1
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
2
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
3
|
Milet-Pinheiro P, Santos PSC, Prieto-Benítez S, Ayasse M, Dötterl S. Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:1356. [PMID: 34371561 PMCID: PMC8309401 DOI: 10.3390/plants10071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance and scent chemistry. Multivariate phylogenetic statistics revealed no influence of phylogeny on floral color and scent bouquet. However, univariate phylogenetic statistics revealed a phylogenetic signal in some of the constituents of the scent bouquet. Our results suggest unequal evolutionary pathways of visual and olfactory floral cues in the genus Campanula. While the lack of phylogenetic signal on both color and scent bouquet points to external agents (e.g., pollinators, herbivores) as evolutionary drivers, the presence of phylogenetic signal in at least some floral scent constituents point to an influence of phylogeny on trait evolution. We discuss why external agents and phylogeny differently shape the evolutionary paths in floral color and scent of closely related angiosperms.
Collapse
Affiliation(s)
- Paulo Milet-Pinheiro
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; (P.S.C.S.); (M.A.)
| | - Pablo Sandro Carvalho Santos
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; (P.S.C.S.); (M.A.)
| | - Samuel Prieto-Benítez
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, s/n, Móstoles, 28933 Madrid, Spain;
- Ecotoxicology of Air Pollution Group, Environmental Department, CIEMAT, Avda. Complutense, 40, 28040 Madrid, Spain
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; (P.S.C.S.); (M.A.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria;
| |
Collapse
|
4
|
Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant-Herbivore Interaction. INSECTS 2020; 11:insects11120865. [PMID: 33291794 PMCID: PMC7762045 DOI: 10.3390/insects11120865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
Data on plant herbivore damage as well as on herbivore performance have been previously used to identify key plant traits driving plant-herbivore interactions. The extent to which the two approaches lead to similar conclusions remains to be explored. We determined the effect of a free-living leaf-chewing generalist caterpillar, Spodoptera littoralis (Lepidoptera: Noctuidae), on leaf damage of 24 closely related plant species from the Carduoideae subfamily and the effect of these plant species on caterpillar growth. We used a wide range of physical defense leaf traits and leaf nutrient contents as the plant traits. Herbivore performance and leaf damage were affected by similar plant traits. Traits related to higher caterpillar mortality (higher leaf dissection, number, length and toughness of spines and lower trichome density) also led to higher leaf damage. This fits with the fact that each caterpillar was feeding on a single plant and, thus, had to consume more biomass of the less suitable plants to obtain the same amount of nutrients. The key plant traits driving plant-herbivore interactions identified based on data on herbivore performance largely corresponded to the traits identified as important based on data on leaf damage. This suggests that both types of data may be used to identify the key plant traits determining plant-herbivore interactions. It is, however, important to carefully distinguish whether the data on leaf damage were obtained in the field or in a controlled feeding experiment, as the patterns expected in the two environments may go in opposite directions.
Collapse
|
5
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
6
|
Joffard N, Arnal V, Buatois B, Schatz B, Montgelard C. Floral scent evolution in the section Pseudophrys: pollinator-mediated selection or phylogenetic constraints? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:881-889. [PMID: 32130747 DOI: 10.1111/plb.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator-mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys. We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography-mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant-pollinator interactions and floral scent composition using phylogenetic comparative methods. We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects. Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator-mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non-active compounds.
Collapse
Affiliation(s)
- N Joffard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - V Arnal
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - B Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| | - C Montgelard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier, France
| |
Collapse
|
7
|
Bartoš M, Janeček Š, Janečková P, Chmelová E, Tropek R, Götzenberger L, Klomberg Y, Jersáková J. Are Reproductive Traits Related to Pollen Limitation in Plants? A Case Study from a Central European Meadow. PLANTS 2020; 9:plants9050640. [PMID: 32438589 PMCID: PMC7285000 DOI: 10.3390/plants9050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
The deficiency of pollen grains for ovule fertilization can be the main factor limiting plant reproduction and fitness. Because of the ongoing global changes, such as biodiversity loss and landscape fragmentation, a better knowledge of the prevalence and predictability of pollen limitation is challenging within current ecological research. In our study we used pollen supplementation to evaluate pollen limitation (at the level of seed number and weight) in 22 plant species growing in a wet semi-natural meadow. We investigated the correlation between the pollen limitation index (PL) and floral traits associated with plant reproduction or pollinator foraging behavior. We recorded significant pollen limitation for approximately 41% of species (9 out of 22 surveyed). Seven species had a significant positive response in seed production and two species increased in seed weight after pollen supplementation. Considering traits, PL significantly decreased with the number of pollinator functional groups. The relationship of PL with other examined traits was not supported by our results. The causes of pollen limitation may vary among species with regard to (1) different reproductive strategies and life history, and/or (2) temporary changes in influence of biotic and abiotic factors at a site.
Collapse
Affiliation(s)
- Michael Bartoš
- Institute of Botany, The Czech Academy of Sciences, 37981 Třeboň, Czech Republic;
- Correspondence: ; Tel.:+420-380-720-330
| | - Štěpán Janeček
- Department of Ecology, Faculty of Science, Charles University, 12843 Praha, Czech Republic; (Š.J.); (P.J.); (E.C.); (R.T.); (Y.K.)
| | - Petra Janečková
- Department of Ecology, Faculty of Science, Charles University, 12843 Praha, Czech Republic; (Š.J.); (P.J.); (E.C.); (R.T.); (Y.K.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
| | - Eliška Chmelová
- Department of Ecology, Faculty of Science, Charles University, 12843 Praha, Czech Republic; (Š.J.); (P.J.); (E.C.); (R.T.); (Y.K.)
- Biology Centre, Institute of Entomology, The Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Robert Tropek
- Department of Ecology, Faculty of Science, Charles University, 12843 Praha, Czech Republic; (Š.J.); (P.J.); (E.C.); (R.T.); (Y.K.)
- Biology Centre, Institute of Entomology, The Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Lars Götzenberger
- Institute of Botany, The Czech Academy of Sciences, 37981 Třeboň, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
| | - Yannick Klomberg
- Department of Ecology, Faculty of Science, Charles University, 12843 Praha, Czech Republic; (Š.J.); (P.J.); (E.C.); (R.T.); (Y.K.)
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic;
| |
Collapse
|
8
|
Floral colour change in Byrsonima variabilis (Malpighiaceae) as a visual cue for pollen but not oil foraging by oil-collecting bees. Naturwissenschaften 2018; 105:46. [PMID: 29978336 DOI: 10.1007/s00114-018-1572-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Pollinators search for multiple flora resources throughout their life cycle. Most studies, however, only assess how bees discriminate floral cues in the context of nectar foraging. In the present study, we sought to elucidate whether oil-collecting bees discriminate flowers of Byrsonima variabilis (Malpighiaceae) with petals of different colours when foraging for pollen or oil. As the colour of the standard petal changes during anthesis, we characterised the spectral reflectance patterns of flowers throughout anthesis and modelled chromatic perceptual space to determine how these colour patterns are perceived by bees. Through the quantification of flower pollen in the different phases, we found that the colour of the standard petal is an honest cue of the presence of pollen. Centridine bees preferentially visited flowers with a yellow (bee's green) colour when searching for pollen, but indiscriminately visited flowers with different petal colours when searching for floral oil. We suggest that standard petals, in the species studied and others of the genus, like nectar guides, act as pollen guides, which oil-collecting females use to detect pollen-rich flowers. Moreover, they use different floral clues during foraging for different resources in the same host plant.
Collapse
|
9
|
Segatto ALA, Reck-Kortmann M, Turchetto C, Freitas LB. Multiple markers, niche modelling, and bioregions analyses to evaluate the genetic diversity of a plant species complex. BMC Evol Biol 2017; 17:234. [PMID: 29187208 PMCID: PMC5707870 DOI: 10.1186/s12862-017-1084-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023] Open
Abstract
Background The classification of closely related plants is not straightforward. These morphologically similar taxa frequently maintain their inter-hybridization potential and share ancestral polymorphisms as a consequence of their recent divergence. Under the biological species concept, they may thus not be considered separate species. The Petunia integrifolia complex is especially interesting because, in addition to the features mentioned above, its taxa share a pollinator, and their geographical ranges show multiple overlaps. Here, we combined plastid genome sequences, nuclear microsatellites, AFLP markers, ecological niche modelling, and bioregions analysis to investigate the genetic variability between the different taxa of the P. integrifolia complex in a comprehensive sample covering the entire geographical range of the complex. Results Results from molecular markers did not fully align with the current taxonomic classification. Niche modelling and bioregions analyses revealed that taxa were associated with different ecological constraints, indicating that the habitat plays an important role in preserving species boundaries. For three taxa, our analyses showed a mostly conserved, non-overlapping geographical distribution over time. However, for two taxa, niche modelling found an overlapping distribution over time; these taxa were also associated with the same bioregions. Conclusions cpDNA markers were better able to discriminate between Petunia taxa than SSRs and AFLPs. Overall, our results suggest that the P. integrifolia complex represents a continuum of individuals from distant and historically isolated populations, which share some morphological traits, but are established in four different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12862-017-1084-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Maikel Reck-Kortmann
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
10
|
High congruence of intraspecific variability in floral scent and genetic patterns in Gentianella bohemica Skalický (Gentianaceae). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Prieto-Benítez S, Millanes AM, Dötterl S, Giménez-Benavides L. Comparative analyses of flower scent in Sileneae
reveal a contrasting phylogenetic signal between night and day emissions. Ecol Evol 2016. [DOI: 10.1002/ece3.2377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samuel Prieto-Benítez
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Ana M. Millanes
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| | - Stefan Dötterl
- Department of Ecology and Evolution; University of Salzburg; Hellbrunnerstr. 34 5020 Salzburg Austria
| | - Luis Giménez-Benavides
- Departamento de Biología y Geología; Física y Química Inorgánica; Universidad Rey Juan Carlos-ESCET; C/Tulipán, s/n. 28933 Móstoles Madrid Spain
| |
Collapse
|
12
|
Junker RR. Multifunctional and Diverse Floral Scents Mediate Biotic Interactions Embedded in Communities. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Maeda T, Tamotsu M, Yamaoka R, Ozaki M. Effects of Floral Scents and Their Dietary Experiences on the Feeding Preference in the Blowfly, Phormia regina. Front Integr Neurosci 2015; 9:59. [PMID: 26648851 PMCID: PMC4664696 DOI: 10.3389/fnint.2015.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022] Open
Abstract
The flowers of different plant species have diverse scents with varied chemical compositions. Hence, every floral scent does not uniformly affect insect feeding preferences. The blowfly, Phormia regina, is a nectar feeder, and when a fly feeds on flower nectar, its olfactory organs, antennae, and maxillary palps are exposed to the scent. Generally, feeding preference is influenced by food flavor, which relies on both taste and odor. Therefore, the flies perceive the sweet taste of nectar and the particular scent of the flower simultaneously, and this olfactory information affects their feeding preference. Here, we show that the floral scents of 50 plant species have various effects on their sucrose feeding motivation, which was evaluated using the proboscis extension reflex (PER). Those floral scents were first categorized into three groups, based on their effects on the PER threshold sucrose concentration, which indicates whether a fly innately dislikes, ignores, or likes the target scent. Moreover, memory of olfactory experience with those floral scents during sugar feeding influenced the PER threshold. After feeding on sucrose solutions flavored with floral scents for 5 days, the scents did not consistently show the previously observed effects. Considering such empirical effects of scents on the PER threshold, we categorized the effects of the 50 tested floral scents on feeding preference into 16 of all possible 27 theoretical types. We then conducted the same experiments with flies whose antennae or maxillary palps were ablated prior to PER test in a fly group naïve to floral scents and prior to the olfactory experience during sugar feeding in the other fly group in order to test how these organs were involved in the effect of the floral scent. The results suggested that olfactory inputs through these organs play different roles in forming or modifying feeding preferences. Thus, our study contributes to an understanding of underlying mechanisms associated with the convergent processing of olfactory inputs with taste information, which affects feeding preference or appetite.
Collapse
Affiliation(s)
- Toru Maeda
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| | - Miwako Tamotsu
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| | - Ryohei Yamaoka
- Department of Applied Biology, School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
14
|
Rhizopoulou S, Spanakis E, Argiropoulos A. Study of petal topography ofLysimachia arvensisgrown under natural conditions. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/12538078.2015.1091985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Schäffler I, Steiner KE, Haid M, van Berkel SS, Gerlach G, Johnson SD, Wessjohann L, Dötterl S. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep 2015; 5:12779. [PMID: 26245141 PMCID: PMC4526864 DOI: 10.1038/srep12779] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can't be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system.
Collapse
Affiliation(s)
- Irmgard Schäffler
- 1] Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria [2] Department of Plant Systematics, University of Bayreuth, 95440 Bayreuth
| | - Kim E Steiner
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Mark Haid
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Sander S van Berkel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Günter Gerlach
- Botanical Garden München-Nymphenburg, Menzinger Str. 65, 80638 München, Germany
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Ludger Wessjohann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Stefan Dötterl
- 1] Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria [2] Department of Plant Systematics, University of Bayreuth, 95440 Bayreuth
| |
Collapse
|
16
|
Milet-Pinheiro P, Ayasse M, Dötterl S. Visual and Olfactory Floral Cues of Campanula (Campanulaceae) and Their Significance for Host Recognition by an Oligolectic Bee Pollinator. PLoS One 2015; 10:e0128577. [PMID: 26060994 PMCID: PMC4465695 DOI: 10.1371/journal.pone.0128577] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed.
Collapse
Affiliation(s)
| | - Manfred Ayasse
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
| | - Stefan Dötterl
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Zito P, Dötterl S, Sajeva M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators. J Chem Ecol 2015; 41:340-9. [PMID: 25833217 DOI: 10.1007/s10886-015-0568-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/06/2014] [Accepted: 03/11/2015] [Indexed: 11/25/2022]
Abstract
Floral scent in sapromyiophilous plants often consists of complex blends with not only fetid (e.g., sulfides) but also sweet (e.g., terpenoids) volatile organic compounds, and a recent study suggests that both groups of compounds are involved in pollinator attraction. However, little is known about the number and identity of compounds involved in pollinator attraction in these deceptive plants that mimic breeding sites of fly pollinators. In the present paper, we studied flower volatiles of sapromyiophilous Periploca laevigata and their capability to elicit biological responses in one of the pollinator species, Musca domestica. Floral volatiles were collected by dynamic headspace and analyzed by gas chromatography/mass spectrometry (GC/MS), and electrophysiological (GC/EAD) and behavioral assays (two choice olfactometer) were conducted. In the floral scent of P. laevigata, we detected 44 compounds, of which indole, β-caryophyllene, and germacrene D, as well as dimethyl trisulfide, which was present in trace amounts, were electrophysiologically active in the antennae of M. domestica. However, when we evaluated in behavioral experiments the attractiveness of the electrophysiologically active compounds (complete mixture against partial mixtures or against single compounds), we found that indole was the only attractive compound for the flies.
Collapse
Affiliation(s)
- Pietro Zito
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy,
| | | | | |
Collapse
|
18
|
Sun M, Gross K, Schiestl FP. Floral adaptation to local pollinator guilds in a terrestrial orchid. ANNALS OF BOTANY 2014; 113:289-300. [PMID: 24107683 PMCID: PMC3890390 DOI: 10.1093/aob/mct219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/29/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient. METHODS Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations. KEY RESULTS The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers. CONCLUSIONS Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.
Collapse
|
19
|
Byers KJRP, Bradshaw HD, Riffell JA. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). ACTA ACUST UNITED AC 2013; 217:614-23. [PMID: 24198269 DOI: 10.1242/jeb.092213] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flowering plants employ a wide variety of signals, including scent, to attract the attention of pollinators. In this study we investigated the role of floral scent in mediating differential attraction between two species of monkeyflowers (Mimulus) reproductively isolated by pollinator preference. The emission rate and chemical identity of floral volatiles differ between the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis. Mimulus lewisii flowers produce an array of volatiles dominated by d-limonene, β-myrcene and E-β-ocimene. Of these three monoterpenes, M. cardinalis flowers produce only d-limonene, released at just 0.9% the rate of M. lewisii flowers. Using the Bombus vosnesenskii bumblebee, an important pollinator of M. lewisii, we conducted simultaneous gas chromatography with extracellular recordings in the bumblebee antennal lobe. Results from these experiments revealed that these three monoterpenes evoke significant neural responses, and that a synthetic mixture of the three volatiles evokes the same responses as the natural scent. Furthermore, the neural population shows enhanced responses to the M. lewisii scent over the scent of M. cardinalis. This neural response is reflected in behavior; in two-choice assays, bumblebees investigate artificial flowers scented with M. lewisii more frequently than ones scented with M. cardinalis, and in synthetic mixtures the three monoterpenes are necessary and sufficient to recapitulate responses to the natural scent of M. lewisii. In this system, floral scent alone is sufficient to elicit differential visitation by bumblebees, implying a strong role of scent in the maintenance of reproductive isolation between M. lewisii and M. cardinalis.
Collapse
Affiliation(s)
- Kelsey J R P Byers
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|