1
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Yankova-Tsvetkova E, Yurukova-Grancharova P, Aneva I, Zhelev P. On the Reproductive Potential in Primula veris L. (Primulaceae): Embryological Features, Pollen and Seed Viability, Genetic Diversity. PLANTS 2021; 10:plants10112296. [PMID: 34834659 PMCID: PMC8621291 DOI: 10.3390/plants10112296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Primula veris (Primulaceae) is a valuable medicinal plant. The main characteristics for assessing the reproductive potential (embryological features; mode of reproduction; pollen and seed viability) and the genetic diversity of populations of the species from Bulgaria were studied. The anthers are tetrasporangiate. Their wall development follows the Dicotyledonous-type and consists of: epidermis, a fibrous endothecium, an ephemeral middle layer and a secretory (glandular) tapetum. After meiosis in pollen mother cells and simultaneous microsporogenesis tetrahedral tetrads are formed predominantly in the anthers. Many ovules (approximately 20) develop in the unilocular ovary and are anatropous, tenuinucellate and bitegmic. The embryo sac (ES) develops after Polygonum (monosporic)-type from the chalazal cell of linear megaspore tetrad in the ovule. After double fertilization, a Caryophyllad-type embryo and initially nuclear endosperm form. In the studied populations, high pollen viability of more than 95% was established. Extremely low viability (about 4%) of the seeds obtained from natural populations was established. The results reveal P. veris to be a predominantly amphimictic (sexually reproducing) species, although rare vegetative propagation is also observed. As a result of this study, essential data were obtained about the reproductive structures and processes and for assessing the reproductive potential of P. veris.
Collapse
Affiliation(s)
- Elina Yankova-Tsvetkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.Y.-G.); (I.A.)
- Correspondence:
| | - Petka Yurukova-Grancharova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.Y.-G.); (I.A.)
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.Y.-G.); (I.A.)
| | - Petar Zhelev
- Department of Dendrology, University of Forestry, 1797 Sofia, Bulgaria;
| |
Collapse
|
3
|
Ren T, Yang Y, Zhou T, Liu ZL. Comparative Plastid Genomes of Primula Species: Sequence Divergence and Phylogenetic Relationships. Int J Mol Sci 2018; 19:ijms19041050. [PMID: 29614787 PMCID: PMC5979308 DOI: 10.3390/ijms19041050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Compared to traditional DNA markers, genome-scale datasets can provide mass information to effectively address historically difficult phylogenies. Primula is the largest genus in the family Primulaceae, with members distributed mainly throughout temperate and arctic areas of the Northern Hemisphere. The phylogenetic relationships among Primula taxa still maintain unresolved, mainly due to intra- and interspecific morphological variation, which was caused by frequent hybridization and introgression. In this study, we sequenced and assembled four complete plastid genomes (Primula handeliana, Primula woodwardii, Primula knuthiana, and Androsace laxa) by Illumina paired-end sequencing. A total of 10 Primula species (including 7 published plastid genomes) were analyzed to investigate the plastid genome sequence divergence and their inferences for the phylogeny of Primula. The 10 Primula plastid genomes were similar in terms of their gene content and order, GC content, and codon usage, but slightly different in the number of the repeat. Moderate sequence divergence was observed among Primula plastid genomes. Phylogenetic analysis strongly supported that Primula was monophyletic and more closely related to Androsace in the Primulaceae family. The phylogenetic relationships among the 10 Primula species showed that the placement of P. knuthiana–P. veris clade was uncertain in the phylogenetic tree. This study indicated that plastid genome data were highly effective to investigate the phylogeny.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yanci Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Hayta S, Smedley MA, Li J, Harwood WA, Gilmartin PM. Agrobacterium-mediated transformation systems of Primula vulgaris. PLANT METHODS 2018; 14:93. [PMID: 30386411 PMCID: PMC6204026 DOI: 10.1186/s13007-018-0360-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/17/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Genetic transformation is a valuable tool and an important procedure in plant functional genomics contributing to gene discovery, allowing powerful insights into gene function and genetically controlled characteristics. Primulaceae species provide one of the best-known examples of heteromorphic flower development, a breeding system which has attracted considerable attention, including that of Charles Darwin. Molecular approaches, including plant transformation give the best opportunity to define and understand the role of genes involved in floral heteromorphy in the common primrose, Primula vulgaris, along with other Primula species. RESULTS Two transformation systems have been developed in P. vulgaris. The first system, Agrobacterium-mediated vacuum infiltration of seedlings, enables the rapid testing of transgenes, transiently in planta. GUS expression was observed in the cotyledons, true leaves, and roots of Primula seedlings. The second system is based on Agrobacterium tumefaciens infection of pedicel explants with an average transformation efficiency of 4.6%. This transformation system, based on regeneration and selection of transformants within in vitro culture, demonstrates stable transgene integration and transmission to the next generation. CONCLUSION The two transformation systems reported here will aid fundamental research into important traits in Primula. Although, stable integration of transgenes is the ultimate goal for such analyses, transient gene expression via Agrobacterium-mediated DNA transfer, offers a simple and fast method to analyse transgene functions. The second system describes, for the first time, stable Agrobacterium-mediated transformation of Primula vulgaris, which will be key to characterising the genes responsible for the control of floral heteromorphy.
Collapse
Affiliation(s)
- Sadiye Hayta
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Mark A. Smedley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jinhong Li
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH UK
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Philip M. Gilmartin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH UK
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
5
|
Barmentlo SH, Meirmans PG, Luijten SH, Triest L, Oostermeijer JGB. Outbreeding depression and breeding system evolution in small, remnant populations of Primula vulgaris: consequences for genetic rescue. CONSERV GENET 2017; 19:545-554. [PMID: 31007635 PMCID: PMC6448329 DOI: 10.1007/s10592-017-1031-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/17/2017] [Indexed: 12/04/2022]
Abstract
Many species suffer from anthropogenic habitat fragmentation. The resulting small and isolated populations are more prone to extinction due to, amongst others, genetic erosion, inbreeding depression and Allee-effects. Genetic rescue can help mitigate such problems, but might result in outbreeding depression. We evaluated offspring fitness after selfing and outcrossing within and among three very small and isolated remnant populations of the heterostylous plant Primula vulgaris. We used greenhouse-grown offspring from these populations to test several fitness components. One population was fixed for the pin-morph, and was outcrossed with another population in the field to obtain seeds. Genetic diversity of parent and offspring populations was studied using microsatellites. Morph and population-specific heterosis, inbreeding and outbreeding depression were observed for fruit and seed set, seed weight and cumulative fitness. Highest fitness was observed in the field-outcrossed F1-population, which also showed outbreeding depression following subsequent between-population (back)crossing. Despite outbreeding depression, fitness was still relatively high. Inbreeding coefficients indicated that the offspring were more inbred than their parent populations. Offspring heterozygosity and inbreeding coefficients correlated with observed fitness. One population is evolving homostyly, showing a thrum morph with an elongated style and high autonomous fruit and seed set. This has important implications for conservation strategies such as genetic rescue, as the mating system will be altered by the introduction of homostyles.
Collapse
Affiliation(s)
- S. Henrik Barmentlo
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, The Netherlands
- Present Address: Institute of Environmental Sciences, Leiden University, Van Steenis Building, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Patrick G. Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, The Netherlands
| | - Sheila H. Luijten
- Science4Nature,, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ludwig Triest
- Laboratory for Plant Science and Nature Management, Free University Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - J. Gerard B. Oostermeijer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, The Netherlands
- Science4Nature,, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Li ZZ, Sun SS, Wang QF, Chen JM. RNA-Seq Analysis of the Distylous Plant Nymphoides peltata Identified Ortholog Genes between Long- and Short-Styled Flowers. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Burrows BA, McCubbin AG. Sequencing the genomic regions flanking S-linked PvGLO sequences confirms the presence of two GLO loci, one of which lies adjacent to the style-length determinant gene CYP734A50. PLANT REPRODUCTION 2017; 30:53-67. [PMID: 28229234 DOI: 10.1007/s00497-017-0299-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Primula vulgaris contains two GLOBOSA loci, one located adjacent to the style length determinant gene CYP734A50 which lies within the S -locus. Using a combination of BAC walking and PacBio sequencing, we have sequenced two substantial genomic contigs in and around the S-locus of Primula vulgaris. Using these data, we were able to demonstrate that two alleles of PvGlo P as well as PvGlo T can be present in the genome of a single plant, providing empirical evidence that these two forms of the MADS-box gene GLOBOSA are separate loci and not allelic as previously reported. We propose they should be renamed PvGLO1 and PvGLO2. BAC contigs extending from each GLOBOSA locus were identified and fully sequenced. No homologous genes were found between the contigs other than the GLOBOSA genes themselves, consistent with their identity as separate loci. Exons of the recently identified style-length determinant gene CYP734A50 were identified on one end of the contig containing PvGLO2 and these genes are adjacent in the genome, suggesting that PvGLO2 lies either within or at least very close to the S-locus. Current evidence suggests that both CYP734A50 and GLO2 are specific to the S-morph mating type and are hemizygous rather than heterozygous in the Primula genome. This finding contrasts classical models of the HSI locus, which propose that components of the S-locus are allelic, suggesting that these models may need to be reconsidered.
Collapse
Affiliation(s)
- Benjamin A Burrows
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Andrew G McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
8
|
Zhou W, Li H, Wu Z, Barrett SC, Li D, Wang H. Characterization of 24 microsatellite markers in Primula chungensis (Primulaceae), a distylous-homostylous species, using MiSeq sequencing. PLANT DIVERSITY 2016; 38:89-91. [PMID: 30159452 PMCID: PMC6112135 DOI: 10.1016/j.pld.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 05/30/2023]
Abstract
Primula chungensis is a species with considerable floral and mating-system variation, including distylous (outcrossing), homostylous (selfing) and mixed populations that contain both outcrossing and selfing forms. We isolated 24 microsatellite markers from P. chungensis using Illumina MiSeq sequencing. Polymorphism and genetic diversity were then measured based on a sample of 24 individuals from a natural population in southern Tibet. All loci were polymorphic with the number of alleles per locus ranging from 2 to 4. The observed and expected heterozygosity ranged from 0 to 1 and 0.219 to 0.708, respectively. The microsatellite markers we have identified will serve as valuable tools for the investigation of the population genetic structure and phylogeography of P. chungensis and will inform models of the evolutionary history of mating systems in the species.
Collapse
Affiliation(s)
- Wei Zhou
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Haidong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Zhikun Wu
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto Ontario, Toronto M5S 3B2, Canada
| | - Dezhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
9
|
Li J, Webster MA, Wright J, Cocker JM, Smith MC, Badakshi F, Heslop‐Harrison P, Gilmartin PM. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. THE NEW PHYTOLOGIST 2015; 208:137-48. [PMID: 25865367 PMCID: PMC6680154 DOI: 10.1111/nph.13373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Heteromorphic flower development in Primula is controlled by the S locus. The S locus genes, which control anther position, pistil length and pollen size in pin and thrum flowers, have not yet been characterized. We have integrated S-linked genes, marker sequences and mutant phenotypes to create a map of the P. vulgaris S locus region that will facilitate the identification of key S locus genes. We have generated, sequenced and annotated BAC sequences spanning the S locus, and identified its chromosomal location. We have employed a combination of classical genetics and three-point crosses with molecular genetic analysis of recombinants to generate the map. We have characterized this region by Illumina sequencing and bioinformatic analysis, together with chromosome in situ hybridization. We present an integrated genetic and physical map across the P. vulgaris S locus flanked by phenotypic and DNA sequence markers. BAC contigs encompass a 1.5-Mb genomic region with 1 Mb of sequence containing 82 S-linked genes anchored to overlapping BACs. The S locus is located close to the centromere of the largest metacentric chromosome pair. These data will facilitate the identification of the genes that orchestrate heterostyly in Primula and enable evolutionary analyses of the S locus.
Collapse
Affiliation(s)
- Jinhong Li
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Margaret A. Webster
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jonathan Wright
- The Genome Analysis CentreNorwich, Research ParkNorwichNR4 7UHUK
| | - Jonathan M. Cocker
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Matthew C. Smith
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- School of Biological SciencesDurham UniversityDurhamDH1 3LEUK
| | - Farah Badakshi
- Department of BiologyUniversity of LeicesterLeicesterLE1 7RHUK
| | | | - Philip M. Gilmartin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
10
|
Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E. The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biol 2015; 16:12. [PMID: 25651398 PMCID: PMC4305239 DOI: 10.1186/s13059-014-0567-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Background The flowering plant Primula veris is a common spring blooming perennial that is widely cultivated throughout Europe. This species is an established model system in the study of the genetics, evolution, and ecology of heterostylous floral polymorphisms. Despite the long history of research focused on this and related species, the continued development of this system has been restricted due the absence of genomic and transcriptomic resources. Results We present here a de novo draft genome assembly of P. veris covering 301.8 Mb, or approximately 63% of the estimated 479.22 Mb genome, with an N50 contig size of 9.5 Kb, an N50 scaffold size of 164 Kb, and containing an estimated 19,507 genes. The results of a RADseq bulk segregant analysis allow for the confident identification of four genome scaffolds that are linked to the P. veris S-locus. RNAseq data from both P. veris and the closely related species P. vulgaris allow for the characterization of 113 candidate heterostyly genes that show significant floral morph-specific differential expression. One candidate gene of particular interest is a duplicated GLOBOSA homolog that may be unique to Primula (PveGLO2), and is completely silenced in L-morph flowers. Conclusions The P. veris genome represents the first genome assembled from a heterostylous species, and thus provides an immensely important resource for future studies focused on the evolution and genetic dissection of heterostyly. As the first genome assembled from the Primulaceae, the P. veris genome will also facilitate the expanded application of phylogenomic methods in this diverse family and the eudicots as a whole. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0567-z) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Miller CT, Glazer AM, Summers BR, Blackman BK, Norman AR, Shapiro MD, Cole BL, Peichel CL, Schluter D, Kingsley DM. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci. Genetics 2014; 197:405-20. [PMID: 24652999 PMCID: PMC4012497 DOI: 10.1534/genetics.114.162420] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/22/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible "supergene" regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton.
Collapse
Affiliation(s)
- Craig T. Miller
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Andrew M. Glazer
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720
| | - Brian R. Summers
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Benjamin K. Blackman
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Andrew R. Norman
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Michael D. Shapiro
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Bonnie L. Cole
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Catherine L. Peichel
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
12
|
Glick L, Mayrose I. ChromEvol: Assessing the Pattern of Chromosome Number Evolution and the Inference of Polyploidy along a Phylogeny. Mol Biol Evol 2014; 31:1914-22. [DOI: 10.1093/molbev/msu122] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Supergenes and their role in evolution. Heredity (Edinb) 2014; 113:1-8. [PMID: 24642887 DOI: 10.1038/hdy.2014.20] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 02/03/2023] Open
Abstract
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.
Collapse
|
14
|
Takos AM, Rook F. Why biosynthetic genes for chemical defense compounds cluster. TRENDS IN PLANT SCIENCE 2012; 17:383-8. [PMID: 22609284 DOI: 10.1016/j.tplants.2012.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 05/20/2023]
Abstract
In plants, the genomic clustering of non-homologous genes for the biosynthesis of chemical defense compounds is an emerging theme. Gene clustering is also observed for polymorphic sexual traits under balancing selection, and examples in plants are self-incompatibility and floral dimorphy. The chemical defense pathways organized as gene clusters are self-contained biosynthetic modules under opposing selection pressures and adaptive polymorphisms, often the presence or absence of a functional pathway, are observed in nature. We propose that these antagonistic selection pressures favor closer physical linkage between beneficially interacting alleles as the resulting reduction in recombination maintains a larger fraction of the fitter genotypes. Gene clusters promote the stable inheritance of functional chemical defense pathways in the dynamic ecological context of natural populations.
Collapse
Affiliation(s)
- Adam M Takos
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | |
Collapse
|
15
|
Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS One 2012; 7:e31264. [PMID: 22312442 PMCID: PMC3270035 DOI: 10.1371/journal.pone.0031264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 12/11/2022] Open
Abstract
The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology and intra-morph incompatibility are both determined by a single genetic locus named the S-locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at the S-locus. Despite recent progress in our understanding of the molecular basis of flower development and plant SI systems, the molecular mechanisms underlying heteromorphic SI remain unresolved. By examining differentially expressed genes from the styles of the two floral morphs, we identified a gene that is expressed only in short-styled plants. The novel gene identified was completely linked to the S-locus in a linkage analysis of 1,373 plants and had homology to EARLY FLOWERING 3. We named this gene S-LOCUS EARLY FLOWERING 3 (S-ELF3). In an ion-beam-induced mutant that harbored a deletion in the genomic region spanning S-ELF3, a phenotype shift from short-styled flowers to long-styled flowers was observed. Furthermore, S-ELF3 was present in the genome of short-styled plants and absent from that of long-styled plants both in world-wide landraces of buckwheat and in two distantly related Fagopyrum species that exhibit heteromorphic SI. Moreover, independent disruptions of S-ELF3 were detected in a recently emerged self-compatible Fagopyrum species and a self-compatible line of buckwheat. The nonessential role of S-ELF3 in the survival of individuals and the prolonged evolutionary presence only in the genomes of short-styled plants exhibiting heteromorphic SI suggests that S-ELF3 is a suitable candidate gene for the control of the short-styled phenotype of buckwheat plants.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyou-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|