1
|
Godwin A, Pieralli S, Sofkova-Bobcheva S, Ward A, McGill C. Pollen-mediated gene flow from wild carrots (Daucus carota L. subsp. carota) affects the production of commercial carrot seeds (Daucus carota L. subsp. sativus) internationally and in New Zealand in the context of climate change: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173269. [PMID: 38754518 DOI: 10.1016/j.scitotenv.2024.173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Climate change will impact the carrot seed industry globally. One adaptation strategy to limit climatic impacts on the production of commercial carrot seeds is geographical shift. However, production must be shifted to climate-optimal places that are free from weeds such as wild carrots to avoid genetic contamination via hybridization. The process of gene flow between wild and cultivated carrots is critical to enable management of wild carrots in the face of climate change. This review systematically assesses the resilience of wild carrots to climate change and their impact on commercial carrot seed production globally with a focus on New Zealand as a major carrot seed producer. The literature was critically analyzed based on three specific components: i) resilience of wild carrots to climate change ii) genetic contamination between wild and cultivated carrots, and iii) management of wild carrots. The majority of the articles were published between 2013 and 2023 (64.71 %), and most of these studies were conducted in Europe (37.26 %) and North America (27.45 %). Country-wise analysis demonstrated that the majority of the studies were carried out in the United States (23.53 %) and the Netherlands (11.77 %). There was limited research conducted in other regions, especially in Oceania (1.96 %). Spatial distribution analysis revealed that the wild carrot was reported in around 100 countries. In New Zealand the North Island has a higher incidence of wild carrot invasion than the South Island. The findings indicated that the wild carrot is becoming more adaptable to climate change, compromising the genetic purity of cultivated carrots due to pollen flow from wild to cultivated carrots. Therefore, ongoing research will be helpful in developing sustainable weed management strategies and predicting potential geographical invasiveness. This study provides a guide for scientists, policymakers, industrialists, and farmers to control wild carrots and produce genetically pure commercial seeds amid climate change.
Collapse
Affiliation(s)
- Asharp Godwin
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; Department of Agronomy, Faculty of Agriculture, University of Jaffna, Ariviyal Nagar, Kilinochchi, Sri Lanka.
| | - Simone Pieralli
- European Commission Joint Research Centre, 41092 Seville, Spain
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Andrew Ward
- AsureQuality Limited, Batchelar Agriculture Centre, Tennent Drive, PO Box 609, Palmerston North 4440, New Zealand
| | - Craig McGill
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Vega A, Brainard SH, Goldman IL. Linkage mapping of root shape traits in two carrot populations. G3 (BETHESDA, MD.) 2024; 14:jkae041. [PMID: 38412554 PMCID: PMC10989876 DOI: 10.1093/g3journal/jkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins-TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown.
Collapse
Affiliation(s)
- Andrey Vega
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott H Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irwin L Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Hernández F, Palmieri L, Brunet J. Introgression and persistence of cultivar alleles in wild carrot (Daucus carota) populations in the United States. AMERICAN JOURNAL OF BOTANY 2023; 110:e16242. [PMID: 37681637 DOI: 10.1002/ajb2.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PREMISE Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations. METHODS We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia. RESULTS Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop-wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas. CONCLUSIONS Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
- CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Luciano Palmieri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Madison, WI, USA
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, WI, USA
| |
Collapse
|
4
|
Roxo G, Moura M, Talhinhas P, Costa JC, Silva L, Vasconcelos R, de Sequeira MM, Romeiras MM. Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. PLANTS 2021; 10:plants10091954. [PMID: 34579486 PMCID: PMC8473144 DOI: 10.3390/plants10091954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The Macaronesian islands constitute an enormous reservoir of genetic variation of wild carrots (subtribe Daucinae; Apiaceae), including 10 endemic species, but an accurate understanding of the diversification processes within these islands is still lacking. We conducted a review of the morphology, ecology, and conservation status of the Daucinae species and, on the basis of a comprehensive dataset, we estimated the genome size variation for 16 taxa (around 320 samples) occurring in different habitats across the Macaronesian islands in comparison to mainland specimens. Results showed that taxa with larger genomes (e.g., Daucus crinitus: 2.544 pg) were generally found in mainland regions, while the insular endemic taxa from Azores and Cabo Verde have smaller genomes. Melanoselinum decipiens and Monizia edulis, both endemic to Madeira Island, showed intermediate values. Positive correlations were found between mean genome size and some morphological traits (e.g., spiny or winged fruits) and also with habit (herbaceous or woody). Despite the great morphological variation found within the Cabo Verde endemic species, the 2C-values obtained were quite homogeneous between these taxa and the subspecies of Daucus carota, supporting the close relationship among these taxa. Overall, this study improved the global knowledge of DNA content for Macaronesian endemics and shed light into the mechanisms underpinning diversity patterns of wild carrots in the western Mediterranean region.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Raquel Vasconcelos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Miguel Menezes de Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, 9020-105 Funchal, Portugal
| | - Maria Manuel Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
5
|
Shibaya T, Kuroda C, Nakayama S, Minami C, Obara A, Fujii T, Isobe S. Development of PCR-based DNA marker for detection of white carrot contamination caused by Y2 locus. BREEDING SCIENCE 2021; 71:201-207. [PMID: 34377068 PMCID: PMC8329877 DOI: 10.1270/jsbbs.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 06/13/2023]
Abstract
In carrot (Daucus carota L.), the taproot colors orange, yellow and white are determined mostly by the Y, Y2, and Or loci. One of the most severe issues in carrot seed production is contamination by wild white carrot. To evaluate the contamination ratio, easily detectable DNA markers for white carrot are desired. To develop PCR-based DNA markers for the Y2 locus, we have re-sequenced two orange-colored carrot cultivars at our company (Fujii Seed, Japan), as well as six white- and one light-orange-colored carrots that contaminated our seed products. Within the candidate region previously reported for the Y2 locus, only one DNA marker, Y2_7, clearly distinguished white carrots from orange ones in the re-sequenced samples. The Y2_7 marker was further examined in 12 of the most popular hybrid orange cultivars in Japan, as well as 'Nantes' and 'Chantenay Red Cored 2'. The Y2_7 marker showed that all of the orange cultivars examined had the orange allele except for 'Beta-441'. False white was detected in the orange-colored 'Beta-441'. The Y2_7 marker detected white root carrot contamination in an old open-pollinated Japanese cultivar, 'Nakamura Senkou Futo'. This marker would be a useful tool in a carrot seed quality control for some cultivars.
Collapse
Affiliation(s)
| | - Chika Kuroda
- Fujii Seed Co. Ltd., Osaka, Osaka 532-0023, Japan
| | | | - Chiharu Minami
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Akiko Obara
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
6
|
Chaitra KC, Sarvamangala C, Manikanta DS, Chaitra PA, Fakrudin B. Insights into genetic diversity and population structure of Indian carrot (Daucus carota L.) accessions. J Appl Genet 2020; 61:303-312. [PMID: 32240517 DOI: 10.1007/s13353-020-00556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/24/2022]
Abstract
Carrot (Daucus carota L.) is acknowledged as a highly valuable vegetable crop. Despite having high demand, limited breeding efforts have been made to develop the varieties and hybrids suitable to wider climatic conditions due to improper characterization of the available germplasm. An accession panel (AP) consisting of 144 accessions of five different root colors representing Asiatic and Western gene pools collected from different parts of India was utilized in the present study. This diverse AP was used to assess the population structure and genetic diversity from 80 polymorphic DNA markers distributed throughout the genome. Population structure, neighbor-joining (NJ) tree, and principal coordinate analysis (PCoA)-based diversity assessment divided the AP into three subpopulations/clusters. Greater than ninety percent polymorphism and the higher average polymorphic information content (͂> 0.50) coupled with higher gene diversity (He) indicating the broad genetic base of the population. Moderate to high Fst and gene flow (Nm) between the subpopulations revealed a moderate genetic differentiation among Indian carrot accessions owing to the highly outcrossing nature of carrot. Analysis of molecular variance (AMOVA) exhibited higher variation among individuals within the subpopulations (69.00%) or total populations (19.00%) than among the subpopulations (13%) as expected in the single Daucus species used here. The information obtained in the study would benefit the carrot breeders to explore the genetic diversity of the Indian carrots in the carrot breeding program for widening the genetic base and multi-color target trait improvement.
Collapse
Affiliation(s)
- Kulkarni C Chaitra
- Plant Molecular Biology Lab (DBT-BIOCARe), Dept. of Biotechnology and Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot, Karnataka, 587103, India
| | - Cholin Sarvamangala
- Plant Molecular Biology Lab (DBT-BIOCARe), Dept. of Biotechnology and Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot, Karnataka, 587103, India.
| | - D S Manikanta
- Plant Molecular Biology Lab (DBT-BIOCARe), Dept. of Biotechnology and Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot, Karnataka, 587103, India
| | - Poleshi A Chaitra
- Plant Molecular Biology Lab (DBT-BIOCARe), Dept. of Biotechnology and Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot, Karnataka, 587103, India
| | - B Fakrudin
- Department of Biotechnology & Crop Improvement, College of Horticulture, Bengaluru, Karnataka, 560065, India
| |
Collapse
|
7
|
|
8
|
|
9
|
Iriondo JM, Milla R, Volis S, Rubio de Casas R. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:78-88. [PMID: 28976618 DOI: 10.1111/plb.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/27/2017] [Indexed: 05/12/2023]
Abstract
Changes in reproductive traits associated with domestication critically determine the evolutionary divergence between crops and their wild relatives, as well as the potential of crop plants to become feral. In this review, we examine the genetic mechanisms of plant domestication and the different types of selection involved, and describe the particularities of domestication of Mediterranean field crops with regard to their reproductive traits, showing illustrative examples. We also explore gene flow patterns between Mediterranean field crops and their wild relatives, along with their ecological, evolutionary and economic implications. Domestication entails multiple selective processes, including direct selection, environmental adaptation and developmental constraints. In contrast to clonal propagation in perennials, sexual reproduction and seed propagation in annuals and biennials have led to a distinct pathway of evolution of reproductive traits. Thus, the initial domestication and further breeding of Mediterranean field crops has brought about changes in reproductive traits, such as higher mean values and variance of seed and fruit sizes, reduced fruit and seed toxicity, non-shattering seeds and loss of seed dormancy. Evolution under domestication is not a linear process, and bi-directional gene flow between wild and crop taxa is a frequent phenomenon. Thus, hybridisation and introgression have played a very important role in determining the genetics of current cultivars. In turn, gene flow from crops to wild relatives can lead to introgression of crop genes into wild populations and potentially alter the characteristics of natural communities. In conclusion, plant evolution under domestication has not only changed the reproductive biology of cultivated taxa, its effects are multifaceted and have implications beyond agriculture.
Collapse
Affiliation(s)
- J M Iriondo
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - R Milla
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - S Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - R Rubio de Casas
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
10
|
Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D. Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in the Carrot ( Daucus carota L.). FRONTIERS IN PLANT SCIENCE 2017; 8:725. [PMID: 28536590 PMCID: PMC5422474 DOI: 10.3389/fpls.2017.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 05/27/2023]
Abstract
The prevalence of non-autonomous class II transposable elements (TEs) in plant genomes may serve as a tool for relatively rapid and low-cost development of gene-associated molecular markers. Miniature inverted-repeat transposable element (MITE) copies inserted within introns can be exploited as potential intron length polymorphism (ILP) markers. ILPs can be detected by PCR with primers anchored in exon sequences flanking the target introns. Here, we designed primers for 209 DcSto (Daucus carota Stowaway-like) MITE insertion sites within introns along the carrot genome and validated them as candidate ILP markers in order to develop a set of markers for genotyping the carrot. As a proof of concept, 90 biallelic DcS-ILP markers were selected and used to assess genetic diversity of 27 accessions comprising wild Daucus carota and cultivated carrot of different root shape. The number of effective alleles was 1.56, mean polymorphism informative content was 0.27, while the average observed and expected heterozygosity was 0.24 and 0.34, respectively. Sixty-seven loci showed positive values of Wright's fixation index. Using Bayesian approach, two clusters comprising four wild and 23 cultivated accessions, respectively, were distinguished. Within the cultivated carrot gene pool, four subclusters representing accessions from Chantenay, Danvers, Imperator, and Paris Market types were revealed. It is the first molecular evidence for root-type associated diversity structure in western cultivated carrot. DcS-ILPs detected substantial genetic diversity among the studied accessions and, showing considerable discrimination power, may be exploited as a tool for germplasm characterization and analysis of genome relationships. The developed set of DcS-ILP markers is an easily accessible molecular marker genotyping system based on TE insertion polymorphism.
Collapse
|
11
|
Mandel JR, Ramsey AJ, Iorizzo M, Simon PW. Patterns of Gene Flow between Crop and Wild Carrot, Daucus carota (Apiaceae) in the United States. PLoS One 2016; 11:e0161971. [PMID: 27603516 PMCID: PMC5014312 DOI: 10.1371/journal.pone.0161971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Studies of gene flow between crops and their wild relatives have implications for both management practices for cultivation and understanding the risk of transgene escape. These types of studies may also yield insight into population dynamics and the evolutionary consequences of gene flow for wild relatives of crop species. Moreover, the comparison of genetic markers with different modes of inheritance, or transmission, such as those of the nuclear and chloroplast genomes, can inform the relative risk of transgene escape via pollen versus seed. Here we investigate patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in two regions of the United States. We employed 15 nuclear simple sequence repeat (SSR) markers and one polymorphic chloroplast marker. Further, we utilized both conventional population genetic metrics along with Shannon diversity indices as the latter have been proposed to be more sensitive to allele frequency changes and differentiation. We found that populations in both regions that were proximal to crop fields showed lower levels of differentiation to the crops than populations that were located farther away. We also found that Shannon measures were more sensitive to differences in both genetic diversity and differentiation in our study. Finally, we found indirect evidence of paternal transmission of chloroplast DNA and accompanying lower than expected levels of chloroplast genetic structure amongst populations as might be expected if chloroplast DNA genes flow through both seed and pollen. Our findings of substantial gene flow for both nuclear and chloroplast markers demonstrate the efficiency of both pollen and seed to transfer genetic information amongst populations of carrot.
Collapse
Affiliation(s)
- Jennifer R. Mandel
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, United States of America
- W. Harry Feinstone Center for Genomic Research, The University of Memphis, Memphis, Tennessee, United States of America
- * E-mail:
| | - Adam J. Ramsey
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, United States of America
| | - Massimo Iorizzo
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, North Carolina, United States of America
| | - Philipp W. Simon
- USDA-Agricultural Research Service, Vegetable Crops Unit, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Reiker J, Schulz B, Wissemann V, Gemeinholzer B. Does origin always matter? Evaluating the influence of nonlocal seed provenances for ecological restoration purposes in a widespread and outcrossing plant species. Ecol Evol 2016; 5:5642-51. [PMID: 27069613 PMCID: PMC4813097 DOI: 10.1002/ece3.1817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
For restoration purposes, nature conservation generally enforces the use of local seed material based on the "local-is-best" (LIB) approach. However, in some cases recommendations to refrain from this approach have been made. Here we test if a common widespread species with no obvious signs of local adaptation may be a candidate species for abandoning LIB during restoration. Using 10 microsatellite markers we compared population genetic patterns of the generalist species Daucus carota in indigenous and formerly restored sites (nonlocal seed provenances). Gene diversity overall ranged between H e = 0.67 and 0.86 and showed no significant differences between the two groups. Hierarchical AMOVA and principal component analysis revealed very high genetic population admixture and negligible differentiation between indigenous and restored sites (F CT = 0.002). Moreover, differentiation between groups was caused by only one outlier population, where inbreeding effects are presumed. We therefore conclude that the introduction of nonlocal seed provenances in the course of landscape restoration did not jeopardize regional species persistence by contributing to inbreeding or outbreeding depressions, or any measurable adverse population genetic effect. On the basis of these results, we see no obvious objections to the current practice to use the 10-fold cheaper, nonlocal seed material of D. carota for restoration projects.
Collapse
Affiliation(s)
- Jutta Reiker
- Institute of Botany Justus Liebig University Giessen Heinrich-Buff-Ring 38 D-35392 Giessen Germany
| | - Benjamin Schulz
- Institute of Landscape Ecology and Resource Management Interdisciplinary Research Centre (IFZ) Justus Liebig University Giessen Heinrich-Buff-Ring 26-32 D-35393 Giessen Germany
| | - Volker Wissemann
- Institute of Botany Justus Liebig University Giessen Heinrich-Buff-Ring 38 D-35392 Giessen Germany
| | - Birgit Gemeinholzer
- Institute of Botany Justus Liebig University Giessen Heinrich-Buff-Ring 38 D-35392 Giessen Germany
| |
Collapse
|
13
|
Barriball K, McNutt EJ, Gorchov DL, Rocha OJ. Inferring invasion patterns of Lonicera maackii (Rupr) Herder (Caprifoliaceae) from the genetic structure of 41 naturalized populations in a recently invaded area. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K. New insights into domestication of carrot from root transcriptome analyses. BMC Genomics 2014; 15:895. [PMID: 25311557 PMCID: PMC4213543 DOI: 10.1186/1471-2164-15-895] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the molecular basis of domestication can provide insights into the processes of rapid evolution and crop improvement. Here we demonstrated the processes of carrot domestication and identified genes under selection based on transcriptome analyses. RESULTS The root transcriptomes of widely differing cultivated and wild carrots were sequenced. A method accounting for sequencing errors was introduced to optimize SNP (single nucleotide polymorphism) discovery. 11,369 SNPs were identified. Of these, 622 (out of 1000 tested SNPs) were validated and used to genotype a large set of cultivated carrot, wild carrot and other wild Daucus carota subspecies, primarily of European origin. Phylogenetic analysis indicated that eastern carrot may originate from Western Asia and western carrot may be selected from eastern carrot. Different wild D. carota subspecies may have contributed to the domestication of cultivated carrot. Genetic diversity was significantly reduced in western cultivars, probably through bottlenecks and selection. However, a high proportion of genetic diversity (more than 85% of the genetic diversity in wild populations) is currently retained in western cultivars. Model simulation indicated high and asymmetric gene flow from wild to cultivated carrots, spontaneously and/or by introgression breeding. Nevertheless, high genetic differentiation exists between cultivated and wild carrots (Fst = 0.295) showing the strong effects of selection. Expression patterns differed radically for some genes between cultivated and wild carrot roots which may be related to changes in root traits. The up-regulation of water-channel-protein gene expression in cultivars might be involved in changing water content and transport in roots. The activated expression of carotenoid-binding-protein genes in cultivars could be related to the high carotenoid accumulation in roots. The silencing of allergen-protein-like genes in cultivated carrot roots suggested strong human selection to reduce allergy. These results suggest that regulatory changes of gene expressions may have played a predominant role in domestication. CONCLUSIONS Western carrots may originate from eastern carrots. The reduction in genetic diversity in western cultivars due to domestication bottleneck/selection may have been offset by introgression from wild carrot. Differential gene expression patterns between cultivated and wild carrot roots may be a signature of strong selection for favorable cultivation traits.
Collapse
Affiliation(s)
- Jun Rong
- Plant Ecology and Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden 2300RA, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Budahn H, Barański R, Grzebelus D, Kiełkowska A, Straka P, Metge K, Linke B, Nothnagel T. Mapping genes governing flower architecture and pollen development in a double mutant population of carrot. FRONTIERS IN PLANT SCIENCE 2014; 5:504. [PMID: 25339960 PMCID: PMC4189388 DOI: 10.3389/fpls.2014.00504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
A linkage map of carrot (Daucus carota L.) was developed in order to study reproductive traits. The F2 mapping population derived from an initial cross between a yellow leaf (yel) chlorophyll mutant and a compressed lamina (cola) mutant with unique flower defects of the sporophytic parts of male and female organs. The genetic map has a total length of 781 cM and included 285 loci. The length of the nine linkage groups (LGs) ranged between 65 and 145 cM. All LGs have been anchored to the reference map. The objective of this study was the generation of a well-saturated linkage map of D. carota. Mapping of the cola-locus associated with flower development and fertility was successfully demonstrated. Two MADS-box genes (DcMADS3, DcMADS5) with prominent roles in flowering and reproduction as well as three additional genes (DcAOX2a, DcAOX2b, DcCHS2) with further importance for male reproduction were assigned to different loci that did not co-segregate with the cola-locus.
Collapse
Affiliation(s)
- Holger Budahn
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Rafał Barański
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Dariusz Grzebelus
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Agnieszka Kiełkowska
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Petra Straka
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Kai Metge
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Bettina Linke
- Department of Biology, Humboldt UniversityBerlin, Germany
| | - Thomas Nothnagel
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| |
Collapse
|
16
|
Tavares AC, Loureiro J, Castro S, Coutinho AP, Paiva J, Cavaleiro C, Salgueiro L, Canhoto JM. Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Ellstrand NC, Meirmans P, Rong J, Bartsch D, Ghosh A, de Jong TJ, Haccou P, Lu BR, Snow AA, Neal Stewart C, Strasburg JL, van Tienderen PH, Vrieling K, Hooftman D. Introgression of Crop Alleles into Wild or Weedy Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135840] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norman C. Ellstrand
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| | - Patrick Meirmans
- Instituut voor Biodiversiteit en Ecosysteem Dynamica, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, 330031 Honggutan Nanchang, People's Republic of China;
| | - Detlef Bartsch
- Federal Office of Consumer Protection and Food Safety, 10117 Berlin, Germany;
| | - Atiyo Ghosh
- Integrative Systems Biology, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan;
| | - Tom J. de Jong
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; ,
| | - Patsy Haccou
- Leiden University College The Hague, Leiden University, 2514 EG The Hague, The Netherlands;
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai 200433, People's Republic of China; ,
| | - Allison A. Snow
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210;
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996;
| | | | - Peter H. van Tienderen
- Instituut voor Biodiversiteit en Ecosysteem Dynamica, Universiteit van Amsterdam, 1090 GE Amsterdam, The Netherlands;
| | - Klaas Vrieling
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; ,
| | - Danny Hooftman
- Center for Ecology and Hydrology, National Environmental Research Council, Wallingford, Oxfordshire OX10 8BB, United Kingdom;
| |
Collapse
|
18
|
Rong J, Xu S, Meirmans PG, Vrieling K. Dissimilarity of contemporary and historical gene flow in a wild carrot (Daucus carota) metapopulation under contrasting levels of human disturbance: implications for risk assessment and management of transgene introgression. ANNALS OF BOTANY 2013; 112:1361-70. [PMID: 24052560 PMCID: PMC3806537 DOI: 10.1093/aob/mct208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/29/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression. METHODS Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively. KEY RESULTS The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation. CONCLUSIONS Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration.
Collapse
Affiliation(s)
- Jun Rong
- Plant Ecology and Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Center for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, 330031 Nanchang, China
- For correspondence. E-mail
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Patrick G. Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Matter P, Kettle CJ, Ghazoul J, Pluess AR. Extensive contemporary pollen-mediated gene flow in two herb species, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient in a meadow landscape. ANNALS OF BOTANY 2013; 111:611-21. [PMID: 23408831 PMCID: PMC3605955 DOI: 10.1093/aob/mct021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments. METHODS Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200-1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland. KEY RESULTS Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected. CONCLUSIONS High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change.
Collapse
Affiliation(s)
- Philippe Matter
- Ecosystem Management, Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich (ETH Zurich), Universitaetstrasse 16, Zürich, Switzerland.
| | | | | | | |
Collapse
|
20
|
Uwimana B, D'Andrea L, Felber F, Hooftman DAP, Den Nijs HCM, Smulders MJM, Visser RGF, Van De Wiel CCM. A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe. Mol Ecol 2012; 21:2640-54. [PMID: 22512715 DOI: 10.1111/j.1365-294x.2012.05489.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion. In a basically selfing species, such as lettuce, assessing hybridization in natural populations may not be straightforward. Therefore, we analysed a uniquely large data set of plants genotyped with SSR (simple sequence repeat) markers with two programs for Bayesian population genetic analysis, STRUCTURE and NewHybrids. The data set comprised 7738 plants, including a complete genebank collection, which provided a wide coverage of cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed generations of a hybridization event or of one backcross after such an event, which is according to expectations for a basically selfing species. These advanced selfed generations could not be detected effectively with crop-specific alleles. In the northern part of Europe, where the expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we conclude that other mechanisms than crop/wild gene flow, such as an increase in disturbed habitats and/or climate warming, are more likely explanations for this expansion.
Collapse
|
21
|
Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense. CONSERV GENET 2012. [DOI: 10.1007/s10592-011-0309-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Grebenstein C, Choi YH, Rong J, de Jong TJ, Tamis WLM. Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L.) and suggests maternal inheritance or wild trait dominance in hybrids. PHYTOCHEMISTRY 2011; 72:1341-7. [PMID: 21601898 DOI: 10.1016/j.phytochem.2011.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 05/25/2023]
Abstract
Differences between the metabolic content of cultivars and their related wild species not only have implications for breeding and food quality, but also for the increasingly studied area of crop to wild introgression. Wild and cultivated western carrots belong to the same outcrossing species and hybridize under natural conditions. The metabolic fingerprinting of Dutch wild carrot and of western orange carrot cultivar shoots using (1)H NMR showed only quantitative differences in chemical content, indicating relatively low divergence after domestication. Main differences reside in the primary metabolite content and in the concentrations of chlorogenic acid and feruloyl quinic acid in the shoots of the different carrot types. Wild×cultivar hybrids cannot be distinguished from wild plants based on the metabolome, suggesting maternal, maternal environment, or dominance effects, and indicating high hybrid fitness in wild conditions. Considering these similarities, introgression is a real possibility in carrots, but understanding its consequences would require further studies using backcrosses in a multiple environments.
Collapse
Affiliation(s)
- C Grebenstein
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|