flowering plants reveal profound ('saltational') changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps 'hopeful monsters') that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. SCOPE This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. CONCLUSIONS Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves - as still distinguishable in related flowering plants - are blurred ('fuzzy'). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these atypical plants. Future molecular genetic work on morphological misfits such as bladderworts and river-weeds will provide insight into developmental and evolutionary aspects of more typical vascular plants.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GTH. Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front Microbiol 2015; 6:526. [PMID: 26236284 PMCID: PMC4500957 DOI: 10.3389/fmicb.2015.00526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 01/21/2023] Open
Abstract
In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.
Collapse
Affiliation(s)
- Hieu X. Cao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Thomas Schmutzer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Uwe Scholz
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research (MPIPZ)Köln, Germany
| | - Ingo Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
| | - Giang T. H. Vu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
19
|
Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. ANNALS OF BOTANY 2014; 114:1651-63. [PMID: 25274549 PMCID: PMC4649684 DOI: 10.1093/aob/mcu189] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. METHODS Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. KEY RESULTS Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of <100 Mbp were almost exclusively found in a derived lineage of South American species. The ancestral haploid chromosome number was inferred to be n = 8. Chromosome numbers in Genlisea ranged from 2n = 2x = 16 to 2n = 4x = 32. Ascendant dysploid series (2n = 36, 38) are documented for three derived taxa. The different ploidy levels corresponded to the two subgenera, but were not directly correlated to differences in genome size; the three different karyotype ranges mirrored the different sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported, but in G. tuberosa (1C ≈ 61 Mbp) and some strains of G. aurea (1C ≈ 64 Mbp). CONCLUSIONS Genlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative whole-genome analyses, as well as for further studies on both the molecular and cytogenetic basis of genome reduction in plants.
Collapse
Affiliation(s)
- Andreas Fleischmann
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| | - Todd P Michael
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | - Aretuza Sousa
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| | - Wenqin Wang
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, A 1030 Vienna, Austria
| | - Johann Greilhuber
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, A 1030 Vienna, Austria
| | - Kai F Müller
- Institute for Evolution and Biodiversity, University of Muenster, Hüfferstrasse 1, D 48149 Münster, Germany
| | - Günther Heubl
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| |
Collapse
|
20
|
Guo J, Yuan Y, Liu Z, Zhu J. Development and structure of internal glands and external glandular trichomes in Pogostemon cablin. PLoS One 2013; 8:e77862. [PMID: 24205002 PMCID: PMC3813755 DOI: 10.1371/journal.pone.0077862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023] Open
Abstract
Pogostemon cablin possesses two morphologically and ontogenetically different types of glandular trichomes, one type of bristle hair on the surfaces of leaves and stems and one type of internal gland inside the leaves and stems. The internal gland originates from elementary meristem and is associated with the biosynthesis of oils present inside the leaves and stems. However, there is little information on mechanism for the oil biosynthesis and secretion inside the leaves and stems. In this study, we identified three kinds of glandular trichome types and two kinds of internal gland in the Pogostemon cablin. The oil secretions from internal glands of stems and leaves contained lipids, flavones and terpenes. Our results indicated that endoplasmic reticulum and plastids and vacuoles are likely involved in the biosynthesis of oils in the internal glands and the synthesized oils are transported from endoplasmic reticulum to the cell wall via connecting endoplasmic reticulum membranes to the plasma membrane. And the comparative analysis of the development, distribution, histochemistry and ultrastructures of the internal and external glands in Pogostemon cablin leads us to propose that the internal gland may be a novel secretory structure which is different from external glands.
Collapse
Affiliation(s)
- Jiansheng Guo
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | | | - Zhixue Liu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jian Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Król E, Płachno BJ, Adamec L, Stolarz M, Dziubińska H, Trebacz K. Quite a few reasons for calling carnivores 'the most wonderful plants in the world'. ANNALS OF BOTANY 2012; 109:47-64. [PMID: 21937485 PMCID: PMC3241575 DOI: 10.1093/aob/mcr249] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/08/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as 'the most wonderful plants in the world'. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features. SCOPE This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory. CONCLUSIONS Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory.
Collapse
Affiliation(s)
- Elzbieta Król
- Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
22
|
Lutz KA, Wang W, Zdepski A, Michael TP. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol 2011; 11:54. [PMID: 21599914 PMCID: PMC3131251 DOI: 10.1186/1472-6750-11-54] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background High throughput sequencing (HTS) technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR). We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.
Collapse
Affiliation(s)
- Kerry A Lutz
- Rutgers, The State University of New Jersey, Department of Plant Biology and Pathology, The Waksman Institute of Microbiology, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
23
|
Płachno BJ. Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extra-ovular female gametophyte in members of Lentibulariaceae. PROTOPLASMA 2011; 248:391-404. [PMID: 20689973 PMCID: PMC3066386 DOI: 10.1007/s00709-010-0185-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/14/2010] [Indexed: 05/22/2023]
Abstract
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral.
Collapse
Affiliation(s)
- Bartosz Jan Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka st., 31-044, Cracow, Poland.
| |
Collapse
|
24
|
Fleischmann A, Schäferhoff B, Heubl G, Rivadavia F, Barthlott W, Müller KF. Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol Phylogenet Evol 2010; 56:768-83. [DOI: 10.1016/j.ympev.2010.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/01/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|
25
|
Płachno BJ, Swiatek P. Functional anatomy of the ovule in Genlisea with remarks on ovule evolution in Lentibulariaceae. PROTOPLASMA 2009; 236:39-48. [PMID: 19437102 DOI: 10.1007/s00709-009-0045-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/22/2009] [Indexed: 05/11/2023]
Abstract
The Lentibulariaceae are highly evolved and specialized carnivorous angiosperms displaying not only unusual morphology and embryology but also specific changes in the genome and chromosomes as large as bacterial chromosomes. Comparative study of the morphology and detailed anatomy of the ovule in the genera Genlisea, Utricularia, and Pinguicula should shed new light on the phylogeny of this family. The clade Genlisea + Utricularia is sister to the genus Pinguicula, which is considered the most primitive taxon within Lentibulariaceae. Thus we should expect the ovules of Genlisea to be more similar to those of the more closely related genus Utricularia than to Pinguicula. Surprisingly, the ovules of Genlisea retain characters (free funiculus, ES remaining in the ovule) in common with Pinguicula, presumably inherited from a common ancestor. Genlisea ovules have only one main character in common with subgenus Polypompholyx (Utricularia): a well-developed funiculus. There are differences between the ovules of the subgenera Genlisea and Tayloria. In subgenus Genlisea the micropyle tends to be closer to the funiculus and the ovule forms an unusual jacket-like nutritive tissue of integumental origin. The most specialized ovules in Lentibulariaceae evolved in the genus Utricularia. The special chalazal nutritive tissue in Genlisea and Utricularia is simply a hypostase.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, ul. Grodzka 52, Cracow, 31-044, Poland.
| | | |
Collapse
|
26
|
Płachno BJ, Swiatek P. Cytoarchitecture of Utricularia nutritive tissue. PROTOPLASMA 2008; 234:25-32. [PMID: 18802663 DOI: 10.1007/s00709-008-0020-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 08/11/2008] [Indexed: 05/11/2023]
Abstract
Beginning with light microscopy studies in the late 19th century, the placental "nutritive tissue" in carnivorous plants of Utricularia spp. has been well described by several authors. Based on observations of direct contact between the embryo sac and the "nutritive tissue" and the lack of vascularization of the ovule, it has been suggested that this nutritive tissue plays a key role in the nutrition of the female gametophyte. To date, however, the structure of this tissue has received only scant attention. To fill this knowledge gap, we have characterized its anatomy and histochemistry in more detail and addressed the speculations of a number of earlier researchers. Nutritive tissue during the period of flower opening in three Utricularia species, each belonging to different sections and subgenera (Polypompholyx, Bivalvaria and Utricularia), was examined by light and, in particular, electron microscopy. In all of the investigated species, nutritive tissue cells differ from placental parenchyma cells in having no huge vacuole, no large amyloplasts with starch grains, and no protein inclusions in the nucleus. The funicular nutritive tissue in U. dichotoma consists of active cells with a secretory character, while U. sandersonii has a small placental nutritive tissue consisting of colenchymatous cells accumulating lipids. The most complex nutritive tissue occurs in aquatic U. intermedia, which occupies a derived position in the genus phylogeny. In this latter species, the cells of this tissue resemble meristematic cells in having a relatively large nucleus, thin cell walls, and reduced vacuoles, but the well-developed endoplasmic reticulum (ER) in some cells is similar to that in secretory cells. The cytoplasm is rich in microtubules, some of which are in close contact with the ER cisternae. We found very thick cell walls between nutritive tissue cells and parenchyma cells, but plasmodesmata between these types of cells are rare. Similarities in both the position and structure of nutritive tissue in Polypompholyx and section Pleiochasia support their classification together in one subgenus, based on results from a molecular study. The position and structure of the nutritive tissue in Utricularia spp. are related to the position of various species in the genus phylogeny.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka St., 31-044, Cracow, Poland.
| | | |
Collapse
|