1
|
Du XQ, Sun SS, Zhou T, Zhang L, Feng YN, Zhang KL, Hua YP. Genome-Wide Identification of the CAT Genes and Molecular Characterization of Their Transcriptional Responses to Various Nutrient Stresses in Allotetraploid Rapeseed. Int J Mol Sci 2024; 25:12658. [PMID: 39684371 DOI: 10.3390/ijms252312658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
Brassica napus is an important oil crop in China and has a great demand for nitrogen nutrients. Cationic amino acid transporters (CAT) play a key role in amino acid absorption and transport in plants. However, the CATs family has not been reported in B. napus so far. In this study, genome-wide analysis identified 22 CAT members in the B. napus genome. Based on phylogenetic and synteny analysis, BnaCATs were classified into four groups (Group I-Group IV). The members in the same subgroups showed similar physiochemical characteristics and intron/exon and motif patterns. By evaluating cis-elements in the promoter regions, we identified some cis-elements related to hormones, stress and plant development. Darwin's evolutionary analysis indicated that BnaCATs might have experienced strong purifying selection pressure. The BnaCAT family may have undergone gene expansion; the chromosomal location of BnaCATs indicated that whole-genome replication or segmental replication may play a major driving role. Differential expression patterns of BnaCATs under nitrate limitation, phosphate shortage, potassium shortage, cadmium toxicity, ammonium excess and salt stress conditions indicated that they were responsive to different nutrient stresses. In summary, these findings provide a comprehensive survey of the BnaCAT family and lay a foundation for the further functional analysis of family members.
Collapse
Affiliation(s)
- Xiao-Qian Du
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Si-Si Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kun-Long Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
3
|
Huang S, Chen Z, Chen H, Quan C, Xu M, Wei F, Tang D. Widely targeted metabolomics reveals the phytoconstituent changes in Platostoma palustre leaves and stems at different growth stages. FRONTIERS IN PLANT SCIENCE 2024; 15:1378881. [PMID: 38957601 PMCID: PMC11217517 DOI: 10.3389/fpls.2024.1378881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal plant. To gain a comprehensive and clear understanding of the variation patterns of metabolites in P. palustre, we employed the UPLC-MS platform along with widely targeted metabolomics techniques to analyze the metabolites in the stems and leaves of P. palustre at different stages. Our results revealed a total of 1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66 alkaloids, 44 lignans, etc. As the growth time increased, the differential metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids, phenolic acids, and lipids, while the DAMs primarily enriched in stems were terpenoids. Compared to stems, there were more differential flavonoids in leaves, and saccharides and flavonoids were significantly enriched in leaves during the S1 and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf, stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed that arginine biosynthesis was the common differential metabolic pathway in different growth stages and tissues. Overall, this study comprehensively analyzed the metabolic profile information of P. palustre, serving as a solid foundation for its further development and utilization.
Collapse
Affiliation(s)
- Suhua Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhining Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Li D, Wang J, Chen R, Chen J, Zong J, Li L, Hao D, Guo H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112054. [PMID: 38423392 DOI: 10.1016/j.plantsci.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Rongrong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China.
| |
Collapse
|
5
|
Ahouvi Y, Haber Z, Zach YY, Rosental L, Toubiana D, Sharma D, Alseekh S, Tajima H, Fernie AR, Brotman Y, Blumwald E, Sade N. The Alteration of Tomato Chloroplast Vesiculation Positively Affects Whole-Plant Source-Sink Relations and Fruit Metabolism under Stress Conditions. PLANT & CELL PHYSIOLOGY 2023; 63:2008-2026. [PMID: 36161338 DOI: 10.1093/pcp/pcac133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Changes in climate conditions can negatively affect the productivity of crop plants. They can induce chloroplast degradation (senescence), which leads to decreased source capacity, as well as decreased whole-plant carbon/nitrogen assimilation and allocation. The importance, contribution and mechanisms of action regulating source-tissue capacity under stress conditions in tomato (Solanum lycopersicum) are not well understood. We hypothesized that delaying chloroplast degradation by altering the activity of the tomato chloroplast vesiculation (CV) under stress would lead to more efficient use of carbon and nitrogen and to higher yields. Tomato CV is upregulated under stress conditions. Specific induction of CV in leaves at the fruit development stage resulted in stress-induced senescence and negatively affected fruit yield, without any positive effects on fruit quality. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/CAS9) knockout CV plants, generated using a near-isogenic tomato line with enhanced sink capacity, exhibited stress tolerance at both the vegetative and the reproductive stages, leading to enhanced fruit quantity, quality and harvest index. Detailed metabolic and transcriptomic network analysis of sink tissue revealed that the l-glutamine and l-arginine biosynthesis pathways are associated with stress-response conditions and also identified putative novel genes involved in tomato fruit quality under stress. Our results are the first to demonstrate the feasibility of delayed stress-induced senescence as a stress-tolerance trait in a fleshy fruit crop, to highlight the involvement of the CV pathway in the regulation of source strength under stress and to identify genes and metabolic pathways involved in increased tomato sink capacity under stress conditions.
Collapse
Affiliation(s)
- Yoav Ahouvi
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Yair Yehoshua Zach
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - David Toubiana
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| |
Collapse
|
6
|
Sakuraba Y. Molecular basis of nitrogen starvation-induced leaf senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:1013304. [PMID: 36212285 PMCID: PMC9538721 DOI: 10.3389/fpls.2022.1013304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth, development, and productivity. To adapt to N-deficient environments, plants have developed elaborate N starvation responses. Under N-deficient conditions, older leaves exhibit yellowing, owing to the degradation of proteins and chlorophyll pigments in chloroplasts and subsequent N remobilization from older leaves to younger leaves and developing organs to sustain plant growth and productivity. In recent years, numerous studies have been conducted on N starvation-induced leaf senescence as one of the representative plant responses to N deficiency, revealing that leaf senescence induced by N deficiency is highly complex and intricately regulated at different levels, including transcriptional, post-transcriptional, post-translational and metabolic levels, by multiple genes and proteins. This review summarizes the current knowledge of the molecular mechanisms associated with N starvation-induced leaf senescence.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Chen X, Wu Z, Yin Z, Zhang Y, Rui C, Wang J, Malik WA, Lu X, Wang D, Wang J, Guo L, Wang S, Zhao L, Zebinisso Qaraevna B, Chen C, Wang X, Ye W. Comprehensive genomic characterization of cotton cationic amino acid transporter genes reveals that GhCAT10D regulates salt tolerance. BMC PLANT BIOLOGY 2022; 22:441. [PMID: 36109698 PMCID: PMC9476346 DOI: 10.1186/s12870-022-03829-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cationic amino acid transporters (CAT) play indispensable roles in maintaining metabolic functions, such as synthesis of proteins and nitric oxide (NO), biosynthesis of polyamine, and flow of amino acids, by mediating the bidirectional transport of cationic amino acids in plant cells. RESULTS In this study, we performed a genome-wide and comprehensive study of 79 CAT genes in four species of cotton. Localization of genes revealed that CAT genes reside on the plasma membrane. Seventy-nine CAT genes were grouped into 7 subfamilies by phylogenetic analysis. Structure analysis of genes showed that CAT genes from the same subgroup have similar genetic structure and exon number. RNA-seq and real-time PCR indicated that the expression of most GhCAT genes were induced by salt, drought, cold and heat stresses. Cis-elements analysis of GhCAT promoters showed that the GhCAT genes promoters mainly contained plant hormones responsive elements and abiotic stress elements, which indicated that GhCAT genes may play key roles in response to abiotic stress. Moreover, we also conducted gene interaction network of the GhCAT proteins. Silencing GhCAT10D expression decreased the resistance of cotton to salt stress because of a decrease in the accumulation of NO and proline. CONCLUSION Our results indicated that CAT genes might be related with salt tolerance in cotton and lay a foundation for further study on the regulation mechanism of CAT genes in cationic amino acids transporting and distribution responsing to abiotic stress.
Collapse
Affiliation(s)
- Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Zhe Wu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Bobokhonova Zebinisso Qaraevna
- Department of Cotton Growing, Genetics, Breeding and Seed, Tajik Agrarian University Named Shirinsho Shotemur Dushanbe, Dushanbe, Republic of Tajikistan
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
8
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
9
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
10
|
Gratz R, Ahmad I, Svennerstam H, Jämtgård S, Love J, Holmlund M, Ivanov R, Ganeteg U. Organic nitrogen nutrition: LHT1.2 protein from hybrid aspen (Populus tremula L. x tremuloides Michx) is a functional amino acid transporter and a homolog of Arabidopsis LHT1. TREE PHYSIOLOGY 2021; 41:1479-1496. [PMID: 33631788 PMCID: PMC8359683 DOI: 10.1093/treephys/tpab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes may contain 13 or more genes encoding the lysine histidine transporter (LHT) family proteins, and this complicates the study of their significance for tree N-use efficiency. With the strategy of obtaining a tool to study N-use efficiency, our aim was to identify and characterize a relevant AA transporter in hybrid aspen (Populus tremula L. x tremuloides Michx.). We identified PtrLHT1.2, the closest homolog of Arabidopsis thaliana (L.) Heynh AtLHT1, which is expressed in leaves, stems and roots. Complementation of a yeast AA uptake mutant verified the function of PtrLHT1.2 as an AA transporter. Furthermore, PtrLHT1.2 was able to fully complement the phenotypes of the Arabidopsis AA uptake mutant lht1 aap5, including early leaf senescence-like phenotype, reduced growth, decreased plant N levels and reduced root AA uptake. Amino acid uptake studies finally showed that PtrLHT1.2 is a high affinity transporter for neutral and acidic AAs. Thus, we identified a functional AtLHT1 homolog in hybrid aspen, which harbors the potential to enhance overall plant N levels and hence increase biomass production. This finding provides a valuable tool for N nutrition studies in trees and opens new avenues to optimizing tree N-use efficiency.
Collapse
Affiliation(s)
- Regina Gratz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Iftikhar Ahmad
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Henrik Svennerstam
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Jonathan Love
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
11
|
Lihavainen J, Edlund E, Björkén L, Bag P, Robinson KM, Jansson S. Stem girdling affects the onset of autumn senescence in aspen in interaction with metabolic signals. PHYSIOLOGIA PLANTARUM 2021; 172:201-217. [PMID: 33368469 PMCID: PMC8248097 DOI: 10.1111/ppl.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 12/12/2020] [Indexed: 05/06/2023]
Abstract
Autumn senescence in aspen (Populus tremula) is precisely timed every year to relocate nutrients from leaves to storage organs before winter. Here we demonstrate how stem girdling, which leads to the accumulation of photosynthates in the crown, influences senescence. Girdling resulted in an early onset of senescence, but the chlorophyll degradation was slower and nitrogen more efficiently resorbed than during normal autumn senescence. Girdled stems accumulated or retained anthocyanins potentially providing photoprotection in senescing leaves. Girdling of one stem in a clonal stand sharing the same root stock did not affect senescence in the others, showing that the stems were autonomous in this respect. One girdled stem with unusually high chlorophyll and nitrogen contents maintained low carbon-to-nitrogen (C/N) ratio and did not show early senescence or depleted chlorophyll level unlike the other girdled stems suggesting that the responses depended on the genotype or its carbon and nitrogen status. Metabolite analysis highlighted that the tricarboxylic acid (TCA) cycle, salicylic acid pathway, and redox homeostasis are involved in the regulation of girdling-induced senescence. We propose that disrupted sink-source relation and C/N status can provide cues through the TCA cycle and phytohormone signaling to override the phenological control of autumn senescence in the girdled stems.
Collapse
Affiliation(s)
- Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Erik Edlund
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Lars Björkén
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Pushan Bag
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Kathryn M. Robinson
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| |
Collapse
|
12
|
Li G, Lin R, Egekwu C, Blakeslee J, Lin J, Pettengill E, Murphy AS, Peer WA, Islam N, Babst BA, Gao F, Komarov S, Tai YC, Coleman GD. Seasonal nitrogen remobilization and the role of auxin transport in poplar trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4512-4530. [PMID: 32161967 PMCID: PMC7382381 DOI: 10.1093/jxb/eraa130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/06/2020] [Indexed: 05/31/2023]
Abstract
Seasonal nitrogen (N) cycling in Populus, involves bark storage proteins (BSPs) that accumulate in bark phloem parenchyma in the autumn and decline when shoot growth resumes in the spring. Little is known about the contribution of BSPs to growth or the signals regulating N remobilization from BSPs. Knockdown of BSP accumulation via RNAi and N sink manipulations were used to understand how BSP storage influences shoot growth. Reduced accumulation of BSPs delayed bud break and reduced shoot growth following dormancy. Further, 13N tracer studies also showed that BSP accumulation is an important factor in N partitioning from senescing leaves to bark. Thus, BSP accumulation has a role in N remobilization during N partitioning both from senescing leaves to bark and from bark to expanding shoots once growth commences following dormancy. The bark transcriptome during BSP catabolism and N remobilization was enriched in genes associated with auxin transport and signaling, and manipulation of the source of auxin or auxin transport revealed a role for auxin in regulating BSP catabolism and N remobilization. Therefore, N remobilization appears to be regulated by auxin produced in expanding buds and shoots that is transported to bark where it regulates protease gene expression and BSP catabolism.
Collapse
Affiliation(s)
- Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Rongshoung Lin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Chioma Egekwu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Joshua Blakeslee
- OARDC Metabolite Analysis Center, Department of Horticulture and Crop Science, The Ohio State University, Wooster, USA
| | - Jinshan Lin
- OARDC Metabolite Analysis Center, Department of Horticulture and Crop Science, The Ohio State University, Wooster, USA
| | - Emily Pettengill
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Wendy A Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, USA
| | - Nazrul Islam
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Benjamin A Babst
- College of Forestry, Agriculture and Natural Resources, University of Arkansas at Monticello, Monticello, USA
| | - Fei Gao
- College of Forestry, Agriculture and Natural Resources, University of Arkansas at Monticello, Monticello, USA
| | - Sergey Komarov
- Department of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Yuan-Chuan Tai
- Department of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| |
Collapse
|
13
|
Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W, Morales N, Mueller LA, Zeeman SC, Ludewig F, Stitt M, Sonnewald U, Neuhaus HE, Fernie AR. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1202-1219. [PMID: 31950549 DOI: 10.1111/tpj.14693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 05/25/2023]
Abstract
Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin-Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse-grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, 68588, NE, USA
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Armin Schlereth
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andreas Gisel
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Livia Stavolone
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Wolfgang Zierer
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicolas Morales
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Frank Ludewig
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
14
|
Yang F, Schäufele R, Liu HT, Ostler U, Schnyder H, Gong XY. Gross and net nitrogen export from leaves of a vegetative C 4 grass. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153093. [PMID: 31841951 DOI: 10.1016/j.jplph.2019.153093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/31/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) mobilization from mature leaves plays a key role in supplying amino acids to vegetative and reproductive sinks. However, it is unknown if the mobilized N is predominantly sourced by net N-export (a senescence-related process) or other source of N-export from leaves. We used a new approach to partition gross and net N-export from leaf blades at different developmental stages in Cleistogenes squarrosa (a perennial C4 grass). Net N-export was determined as net loss of leaf N with age, while gross N-export was quantified from isotopic mass balances obtained following 24 h-long 15N-labeling with nitrate on 10-12 developmentally distinct (mature and senescing) leaves of individual major tillers. Net N-export was apparent only in older leaves (leaf no. > 7, with leaves numbered basipetally from the tip of the tiller and leaf no. 2 the youngest fully-expanded leaf), while gross N-export was largely independent of leaf age category and was ∼8.4 times greater than the net N-export of a tiller. At whole-tiller level, N import compensated 88 ± 14 (SE) % of gross N-export of all mature blades leading to a net N-export of 0.51 ± 0.07 (SE) μg h-1 tiller-1. N-import was equivalent to 0.09 ± 0.01 (SE) d-1 of total leaf N, similar to reported rates of leaf protein turnover. Gross N-export from all mature blades of a tiller was ∼1.9-times the total demand of the immature tissues of the same (vegetative) tiller. Significant N-export is evident in all mature blades, and is not limited to senescence conditions, implying a much shorter mean residence time of leaf N than that calculated from net N-export. Gross N-export contributes not only to the N demand of the immature tissues of the same tiller but also to N supply of other sinks, such as newly formed tillers. N dynamics at tiller level is integrated with that of the remainder of the shoot, thus highlights the importance of integration of leaf-, tiller-, and plant-scale N dynamics.
Collapse
Affiliation(s)
- Fang Yang
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany
| | - Rudi Schäufele
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany
| | - Hai Tao Liu
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany
| | - Ulrike Ostler
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany
| | - Hans Schnyder
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany
| | - Xiao Ying Gong
- Technische Universität München, Lehrstuhl für Grünlandlehre, Alte Akademie 12, D-85354, Freising, Germany.
| |
Collapse
|
15
|
Launay A, Cabassa-Hourton C, Eubel H, Maldiney R, Guivarc’h A, Crilat E, Planchais S, Lacoste J, Bordenave-Jacquemin M, Clément G, Richard L, Carol P, Braun HP, Lebreton S, Savouré A. Proline oxidation fuels mitochondrial respiration during dark-induced leaf senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6203-6214. [PMID: 31504781 PMCID: PMC6859731 DOI: 10.1093/jxb/erz351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a form of developmentally programmed cell death that allows the remobilization of nutrients and cellular materials from leaves to sink tissues and organs. Among the catabolic reactions that occur upon senescence, little is known about the role of proline catabolism. In this study, the involvement in dark-induced senescence of proline dehydrogenases (ProDHs), which catalyse the first and rate-limiting step of proline oxidation in mitochondria, was investigated using prodh single- and double-mutants with the help of biochemical, proteomic, and metabolomic approaches. The presence of ProDH2 in mitochondria was confirmed by mass spectrometry and immunogold labelling in dark-induced leaves of Arabidopsis. The prodh1 prodh2 mutant exhibited enhanced levels of most tricarboxylic acid cycle intermediates and free amino acids, demonstrating a role of ProDH in mitochondrial metabolism. We also found evidence of the involvement and the importance of ProDH in respiration, with proline as an alternative substrate, and in remobilization of proline during senescence to generate glutamate and energy that can then be exported to sink tissues and organs.
Collapse
Affiliation(s)
- Alban Launay
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Régis Maldiney
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Anne Guivarc’h
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Emilie Crilat
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Séverine Planchais
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Present address: Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, F-75005 Paris, France
| | - Marianne Bordenave-Jacquemin
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, UMR 1318, INRA-AgroParisTech, Centre INRA Versailles, Versailles Cedex, France
| | - Luc Richard
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Pierre Carol
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Proteomics, Leibniz University Hannover, Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| | - Arnould Savouré
- Sorbonne Université, CNRS, IRD 242, INRA, PARIS 7, UPEC, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES, Paris, France
- Correspondence: or
| |
Collapse
|
16
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Castro-Rodríguez V, Cañas RA, de la Torre FN, Pascual MB, Avila C, Cánovas FM. Molecular fundamentals of nitrogen uptake and transport in trees. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2489-2500. [PMID: 28369488 DOI: 10.1093/jxb/erx037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitrogen (N) is frequently a limiting factor for tree growth and development. Because N availability is extremely low in forest soils, trees have evolved mechanisms to acquire and transport this essential nutrient along with biotic interactions to guarantee its strict economy. Here we review recent advances in the molecular basis of tree N nutrition. The molecular characteristics, regulation, and biological significance of membrane proteins involved in the uptake and transport of N are addressed. The regulation of N uptake and transport in mycorrhized roots and transcriptome-wide studies of N nutrition are also outlined. Finally, several areas of future research are suggested.
Collapse
Affiliation(s)
- Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Fernando N de la Torre
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Ma Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
18
|
Besnard J, Pratelli R, Zhao C, Sonawala U, Collakova E, Pilot G, Okumoto S. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6385-6397. [PMID: 27856708 PMCID: PMC5181585 DOI: 10.1093/jxb/erw412] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.
Collapse
Affiliation(s)
- Julien Besnard
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Réjane Pratelli
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Chengsong Zhao
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Unnati Sonawala
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061, VA, USA
| |
Collapse
|
19
|
Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N, Whelan J, Gardeström P, Keech O. Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. PLANT PHYSIOLOGY 2016; 172:2132-2153. [PMID: 27744300 PMCID: PMC5129728 DOI: 10.1104/pp.16.01463] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.
Collapse
Affiliation(s)
- Daria Chrobok
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Pernilla Lindén
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Agnieszka Ziolkowska
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Reena Narsai
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bozena Szal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Thomas Moritz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Nicolas Rouhier
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - James Whelan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.);
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.);
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.);
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| |
Collapse
|
20
|
Persson T, Van Nguyen T, Alloisio N, Pujic P, Berry AM, Normand P, Pawlowski K. The N-metabolites of roots and actinorhizal nodules from Alnus glutinosa and Datisca glomerata: can D. glomerata change N-transport forms when nodulated? Symbiosis 2016. [DOI: 10.1007/s13199-016-0407-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. PLANTS (BASEL, SWITZERLAND) 2015; 4:412-48. [PMID: 27135336 PMCID: PMC4844398 DOI: 10.3390/plants4030412] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.
Collapse
Affiliation(s)
- Dagmara Podzimska-Sroka
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark.
| | - Charlotte O'Shea
- Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark.
| | - Per L Gregersen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark.
| | - Karen Skriver
- Department of Biology, University of Copenhagen, 5 Ole Maaloesvej, Copenhagen DK-2200, Denmark.
| |
Collapse
|
22
|
Jervis J, Hildreth SB, Sheng X, Beers EP, Brunner AM, Helm RF. A metabolomic assessment of NAC154 transcription factor overexpression in field grown poplar stem wood. PHYTOCHEMISTRY 2015; 115:112-20. [PMID: 25771508 DOI: 10.1016/j.phytochem.2015.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/19/2014] [Accepted: 02/08/2015] [Indexed: 05/24/2023]
Abstract
Several xylem-associated regulatory genes have been identified that control processes associated with wood formation in poplar. Prominent among these are the NAC domain transcription factors (NACs). Here, the putative involvement of Populus NAC154, a co-ortholog of the Arabidopsis gene SND2, was evaluated as a regulator of "secondary" biosynthetic processes in stem internode tissues by interrogating aqueous methanolic extracts from control and transgenic trees. Comprehensive untargeted metabolite profiling was accomplished with a liquid chromatography-mass spectrometry platform that utilized two different chromatographic supports (HILIC and reversed phase) and both positive and negative ionization modes. Evaluation of current and previous year tissues provided datasets for assessing the effects of NAC154 overexpression in wood maturation processes. Phenolic glycoside levels as well as those of oligolignols, sucrose and arginine were modulated with phenotypic and chemotypic traits exhibiting similar trends. Specifically, increased levels of arginine in the NAC154 overexpressing tissues supports a role for the transcription factor in senescence/dormancy-associated processes.
Collapse
Affiliation(s)
- Judith Jervis
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sherry B Hildreth
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Pottier M, García de la Torre VS, Victor C, David LC, Chalot M, Thomine S. Genotypic variations in the dynamics of metal concentrations in poplar leaves: a field study with a perspective on phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:73-82. [PMID: 25622297 DOI: 10.1016/j.envpol.2015.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/20/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Poplar is commonly used for phytoremediation of metal polluted soils. However, the high concentrations of trace elements present in leaves may return to soil upon leaf abscission. To investigate the mechanisms controlling leaf metal content, metal concentrations and expression levels of genes involved in metal transport were monitored at different developmental stages on leaves from different poplar genotypes growing on a contaminated field. Large differences in leaf metal concentrations were observed among genotypes. Whereas Mg was remobilized during senescence, Zn and Cd accumulation continued until leaf abscission in all genotypes. A positive correlation between Natural Resistance Associated Macrophage Protein 1 (NRAMP1) expression levels and Zn bio-concentration factors was observed. Principal component analyses of metal concentrations and gene expression levels clearly discriminated poplar genotypes. This study highlights a general absence of trace element remobilization from poplar leaves despite genotype specificities in the control of leaf metal homeostasis.
Collapse
Affiliation(s)
- Mathieu Pottier
- CNRS, Institut des Sciences du Végétal, UPR 2355, Saclay Plant Sciences, Avenue de la Terrasse, Bât 23A, F-91198 Gif Sur Yvette, France.
| | - Vanesa S García de la Torre
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115-bis, 28006 Madrid, Spain
| | - Cindy Victor
- CNRS, Institut des Sciences du Végétal, UPR 2355, Saclay Plant Sciences, Avenue de la Terrasse, Bât 23A, F-91198 Gif Sur Yvette, France
| | - Laure C David
- CNRS, Institut des Sciences du Végétal, UPR 2355, Saclay Plant Sciences, Avenue de la Terrasse, Bât 23A, F-91198 Gif Sur Yvette, France
| | - Michel Chalot
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 4 place Tharradin, BP 71427, 25 211 Montbeliard, France; Université de Lorraine, Faculté des Sciences & Technologies, 54506 Vandoeuvre-les-Nancy cedex, France
| | - Sébastien Thomine
- CNRS, Institut des Sciences du Végétal, UPR 2355, Saclay Plant Sciences, Avenue de la Terrasse, Bât 23A, F-91198 Gif Sur Yvette, France
| |
Collapse
|
24
|
Aciksoz SB, Ozturk L, Yazici A, Cakmak I. Inclusion of urea in a 59FeEDTA solution stimulated leaf penetration and translocation of 59Fe within wheat plants. PHYSIOLOGIA PLANTARUM 2014; 151:348-357. [PMID: 24673110 DOI: 10.1111/ppl.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
The role of urea in the translocation of (59) Fe from (59) FeEDTA-treated leaves was studied in durum wheat (Triticum durum) grown for 2 weeks in nutrient solution and until grain maturation in soil culture. Five-cm long tips of the first leaf of young wheat seedlings or flag leaves at the early milk stage were immersed twice daily for 10 s in (59) FeEDTA solutions containing increasing amounts of urea (0, 0.2, 0.4 and 0.8% w/v) over 5 days. In the experiment with young wheat seedlings, urea inclusion in the (59) FeEDTA solution increased significantly translocation of (59) Fe from the treated leaf into roots and the untreated part of shoots. When (59) Fe-treated leaves were induced into senescence by keeping them in the dark, there was a strong (59) Fe translocation from these leaves. Adding urea to the (59) Fe solution did not result in an additional increase in Fe translocation from the dark-induced senescent leaves. In the experiment conducted in the greenhouse in soil culture until grain maturation, translocation of (59) Fe from the flag leaves into grains was also strongly promoted by urea, whereas (59) Fe translocation from flag leaves into the untreated shoot was low and not affected by urea. In conclusion, urea contributes to transportation of the leaf-absorbed Fe into sink organs. Probably, nitrogen compounds formed after assimilation of foliar-applied urea (such as amino acids) contributed to Fe chelation and translocation to grains in wheat.
Collapse
Affiliation(s)
- Seher Bahar Aciksoz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | | | | | | |
Collapse
|
25
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|
26
|
Thitithanakul S, P Tel G, Chalot M, Beaujard FO. Supplying nitrate before bud break induces pronounced changes in nitrogen nutrition and growth of young poplars. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:795-803. [PMID: 32480830 DOI: 10.1071/fp12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/12/2012] [Indexed: 06/11/2023]
Abstract
Tree nutrient research concentrated on endogenous C and N remobilisation in spring has neglected to acknowledge the possibilities of significant effects of N uptake before bud break, especially on the quality of regrowth and N reserve remobilisation. To investigate this subject, experimental studies were performed on young poplars (Populus tremula×Populus alba, clone INRA 717-1B4) grown with a controlled nutrient supply: (i) without N, 'control'; (ii) N supplied throughout the course of the experiment, 'N-supply'; and (iii) N supplied only before bud break, 'N-pulse'. Results confirm the hypothesis that poplar scions can significantly take up nitrate before bud break, amounting to ~34% of the total N stored the previous year. After bud break, emerging leaves restart the sap flow, which increased nitrate uptake to support the regrowth. N-pulse and N-supply treatments were found to have significant effects shortly after a growth period, i.e. by increasing N content of all tissues (e.g. 37 and 81% in new shoots respectively), leaf area (18 and 29%) and specific leaf area (20 and 35%). Therefore, results confirm the hypothesis that early N supply plays a significant role in the N status and N remobilisation involved in the spring regrowth of young trees.
Collapse
Affiliation(s)
| | - Gilles P Tel
- INRA, UMR547 PIAF, F-63039 Clermont-Ferrand, France
| | - Michel Chalot
- UMR CNRS 6249 Université de Franche-Comté, Place Leclerc, 25030 Besançon, France
| | | |
Collapse
|
27
|
Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:315-21. [PMID: 22366488 DOI: 10.1016/j.pbi.2012.02.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/18/2023]
Abstract
Membrane proteins are essential to move amino acids in or out of plant cells as well as between organelles. While many putative amino acid transporters have been identified, function in nitrogen movement in plants has only been shown for a few proteins. Those studies demonstrate that import systems are fundamental in partitioning of amino acids at cellular and whole plant level. Physiological data further suggest that amino acid transporters are key-regulators in plant metabolism and that their activities affect growth and development. By contrast, knowledge on the molecular mechanisms of cellular export processes as well as on intracellular transport of amino acids is scarce. Similarly, little is known about the regulation of amino acid transporter function and involvement of the transporters in amino acid signaling. Future studies need to identify the missing components to elucidate the importance of amino acid transport processes for whole plant physiology and productivity.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
28
|
Okumoto S, Pilot G. Amino acid export in plants: a missing link in nitrogen cycling. MOLECULAR PLANT 2011; 4:453-63. [PMID: 21324969 PMCID: PMC3143828 DOI: 10.1093/mp/ssr003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/24/2010] [Indexed: 05/17/2023]
Abstract
The export of nutrients from source organs to parts of the body where they are required (e.g. sink organs) is a fundamental biological process. Export of amino acids, one of the most abundant nitrogen species in plant long-distance transport tissues (i.e. xylem and phloem), is an essential process for the proper distribution of nitrogen in the plant. Physiological studies have detected the presence of multiple amino acid export systems in plant cell membranes. Yet, surprisingly little is known about the molecular identity of amino acid exporters, partially due to the technical difficulties hampering the identification of exporter proteins. In this short review, we will summarize our current knowledge about amino acid export systems in plants. Several studies have described plant amino acid transporters capable of bi-directional, facilitative transport, reminiscent of activities identified by earlier physiological studies. Moreover, recent expansion in the number of available amino acid transporter sequences have revealed evolutionary relationships between amino acid exporters from other organisms with a number of uncharacterized plant proteins, some of which might also function as amino acid exporters. In addition, genes that may regulate export of amino acids have been discovered. Studies of these putative transporter and regulator proteins may help in understanding the elusive molecular mechanisms of amino acid export in plants.
Collapse
Affiliation(s)
- Sakiko Okumoto
- 549 Latham Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
29
|
Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. MOLECULAR PLANT 2010; 3:997-1011. [PMID: 21081651 DOI: 10.1093/mp/ssq047] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
30
|
White PJ, Brown PH. Plant nutrition for sustainable development and global health. ANNALS OF BOTANY 2010; 105:1073-80. [PMID: 20430785 PMCID: PMC2887071 DOI: 10.1093/aob/mcq085] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants require at least 14 mineral elements for their nutrition. These include the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and the micronutrients chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni) and molybdenum (Mo). These are generally obtained from the soil. Crop production is often limited by low phytoavailability of essential mineral elements and/or the presence of excessive concentrations of potentially toxic mineral elements, such as sodium (Na), Cl, B, Fe, Mn and aluminium (Al), in the soil solution. SCOPE This article provides the context for a Special Issue of the Annals of Botany on 'Plant Nutrition for Sustainable Development and Global Health'. It provides an introduction to plant mineral nutrition and explains how mineral elements are taken up by roots and distributed within plants. It introduces the concept of the ionome (the elemental composition of a subcellular structure, cell, tissue or organism), and observes that the activities of key transport proteins determine species-specific, tissue and cellular ionomes. It then describes how current research is addressing the problems of mineral toxicities in agricultural soils to provide food security and the optimization of fertilizer applications for economic and environmental sustainability. It concludes with a perspective on how agriculture can produce edible crops that contribute sufficient mineral elements for adequate animal and human nutrition.
Collapse
Affiliation(s)
- P J White
- Scottish Crop Research Institute, Invergowrie, Dundee DD25DA, UK.
| | | |
Collapse
|