1
|
Kong S, Zhu M, Roeder AHK. Self-organization underlies developmental robustness in plants. Cells Dev 2024:203936. [PMID: 38960068 PMCID: PMC11688513 DOI: 10.1016/j.cdev.2024.203936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Development is a self-organized process that builds on cells and their interactions. Cells are heterogeneous in gene expression, growth, and division; yet how development is robust despite such heterogeneity is a fascinating question. Here, we review recent progress on this topic, highlighting how developmental robustness is achieved through self-organization. We will first discuss sources of heterogeneity, including stochastic gene expression, heterogeneity in growth rate and direction, and heterogeneity in division rate and precision. We then discuss cellular mechanisms that buffer against such noise, including Paf1C- and miRNA-mediated denoising, spatiotemporal growth averaging and compensation, mechanisms to improve cell division precision, and coordination of growth rate and developmental timing between different parts of an organ. We also discuss cases where such heterogeneity is not buffered but utilized for development. Finally, we highlight potential directions for future studies of noise and developmental robustness.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Abley K, Goswami R, Locke JCW. Bet-hedging and variability in plant development: seed germination and beyond. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230048. [PMID: 38432313 PMCID: PMC10909506 DOI: 10.1098/rstb.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 03/05/2024] Open
Abstract
When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - Rituparna Goswami
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - James C. W. Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| |
Collapse
|
3
|
Krintza N, Dener E, Seifan M. Stress Induces Trait Variability across Multiple Spatial Scales in the Arid Annual Plant Anastatica hierochuntica. PLANTS (BASEL, SWITZERLAND) 2024; 13:256. [PMID: 38256809 PMCID: PMC10820187 DOI: 10.3390/plants13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Variations in plant characteristics in response to habitat heterogeneity can provide valuable insights into the mechanisms governing plant responses to environmental conditions. In this study, we investigated the role of environmental factors associated with arid conditions in shaping the phenotypic responses of an arid annual plant, Anastatica hierochuntica, across several populations found along an aridity gradient and across multiple spatial scales. Utilizing both field surveys and a net house experiment, we assessed the effects of environmental factors on trait variability within and between populations. The results indicated a significant convergence in plant height due to site aridity, reflecting growth potential based on abiotic resources. Convergence was also observed in the plant's electrolyte leakage with aridity and in plant height concerning soil salinity at specific sites. Phenotypic plasticity was pivotal in maintaining trait variability, with plant height plasticity increasing with soil salinity, SLA plasticity decreasing with aridity, and leaf number plasticity rising with aridity. In conclusion, our findings underscore the adaptive significance of phenotypic variability, especially plasticity, in arid conditions. Notably, trait variability and plasticity did not consistently diminish in stressful settings, emphasizing the adaptive value of flexible responses in such environments.
Collapse
Affiliation(s)
- Nir Krintza
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Efrat Dener
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| |
Collapse
|
4
|
Seifan M. On trait variability in harsh habitats. AMERICAN JOURNAL OF BOTANY 2023; 110:e16206. [PMID: 37431821 DOI: 10.1002/ajb2.16206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023]
Affiliation(s)
- Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
5
|
Mu Q, Guo T, Li X, Yu J. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. THE NEW PHYTOLOGIST 2022; 233:1768-1779. [PMID: 34870847 DOI: 10.1111/nph.17904] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Phenotypic plasticity is observed widely in plants and often studied with reaction norms for adult plant or end-of-season traits. Uncovering genetic, environmental and developmental patterns behind the observed phenotypic variation under natural field conditions is needed. Using a sorghum (Sorghum bicolor) genetic population evaluated for plant height in seven natural field conditions, we investigated the major pattern that differentiated these environments. We then examined the physiological relevance of the identified environmental index by investigating the developmental trajectory of the population with multistage height measurements in four additional environments and conducting crop growth modelling. We found that diurnal temperature range (DTR) during the rapid growth period of sorghum development was an effective environmental index. Three genetic loci (Dw1, Dw3 and qHT7.1) were consistently detected for individual environments, reaction-norm parameters across environments and growth-curve parameters through the season. Their genetic effects changed dynamically along the environmental gradient and the developmental stage. A conceptual model with three-dimensional reaction norms was proposed to showcase the interconnecting components: genotype, environment and development. Beyond genomic and environmental analyses, further integration of development and physiology at the whole-plant and molecular levels into complex trait dissection would enhance our understanding of mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Qi Mu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Tingting Guo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Autran D, Bassel GW, Chae E, Ezer D, Ferjani A, Fleck C, Hamant O, Hartmann FP, Jiao Y, Johnston IG, Kwiatkowska D, Lim BL, Mahönen AP, Morris RJ, Mulder BM, Nakayama N, Sozzani R, Strader LC, ten Tusscher K, Ueda M, Wolf S. What is quantitative plant biology? QUANTITATIVE PLANT BIOLOGY 2021; 2:e10. [PMID: 37077212 PMCID: PMC10095877 DOI: 10.1017/qpb.2021.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Collapse
Affiliation(s)
- Daphné Autran
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - George W. Bassel
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daphne Ezer
- The Alan Turing Institute, London, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Breisgau, Germany
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Lyon, France
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, Université de Lyon, Lyon, France
| | | | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dorota Kwiatkowska
- Institute of Biology, Biotechnology and Environment Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Boon L. Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Ari Pekka Mahönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Bela M. Mulder
- Department of Living Matter, Institute AMOLF, Amsterdam, The Netherlands
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ross Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North CarolinaUSA
| | - Lucia C. Strader
- Department of Biology, Duke University, Durham, North Carolina, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MissouriUSA
| | - Kirsten ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Kitazawa MS. Developmental stochasticity and variation in floral phyllotaxis. JOURNAL OF PLANT RESEARCH 2021; 134:403-416. [PMID: 33821352 PMCID: PMC8106590 DOI: 10.1007/s10265-021-01283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Floral phyllotaxis is a relatively robust phenotype; trimerous and pentamerous arrangements are widely observed in monocots and core eudicots. Conversely, it also shows variability in some angiosperm clades such as 'ANA' grade (Amborellales, Nymphaeales, and Austrobaileyales), magnoliids, and Ranunculales. Regardless of the phylogenetic relationship, however, phyllotactic pattern formation appears to be a common process. What are the causes of the variability in floral phyllotaxis and how has the variation of floral phyllotaxis contributed to floral diversity? In this review, I summarize recent progress in studies on two related fields to develop answers to these questions. First, it is known that molecular and cellular stochasticity are inevitably found in biological systems, including plant development. Organisms deal with molecular stochasticity in several ways, such as dampening noise through gene networks or maintaining function through cellular redundancy. Recent studies on molecular and cellular stochasticity suggest that stochasticity is not always detrimental to plants and that it is also essential in development. Second, studies on vegetative and inflorescence phyllotaxis have shown that plants often exhibit variability and flexibility in phenotypes. Three types of phyllotaxis variations are observed, namely, fluctuation around the mean, transition between regular patterns, and a transient irregular organ arrangement called permutation. Computer models have demonstrated that stochasticity in the phyllotactic pattern formation plays a role in pattern transitions and irregularities. Variations are also found in the number and positioning of floral organs, although it is not known whether such variations provide any functional advantages. Two ways of diversification may be involved in angiosperm floral evolution: precise regulation of organ position and identity that leads to further specialization of organs and organ redundancy that leads to flexibility in floral phyllotaxis.
Collapse
Affiliation(s)
- Miho S Kitazawa
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
8
|
Israeli A, Ben-Herzel O, Burko Y, Shwartz I, Ben-Gera H, Harpaz-Saad S, Bar M, Efroni I, Ori N. Coordination of differentiation rate and local patterning in compound-leaf development. THE NEW PHYTOLOGIST 2021; 229:3558-3572. [PMID: 33259078 DOI: 10.1111/nph.17124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The variability in leaf form in nature is immense. Leaf patterning occurs by differential growth, taking place during a limited window of morphogenetic activity at the leaf marginal meristem. While many regulators have been implicated in the designation of the morphogenetic window and in leaf patterning, how these effectors interact to generate a particular form is still not well understood. We investigated the interaction among different effectors of tomato (Solanum lycopersicum) compound-leaf development, using genetic and molecular analyses. Mutations in the tomato auxin response factor SlARF5/SlMP, which normally promotes leaflet formation, suppressed the increased leaf complexity of mutants with extended morphogenetic window. Impaired activity of the NAC/CUC transcription factor GOBLET (GOB), which specifies leaflet boundaries, also reduced leaf complexity in these backgrounds. Analysis of genetic interactions showed that the patterning factors SlMP, GOB and the MYB transcription factor LYRATE (LYR) coordinately regulate leaf patterning by modulating in parallel different aspects of leaflet formation and shaping. This work places an array of developmental regulators in a morphogenetic context. It reveals how organ-level differentiation rate and local growth are coordinated to sculpture an organ. These concepts are applicable to the coordination of pattering and differentiation in other species and developmental processes.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Ori Ben-Herzel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Hadas Ben-Gera
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, PO Box 102, Ramat Yishay, 30095, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
9
|
Harline K, Martínez-Gómez J, Specht CD, Roeder AHK. A Life Cycle for Modeling Biology at Different Scales. FRONTIERS IN PLANT SCIENCE 2021; 12:710590. [PMID: 34539702 PMCID: PMC8446664 DOI: 10.3389/fpls.2021.710590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/22/2021] [Indexed: 05/12/2023]
Abstract
Modeling has become a popular tool for inquiry and discovery across biological disciplines. Models allow biologists to probe complex questions and to guide experimentation. Modeling literacy among biologists, however, has not always kept pace with the rise in popularity of these techniques and the relevant advances in modeling theory. The result is a lack of understanding that inhibits communication and ultimately, progress in data gathering and analysis. In an effort to help bridge this gap, we present a blueprint that will empower biologists to interrogate and apply models in their field. We demonstrate the applicability of this blueprint in two case studies from distinct subdisciplines of biology; developmental-biomechanics and evolutionary biology. The models used in these fields vary from summarizing dynamical mechanisms to making statistical inferences, demonstrating the breadth of the utility of models to explore biological phenomena.
Collapse
Affiliation(s)
- Kate Harline
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
- *Correspondence: Kate Harline,
| | - Jesús Martínez-Gómez
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chelsea D. Specht
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Cruz DF, De Meyer S, Ampe J, Sprenger H, Herman D, Van Hautegem T, De Block J, Inzé D, Nelissen H, Maere S. Using single-plant-omics in the field to link maize genes to functions and phenotypes. Mol Syst Biol 2020; 16:e9667. [PMID: 33346944 PMCID: PMC7751767 DOI: 10.15252/msb.20209667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field. We molecularly profiled a set of individual maize plants of the same inbred background grown in the same field and used the resulting data to predict the phenotypes of individual plants and the function of maize genes. We show that the field transcriptomes of individual plants contain as much information on maize gene function as traditional laboratory-generated transcriptomes of pooled plant samples subject to controlled perturbations. Moreover, we show that field-generated transcriptome and metabolome data can be used to quantitatively predict individual plant phenotypes. Our results show that profiling individual plants in the field is a promising experimental design that could help narrow the lab-field gap.
Collapse
Affiliation(s)
- Daniel Felipe Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Sam De Meyer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Joke Ampe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Heike Sprenger
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
11
|
Morris RS, Compton ME, Simons AM. Birth order as a source of within-genotype diversification in the clonal duckweed, Spirodela polyrhiza (Araceae: Lemnoideae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Organismal persistence attests to adaptive responses to environmental variation. Diversification bet hedging, in which risk is reduced at the cost of expected fitness, is increasingly recognized as an adaptive response, yet mechanisms by which a single genotype generates diversification remain obscure. The clonal greater duckweed, Spirodela polyrhiza (L.), facultatively expresses a seed-like but vegetative form, the ‘turion’, that allows survival through otherwise lethal conditions. Turion reactivation phenology is a key fitness component, yet little is known about turion reactivation phenology in the field, or sources of variation. Here, using floating traps deployed in the field, we found a remarkable extent of variation in natural reactivation phenology that could not be explained solely by spring cues, occurring over a period of ≥ 200 days. In controlled laboratory conditions, we found support for the hypothesis that turion phenology is influenced jointly by phenotypic plasticity to temperature and diversification within clones. Turion ‘birth order’ consistently accounted for a difference in reactivation time of 46 days at temperatures between 10 and 18 °C, with turions early in birth order reactivating more rapidly than turions late in birth order. These results should motivate future work to evaluate the variance in turion phenology formally as a bet-hedging trait.
Collapse
Affiliation(s)
- Riley S Morris
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mary E Compton
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew M Simons
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
12
|
Phenotypic plasticity in diaspore production of a amphi-basicarpic cold desert annual that produces polymorphic diaspores. Sci Rep 2020; 10:11142. [PMID: 32636397 PMCID: PMC7341796 DOI: 10.1038/s41598-020-67380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
Phenotypic plasticity has been studied in diaspore-dimorphic species, but no such study has been done on a diaspore-polymorphic species. Our aim was to determine the effects of abiotic and biotic factors on phenotypic plasticity of the diaspore-polymorphic cold desert annual Ceratocarpus arenarius. Plants produced from dispersal units near the soil surface (a, basicarps) and at the middle (c) and upper (f) parts of the plant canopy were subjected to different levels of soil moisture, nutrient supply and intramorph and intermorph densities. Different levels of these biotic and abiotic factors resulted in significant variation in total plant mass, diaspore mass, mass allocation to stem and reproductive organs and total number and proportion of morphs a, c and f on an individual. The effect of stress on number and mass of a dispersal unit morph varied by treatment, with dispersal unit f having the highest CV and dispersal unit a the lowest. The success of this diaspore polymorphic species in its rainfall-unpredictable environment likely is enhanced by plasticity in production of the different types of diaspores.
Collapse
|
13
|
Biwer C, Kawam B, Chapelle V, Silvestre F. The Role of Stochasticity in the Origin of Epigenetic Variation in Animal Populations. Integr Comp Biol 2020; 60:1544-1557. [PMID: 32470118 DOI: 10.1093/icb/icaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals, and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental, or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless present in natural populations and stochastic epigenetic variation, also referred to spontaneous epimutations, can sustain phenotypic diversity. Here, potential sources of such stochastic epigenetic variability in animals are explored, with a focus on DNA methylation. To this day, quantifying the importance of stochasticity in epigenetic variability remains a challenge. However, comparisons between the mutation and the epimutation rates showed a high level of the latter, suggesting a significant role of spontaneous epimutations in adaptation. The implications of stochastic epigenetic variability are multifold: by affecting development and subsequently phenotype, random changes in epigenetic marks may provide additional phenotypic diversity, which can help natural populations when facing fluctuating environments. In isogenic lineages and asexually reproducing organisms, poor or absent genetic diversity can hence be tolerated. Further implication of stochastic epigenetic variability in adaptation is found in bottlenecked invasive species populations and populations using a bet-hedging strategy.
Collapse
Affiliation(s)
| | | | | | - F Silvestre
- Institute of Earth, Life and Environment (ILEE), University of Namur, 61 rue de Bruxelles, Namur, 5000, Belgium
| |
Collapse
|
14
|
Beral A, Rincent R, Le Gouis J, Girousse C, Allard V. Wheat individual grain-size variance originates from crop development and from specific genetic determinism. PLoS One 2020; 15:e0230689. [PMID: 32214360 PMCID: PMC7098578 DOI: 10.1371/journal.pone.0230689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
Wheat grain yield is usually decomposed in the yield components: number of spikes / m2, number of grains / spike, number of grains / m2 and thousand kernel weight (TKW). These are correlated one with another due to yield component compensation. Under optimal conditions, the number of grains per m2 has been identified as the main determinant of yield. However, with increasing occurrences of post-flowering abiotic stress associated with climate change, TKW may become severely limiting and hence a target for breeding. TKW is usually studied at the plot scale as it represents the average mass of a grain. However, this view disregards the large intra-genotypic variance of individual grain mass and its effect on TKW. The aim of this study is to investigate the determinism of the variance of individual grain size. We measured yield components and individual grain size variances of two large genetic wheat panels grown in two environments. We also carried out a genome-wide association study using a dense SNPs array. We show that the variance of individual grain size partly originates from the pre-flowering components of grain yield; in particular it is driven by canopy structure via its negative correlation with the number of spikes per m2. But the variance of final grain size also has a specific genetic basis. The genome-wide analysis revealed the existence of QTL with strong effects on the variance of individual grain size, independently from the other yield components. Finally, our results reveal some interesting drivers for manipulating individual grain size variance either through canopy structure or through specific chromosomal regions.
Collapse
Affiliation(s)
- Aurore Beral
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Renaud Rincent
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jacques Le Gouis
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Christine Girousse
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vincent Allard
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
15
|
Akhund-Zade J, Ho S, O'Leary C, de Bivort B. The effect of environmental enrichment on behavioral variability depends on genotype, behavior, and type of enrichment. ACTA ACUST UNITED AC 2019; 222:jeb.202234. [PMID: 31413102 DOI: 10.1242/jeb.202234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Non-genetic individuality in behavior, also termed intragenotypic variability, has been observed across many different organisms. A potential cause of intragenotypic variability is sensitivity to minute environmental differences during development, which are present even when major environmental parameters are kept constant. Animal enrichment paradigms often include the addition of environmental diversity, whether in the form of social interaction, novel objects or exploratory opportunities. Enrichment could plausibly affect intragenotypic variability in opposing ways: it could cause an increase in variability due to the increase in microenvironmental variation, or a decrease in variability due to elimination of aberrant behavior as animals are taken out of impoverished laboratory conditions. In order to test these hypothesis, we assayed five isogenic Drosophila melanogaster lines raised in control and mild enrichment conditions, and one isogenic line under both mild and intense enrichment conditions. We compared the mean and variability of six behavioral metrics between our enriched fly populations and the laboratory housing control. We found that enrichment often caused a small increase in variability across most of our behaviors, but that the ultimate effect of enrichment on both behavioral means and variabilities was highly dependent on genotype and its interaction with the particular enrichment treatment. Our results support previous work on enrichment that presents a highly variable picture of its effects on both behavior and physiology.
Collapse
Affiliation(s)
- Jamilla Akhund-Zade
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sandra Ho
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Chelsea O'Leary
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Johnston IG, Bassel GW. Identification of a bet-hedging network motif generating noise in hormone concentrations and germination propensity in Arabidopsis. J R Soc Interface 2019; 15:rsif.2018.0042. [PMID: 29643226 PMCID: PMC5938590 DOI: 10.1098/rsif.2018.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/19/2018] [Indexed: 11/12/2022] Open
Abstract
Plants have evolved to exploit stochasticity to hedge bets and ensure robustness to varying environments between generations. In agriculture, environments are more controlled, and this evolved variability decreases potential yields, posing agronomic and food security challenges. Understanding how plant cells generate and harness noise thus presents options for engineering more uniform crop performance. Here, we use stochastic chemical kinetic modelling to analyse a hormone feedback signalling motif in Arabidopsis thaliana seeds that can generate tunable levels of noise in the hormone ABA, governing germination propensity. The key feature of the motif is simultaneous positive feedback regulation of both ABA production and degradation pathways, allowing tunable noise while retaining a constant mean level. We uncover surprisingly rich behaviour underlying the control of levels of, and noise in, ABA abundance. We obtain approximate analytic solutions for steady-state hormone level means and variances under general conditions, showing that antagonistic self-promoting and self-repressing interactions can together be tuned to induce noise while preserving mean hormone levels. We compare different potential architectures for this 'random output generator' with the motif found in Arabidopsis, and report the requirements for tunable control of noise in each case. We identify interventions that may facilitate large decreases in variability in germination propensity, in particular, the turnover of signalling intermediates and the sensitivity of synthesis and degradation machinery, as potentially valuable crop engineering targets.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
de Jong M, Tavares H, Pasam RK, Butler R, Ward S, George G, Melnyk CW, Challis R, Kover PX, Leyser O. Natural variation in Arabidopsis shoot branching plasticity in response to nitrate supply affects fitness. PLoS Genet 2019; 15:e1008366. [PMID: 31539368 PMCID: PMC6774567 DOI: 10.1371/journal.pgen.1008366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
The capacity of organisms to tune their development in response to environmental cues is pervasive in nature. This phenotypic plasticity is particularly striking in plants, enabled by their modular and continuous development. A good example is the activation of lateral shoot branches in Arabidopsis, which develop from axillary meristems at the base of leaves. The activity and elongation of lateral shoots depends on the integration of many signals both external (e.g. light, nutrient supply) and internal (e.g. the phytohormones auxin, strigolactone and cytokinin). Here, we characterise natural variation in plasticity of shoot branching in response to nitrate supply using two diverse panels of Arabidopsis lines. We find extensive variation in nitrate sensitivity across these lines, suggesting a genetic basis for variation in branching plasticity. High plasticity is associated with extreme branching phenotypes such that lines with the most branches on high nitrate have the fewest under nitrate deficient conditions. Conversely, low plasticity is associated with a constitutively moderate level of branching. Furthermore, variation in plasticity is associated with alternative life histories with the low plasticity lines flowering significantly earlier than high plasticity lines. In Arabidopsis, branching is highly correlated with fruit yield, and thus low plasticity lines produce more fruit than high plasticity lines under nitrate deficient conditions, whereas highly plastic lines produce more fruit under high nitrate conditions. Low and high plasticity, associated with early and late flowering respectively, can therefore be interpreted alternative escape vs mitigate strategies to low N environments. The genetic architecture of these traits appears to be highly complex, with only a small proportion of the estimated genetic variance detected in association mapping.
Collapse
Affiliation(s)
- Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Hugo Tavares
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Raj K. Pasam
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Butler
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Sally Ward
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Gilu George
- Department of Biology, University of York, York, United Kingdom
| | - Charles W. Melnyk
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Richard Challis
- Department of Biology, University of York, York, United Kingdom
| | - Paula X. Kover
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2019; 116:17890-17899. [PMID: 31420516 PMCID: PMC6731683 DOI: 10.1073/pnas.1902731116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations are often assumed to be largely detrimental to fitness, but they may also be beneficial, and mutations with large phenotypic effects can persist in nature. One explanation for these observations is that mutations may be beneficial in specific environments because these conditions shift trait expression toward higher fitness. This hypothesis is rarely tested due to the difficulty of replicating mutants in multiple natural environments and measuring their phenotypes. We did so by planting Arabidopsis thaliana genotypes with large-effect flowering time mutations in field sites across the species’ European climate range. We quantified the adaptive value of mutant traits, finding that certain mutations increased fitness in some environments but not in others. Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments.
Collapse
|
19
|
Lecarpentier C, Barillot R, Blanc E, Abichou M, Goldringer I, Barbillon P, Enjalbert J, Andrieu B. WALTer: a three-dimensional wheat model to study competition for light through the prediction of tillering dynamics. ANNALS OF BOTANY 2019; 123:961-975. [PMID: 30629113 PMCID: PMC6589517 DOI: 10.1093/aob/mcy226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Branching is a main morphogenetic process involved in the adaptation of plants to the environment. In grasses, tillering is divided into three phases: tiller emergence, cessation of tillering and tiller regression. Understanding and prediction of the tillering process is a major challenge to better control cereal yields. In this paper, we present and evaluate WALTer, an individual-based model of wheat built on simple self-adaptive rules for predicting the tillering dynamics at contrasting sowing densities. METHODS WALTer simulates the three-dimensional (3-D) development of the aerial architecture of winter wheat. Tillering was modelled using two main hypotheses: (H1) a plant ceases to initiate new tillers when a critical Green Area Index (GAIc) is reached, and (H2) the regression of a tiller occurs if its interception of light is below a threshold (PARt). The development of vegetative organs follows descriptive rules adapted from the literature. A sensitivity analysis was performed to evaluate the impact of each parameter on tillering and GAI dynamics. WALTer was parameterized and evaluated using an initial dataset providing an extensive description of GAI dynamics, and another dataset describing tillering dynamics under a wide range of sowing densities. KEY RESULTS Sensitivity analysis indicated the predominant importance of GAIc and PARt. Tillering and GAI dynamics of expt 1 were well fit by WALTer. Once calibrated based on the agronomic density of expt 2, tillering parameters allowed an adequate prediction of tillering dynamics at contrasting sowing densities. CONCLUSIONS Using simple rules and a small number of parameters, WALTer efficiently simulated the wheat tillering dynamics observed at contrasting densities in experimental data. These results show that the definition of a critical GAI and a threshold of PAR is a relevant way to represent, respectively, cessation of tillering and tiller regression under competition for light.
Collapse
Affiliation(s)
- Christophe Lecarpentier
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emmanuelle Blanc
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Mariem Abichou
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Isabelle Goldringer
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Pierre Barbillon
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Jérôme Enjalbert
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - Bruno Andrieu
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
20
|
Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development. Curr Biol 2019; 29:1746-1759.e5. [DOI: 10.1016/j.cub.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
|
21
|
Hufford MB, Berny Mier Y Teran JC, Gepts P. Crop Biodiversity: An Unfinished Magnum Opus of Nature. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:727-751. [PMID: 31035827 DOI: 10.1146/annurev-arplant-042817-040240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies.
Collapse
Affiliation(s)
- Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA;
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California 95616-8780, USA; ,
| |
Collapse
|
22
|
Chen TW, Cabrera-Bosquet L, Alvarez Prado S, Perez R, Artzet S, Pradal C, Coupel-Ledru A, Fournier C, Tardieu F. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2523-2534. [PMID: 30137451 PMCID: PMC6487589 DOI: 10.1093/jxb/ery309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 05/22/2023]
Abstract
Multi-genotype canopies are frequent in phenotyping experiments and are of increasing interest in agriculture. Radiation interception efficiency (RIE) and radiation use efficiency (RUE) have low heritabilities in such canopies. We propose a revised Monteith equation that identifies environmental and genetic components of RIE and RUE. An environmental term, a component of RIE, characterizes the effect of the presence or absence of neighbours on light interception. The ability of a given plant to compete with its neighbours is then identified, which accounts for the genetic variability of RIE of plants having similar leaf areas. This method was used in three experiments in a phenotyping platform with 765 plants of 255 maize hybrids. As expected, the heritability of the environmental term was near zero, whereas that of the competitiveness term increased with phenological stage, resulting in the identification of quantitative trait loci. In the same way, RUE was dissected as an effect of intercepted light and a genetic term. This approach was used for predicting the behaviour of individual genotypes in virtual multi-genotype canopies. A large effect of competitiveness was observed in multi-genotype but not in single-genotype canopies, resulting in a bias for genotype comparisons in breeding fields.
Collapse
Affiliation(s)
- Tsu-Wei Chen
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | | | | | - Raphaël Perez
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | - Simon Artzet
- Université de Montpellier, INRA, LEPSE, Montpellier, France
| | | | - Aude Coupel-Ledru
- Université de Montpellier, INRA, LEPSE, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | | | | |
Collapse
|
23
|
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 2019; 51:786-792. [PMID: 30988512 DOI: 10.1038/s41588-019-0389-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023]
Abstract
Precise control of plant stem cell proliferation is necessary for the continuous and reproducible development of plant organs1,2. The peptide ligand CLAVATA3 (CLV3) and its receptor protein kinase CLAVATA1 (CLV1) maintain stem cell homeostasis within a deeply conserved negative feedback circuit1,2. In Arabidopsis, CLV1 paralogs also contribute to homeostasis, by compensating for the loss of CLV1 through transcriptional upregulation3. Here, we show that compensation4,5 operates in diverse lineages for both ligands and receptors, but while the core CLV signaling module is conserved, compensation mechanisms have diversified. Transcriptional compensation between ligand paralogs operates in tomato, facilitated by an ancient gene duplication that impacted the domestication of fruit size. In contrast, we found little evidence for transcriptional compensation between ligands in Arabidopsis and maize, and receptor compensation differs between tomato and Arabidopsis. Our findings show that compensation among ligand and receptor paralogs is critical for stem cell homeostasis, but that diverse genetic mechanisms buffer conserved developmental programs.
Collapse
Affiliation(s)
- Daniel Rodriguez-Leal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Inari Agriculture, Cambridge, MA, USA
| | - Cao Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Choon-Tak Kwon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Cara Soyars
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jarrett Man
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Inari Agriculture, Cambridge, MA, USA
| | - Daniel S Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Van Eck
- Boyce Thompson Institute for Plant Science, Ithaca, NY, USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | | | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
24
|
Laitinen RAE, Nikoloski Z. Genetic basis of plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:739-745. [PMID: 30445526 DOI: 10.1093/jxb/ery404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
The ability of an organism to change its phenotype in response to different environments, termed plasticity, is a particularly important characteristic to enable sessile plants to adapt to rapid changes in their surroundings. Plasticity is a quantitative trait that can provide a fitness advantage and mitigate negative effects due to environmental perturbations. Yet, its genetic basis is not fully understood. Alongside technological limitations, the main challenge in studying plasticity has been the selection of suitable approaches for quantification of phenotypic plasticity. Here, we propose a categorization of the existing quantitative measures of phenotypic plasticity into nominal and relative approaches. Moreover, we highlight the recent advances in the understanding of the genetic architecture underlying phenotypic plasticity in plants. We identify four pillars for future research to uncover the genetic basis of phenotypic plasticity, with emphasis on development of computational approaches and theories. These developments will allow us to perform specific experiments to validate the causal genes for plasticity and to discover their role in plant fitness and evolution.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
- Bioinformatics group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
25
|
Oláh V, Hepp A, Gaibor Vaca NY, Tamás M, Mészáros I. Retrospective analyses of archive phytotoxicity test data can help in assessing internal dynamics and stability of growth in laboratory duckweed cultures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:40-46. [PMID: 29859406 DOI: 10.1016/j.aquatox.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
High growth potential of duckweed species (Lemnaceae family) has been utilized in wide range of research and practical applications. Based on literature data, however, it can be assumed that duckweed populations maintain constant growth rates only when short periods are considered but can vary over longer time scales. This intrinsic instability in growth can affect the interpretation of growth data. Duckweed phytotoxicity tests are usually performed according to highly standardized protocols. Therefore the archive data provide an opportunity for retrospective comparisons. In the present study we collected growth (frond number- and frond area-based relative growth rates) and morphology (average frond and colony sizes) data from control treatments of phytotoxicity tests. All the analyzed tests were carried out with the same Spirodela polyrhiza (L.) Schleid. (giant duckweed) clone (RDSC ID No. 5501) under the same experimental conditions over more than four years. We aimed to assess the overall variability of the above parameters and to test if intrinsic growth patterns affect growth data in short-term. In general, the results reflected high stability of the measured parameters in long term but also indicated that some temporal variability is inevitable which can bias the comparability of growth tests. The frond area-based relative growth rate resulted in smaller coefficient of variation than the usually preferred frond number-based one. The results also revealed a negative correlation between mean growth rates and their coefficients of variation. Therefore, it would be advisable to introduce higher minimal growth rates and/or maximized tolerable coefficients of variation for control cultures into the standard duckweed growth inhibition tests. Analyses of growth data aggregated on seasonal basis indicated faster growth and larger mean frond size in laboratory duckweed cultures from mid-autumn till mid-spring than during summer and early autumn. But, in shorter term (∼50 days) we did not observe distinct trends in growth suggesting that the successive frond generations have no effect on growth traits within this time-scale. Our results point to the importance of assessing intrinsic growth dynamics in duckweed cultures and also to the re-usability of the already collected phytotoxicity data in addressing new research questions.
Collapse
Affiliation(s)
- Viktor Oláh
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem tér 1. Debrecen, Zip: H-4032, Hungary.
| | - Anna Hepp
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem tér 1. Debrecen, Zip: H-4032, Hungary.
| | - Norma Yolanda Gaibor Vaca
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem tér 1. Debrecen, Zip: H-4032, Hungary.
| | - Marianna Tamás
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem tér 1. Debrecen, Zip: H-4032, Hungary.
| | - Ilona Mészáros
- University of Debrecen, Faculty of Science and Technology, Department of Botany, Egyetem tér 1. Debrecen, Zip: H-4032, Hungary.
| |
Collapse
|
26
|
Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK. Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:469-495. [PMID: 29505739 DOI: 10.1146/annurev-arplant-042817-040517] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development is remarkably reproducible, producing organs with the same size, shape, and function repeatedly from individual to individual. For example, every flower on the Antirrhinum stalk has the same snapping dragon mouth. This reproducibility has allowed taxonomists to classify plants and animals according to their morphology. Yet these reproducible organs are composed of highly variable cells. For example, neighboring cells grow at different rates in Arabidopsis leaves, sepals, and shoot apical meristems. This cellular variability occurs in normal, wild-type organisms, indicating that cellular heterogeneity (or diversity in a characteristic such as growth rate) is either actively maintained or, at a minimum, not entirely suppressed. In fact, cellular heterogeneity can contribute to producing invariant organs. Here, we focus on how plant organs are reproducibly created during development from these highly variable cells.
Collapse
Affiliation(s)
- Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Mathilde Dumond
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
- Current affiliation: Department for Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Satoru Tsugawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Olivier Hamant
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
27
|
Lenser T, Tarkowská D, Novák O, Wilhelmsson PKI, Bennett T, Rensing SA, Strnad M, Theißen G. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:352-371. [PMID: 29418033 DOI: 10.1111/tpj.13861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a 'last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
28
|
Mejbel HS, Simons AM. Aberrant clones: Birth order generates life history diversity in Greater Duckweed, Spirodela polyrhiza. Ecol Evol 2018; 8:2021-2031. [PMID: 29468021 PMCID: PMC5817126 DOI: 10.1002/ece3.3822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental unpredictability is known to result in the evolution of bet-hedging traits. Variable dormancy enhances survival through harsh conditions, and is widely cited as a diversification bet-hedging trait. The floating aquatic plant, Spirodela polyrhiza (Greater Duckweed), provides an opportunity to study diversification because although partially reliable seasonal cues exist, its growing season is subject to an unpredictable and literally "hard" termination when the surface water freezes, and overwinter survival depends on a switch from production of normal daughter fronds to production of dense, sinking "turions" prior to freeze-over. The problem for S. polyrhiza is that diversified dormancy behavior must be generated among clonally produced, genetically identical offspring. Variation in phenology has been observed in the field, but its sources are unknown. Here, we investigate sources of phenological variation in turion production, and test the hypothesis that diversification in turion phenology is generated within genetic lineages through effects of parental birth order. As expected, phenotypic plasticity to temperature is expressed along a thermal gradient; more interestingly, parental birth order was found to have a significant and strong effect on turion phenology: Turions are produced earlier by late birth-order parents. These results hold regardless of whether turion phenology is measured as first turion birth order, time to first turion, or turion frequency. This study addresses a question of current interest on potential mechanisms generating diversification, and suggests that consistent phenotypic differences across birth orders generate life history variation.
Collapse
|
29
|
Roeder AH. Use it or average it: stochasticity in plant development. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:8-15. [PMID: 28837855 DOI: 10.1016/j.pbi.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 05/21/2023]
Abstract
A process that is stochastic has a probabilistic or randomly determined outcome. At the molecular level, all processes are stochastic; but development is highly reproducible, suggesting that plants and other multicellular organisms have evolved mechanisms to ensure robustness (achieving correct development despite stochastic and environmental perturbations). Mechanisms of robustness can be discovered through isolating mutants with increased variability in phenotype; such mutations do not necessarily change the average phenotype. Surprisingly, some developmental robustness mechanisms actually exploit stochasticity as a useful source of variation. For example, gene expression is stochastic and can be utilized to create subtle differences between identical cells that can initiate the patterning of specialized cell types. Stochasticity can also be used to promote robustness through spatiotemporal averaging-stochasticity can be averaged out across space and over time. Thus, organisms often harness stochasticity to ensure robust development.
Collapse
Affiliation(s)
- Adrienne Hk Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, 239 Weill Hall, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP. Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients. Dev Cell 2017; 43:265-273.e6. [PMID: 29107557 DOI: 10.1016/j.devcel.2017.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022]
Abstract
Small RNAs have emerged as a new class of mobile signals. Here, we investigate their mechanism of action and show that mobile small RNAs generate sharply defined domains of target gene expression through an intrinsic and direct threshold-based readout of their mobility gradients. This readout is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. Besides patterning their immediate targets, the readouts of opposing small RNA gradients enable specification of robust, uniformly positioned developmental boundaries. These patterning properties of small RNAs are reminiscent of those of animal morphogens. However, their mode of action and the intrinsic nature of their gradients distinguish mobile small RNAs from classical morphogens and present a unique direct mechanism through which to relay positional information. Mobile small RNAs and their targets thus emerge as highly portable, evolutionarily tractable regulatory modules through which to create pattern.
Collapse
Affiliation(s)
| | - Anna H Benkovics
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Aman Y Husbands
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Fal K, Liu M, Duisembekova A, Refahi Y, Haswell ES, Hamant O. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development 2017; 144:4428-4436. [PMID: 28982682 PMCID: PMC5769633 DOI: 10.1242/dev.154369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along the stem exhibited increased variance in vip3-1 and vip3-2 compared with the wild type, in two different growth conditions. Similar results were obtained with the weak vip3-6 allele and in vip6, a mutant for another Paf1c subunit. Mathematical analysis confirmed that these defects could not be explained solely by plastochron defects. Instead, increased variance in phyllotaxis in vip3 was observed at the meristem and related to defects in spatial patterns of auxin activity. Thus, the regularity of spatial, auxin-dependent, patterning at the meristem requires Paf1c.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Mengying Liu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Assem Duisembekova
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yassin Refahi
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
32
|
Michaud O, Fiorucci AS, Xenarios I, Fankhauser C. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:7444-7449. [PMID: 28652343 PMCID: PMC5514730 DOI: 10.1073/pnas.1702276114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Competition for light triggers numerous developmental adaptations known as the "shade-avoidance syndrome" (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments.
Collapse
Affiliation(s)
- Olivier Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Fiorucci
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
33
|
Bury-Moné S, Sclavi B. Stochasticity of gene expression as a motor of epigenetics in bacteria: from individual to collective behaviors. Res Microbiol 2017; 168:503-514. [PMID: 28427910 DOI: 10.1016/j.resmic.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 01/22/2023]
Abstract
Measuring gene expression at the single cell and single molecule level has recently made possible the quantitative measurement of stochasticity of gene expression. This enables identification of the probable sources and roles of noise. Gene expression noise can result in bacterial population heterogeneity, offering specific advantages for fitness and survival in various environments. This trait is therefore selected during the evolution of the species, and is consequently regulated by a specific genetic network architecture. Examples exist in stress-response mechanisms, as well as in infection and pathogenicity strategies, pointing to advantages for multicellularity of bacterial populations.
Collapse
Affiliation(s)
- Stéphanie Bury-Moné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, Université Paris-Saclay, F-94235, Cachan, France.
| |
Collapse
|
34
|
Scheres B, van der Putten WH. The plant perceptron connects environment to development. Nature 2017; 543:337-345. [DOI: 10.1038/nature22010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
35
|
Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R, Ingram G, Jönsson H, Locke JCW, Roeder AHK. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. eLife 2017; 6:e19131. [PMID: 28145865 PMCID: PMC5333958 DOI: 10.7554/elife.19131] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process.
Collapse
Affiliation(s)
- Heather M Meyer
- Weill Institute for Cell and Molecular Biology, Cornell University, United States
- The graduate field of Genetics, Genomics, and Development, Cornell University, Ithaca, United States
| | - José Teles
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pau Formosa-Jordan
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Yassin Refahi
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rita San-Bento
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Computational Biology and Biological Physics, Lund University, Lund, Sweden
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Microsoft Research, Cambridge, United Kingdom
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, United States
- The graduate field of Genetics, Genomics, and Development, Cornell University, Ithaca, United States
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, United States
| |
Collapse
|
36
|
Mitchell J, Johnston IG, Bassel GW. Variability in seeds: biological, ecological, and agricultural implications. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:809-817. [PMID: 27784726 DOI: 10.1093/jxb/erw397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Variability is observed in biology across multiple scales, ranging from populations, individuals, and cells to the molecular components within cells. This review explores the sources and roles of this variability across these scales, focusing on seeds. From a biological perspective, the role and the impact this variability has on seed behaviour and adaptation to the environment is discussed. The consequences of seed variability on agricultural production systems, which demand uniformity, are also examined. We suggest that by understanding the basis and underlying mechanisms of variability in seeds, strategies to increase seed population uniformity can be developed, leading to enhanced agricultural production across variable climatic conditions.
Collapse
Affiliation(s)
- Jack Mitchell
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
37
|
Lenser T, Graeber K, Cevik ÖS, Adigüzel N, Dönmez AA, Grosche C, Kettermann M, Mayland-Quellhorst S, Mérai Z, Mohammadin S, Nguyen TP, Rümpler F, Schulze C, Sperber K, Steinbrecher T, Wiegand N, Strnad M, Scheid OM, Rensing SA, Schranz ME, Theißen G, Mummenhoff K, Leubner-Metzger G. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum. PLANT PHYSIOLOGY 2016; 172:1691-1707. [PMID: 27702842 PMCID: PMC5100781 DOI: 10.1104/pp.16.00838] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 05/22/2023]
Abstract
Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University, 07743 Jena, Germany (T.L., F.R., G.T.)
| | - Kai Graeber
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.)
| | - Özge Selin Cevik
- Department of Physiology, Faculty of Medicine, Mersin University, 33343 Mersin, Turkey (Ö.S.C.)
- Department of Physiology, Faculty of Medicine, Mersin University, 33343 Mersin, Turkey (Ö.S.C.);
| | - Nezaket Adigüzel
- Department of Biology, Science Faculty, Gazi University, 06500 Teknikokullar, Ankara, Turkey (N.A.)
- Department of Biology, Science Faculty, Gazi University, 06500 Teknikokullar, Ankara, Turkey (N.A.);
| | - Ali A Dönmez
- Department of Botany, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey (A.A.D.)
- Department of Botany, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey (A.A.D.);
| | - Christopher Grosche
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany (C.G., S.A.R.)
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany (C.G., S.A.R.);
| | - Marcel Kettermann
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
| | - Sara Mayland-Quellhorst
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria (Z.M., O.M.S.)
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria (Z.M., O.M.S.);
| | - Setareh Mohammadin
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
| | - Thu-Phuong Nguyen
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University, 07743 Jena, Germany (T.L., F.R., G.T.)
- Department of Genetics, Friedrich Schiller University, 07743 Jena, Germany (T.L., F.R., G.T.);
| | - Christina Schulze
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.)
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.);
| | - Katja Sperber
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
| | - Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.)
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.);
| | - Nils Wiegand
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (M.S., G.L.-M.)
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (M.S., G.L.-M.)
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria (Z.M., O.M.S.)
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria (Z.M., O.M.S.);
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany (C.G., S.A.R.)
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany (C.G., S.A.R.);
| | - Michael Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands (S.M., T.-P.N., M.E.S.); and
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University, 07743 Jena, Germany (T.L., F.R., G.T.)
- Department of Genetics, Friedrich Schiller University, 07743 Jena, Germany (T.L., F.R., G.T.);
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.)
- Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany (M.K., S.M.-Q., K.S., N.W., K.M.);
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.)
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (M.S., G.L.-M.)
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom (K.G., C.S., T.S., G.L.-M.);
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic (M.S., G.L.-M.)
| |
Collapse
|
38
|
Theißen G, Melzer R. Robust views on plasticity and biodiversity. ANNALS OF BOTANY 2016; 117:693-697. [PMCID: PMC4845811 DOI: 10.1093/aob/mcw066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 06/09/2023]
Abstract
Background How the diversity of life on our planet originated is not completely understood and many questions are still open. Especially, the role of developmental robustness in evolution is an often neglected topic. Scope Considering diverse groups of plants and animals, and employing different concepts and approaches, the authors of articles in this Special Issue try to understand better the impact of developmental robustness, phenotypic plasticity and variance on species diversity, evolution and morphological disparity. Conclusions Several lines of theoretical considerations as well as case studies show that developmental robustness supports rather than prevents the evolution of species diversity, at least under certain circumstances. Among the possible mechanisms is the scenario that developmental robustness facilitates the synorganization of body parts, which may enable the origin of complex novelties; this then may set the ground for species radiation.
Collapse
Affiliation(s)
- Günter Theißen
- Friedrich-Schiller-University Jena, Department of Genetics, Philosophenweg 12, D-07743 Jena, Germany
| | - Rainer Melzer
- University College Dublin, School of Biology and Environmental Science, Belfield, Dublin 4, Ireland
| |
Collapse
|