1
|
Sun Y, Li R, Zhang H, Ye J, Li C. Proteomic Analysis of the Inflorescence Stem Mechanical Strength Difference in Herbaceous Peonies ( Paeonia lactiflora Pall.). ACS OMEGA 2022; 7:34801-34809. [PMID: 36211058 PMCID: PMC9535702 DOI: 10.1021/acsomega.2c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The herbaceous peony (Paeonia lactiflora Pall.) is a traditional rare flower in China, and production of its cut flowers has developed gradually in many places of the world. However, the inflorescence stems of some P. lactiflora cultivars have such low mechanical strength that the cut flower production was severely restricted. To better understand the causes of this problem from a protein expression level, two P. lactiflora cultivars with different inflorescence stem mechanical strengths were analyzed by two-dimensional electrophoresis and MALDI-TOF/MS. More than 1700 clear protein spots were detected, 53 of which varied significantly. Moreover, 23 of the differentially expressed proteins were identified and confirmed and are involved in various biological processes such as metabolism, protein biosynthesis and transport, signal transduction, and defensive response. Especially, cinnamyl alcohol dehydrogenase (CAD) and xyloglucan endotransglucosylase/hydrolase (XTH) were strongly connected to the inflorescence stem mechanical strength in P. lactiflora.
Collapse
|
2
|
Herburger K, Franková L, Pičmanová M, Xin A, Meulewaeter F, Hudson A, Fry SC. Defining natural factors that stimulate and inhibit cellulose:xyloglucan hetero-transglucosylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1549-1565. [PMID: 33314395 PMCID: PMC8611796 DOI: 10.1111/tpj.15131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Certain transglucanases can covalently graft cellulose and mixed-linkage β-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-β-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity. Enzyme assays employed radiolabelled and fluorescently labelled oligomeric acceptor substrates, and were conducted in vitro and in cell walls (in situ). With whole denatured Equisetum cell walls as donor substrate, exogenous EfHTG (extracted from Equisetum or produced in Pichia) exhibited all three activities (CXE, MXE, XET) in competition with each other. Acting on pure cellulose as donor substrate, the CXE action of Pichia-produced EfHTG was up to approximately 300% increased by addition of methanol-boiled Equisetum extracts; there was no similar effect when the same enzyme acted on soluble donors (MLG or xyloglucan). The methanol-stable factor is proposed to be expansin-like, a suggestion supported by observations of pH dependence. Screening numerous low-molecular-weight compounds for hetero-transglucanase inhibition showed that cellobiose was highly effective, inhibiting the abundant endogenous CXE and MXE (but not XET) action in Equisetum internodes. Furthermore, cellobiose retarded Equisetum stem elongation, potentially owing to its effect on hetero-transglucosylation reactions. This work provides insight and tools to further study the role of cellulose hetero-transglucosylation in planta by identifying factors that govern this reaction.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Present address:
Section for Plant GlycobiologyDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg1871Denmark
| | - Lenka Franková
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Martina Pičmanová
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Anzhou Xin
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Frank Meulewaeter
- BBCC Innovation Center Gent – Trait ResearchBASFGent (Zwijnaarde)9052Belgium
| | - Andrew Hudson
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesSchool of Biological SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
3
|
Wang D, Mu Y, Hu X, Ma B, Wang Z, Zhu L, Xu J, Huang C, Pan Y. Comparative proteomic analysis reveals that the Heterosis of two maize hybrids is related to enhancement of stress response and photosynthesis respectively. BMC PLANT BIOLOGY 2021; 21:34. [PMID: 33422018 PMCID: PMC7796551 DOI: 10.1186/s12870-020-02806-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/20/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Heterosis refers to superior traits exhibiting in a hybrid when compared with both parents. Generally, the hybridization between parents can change the expression pattern of some proteins such as non-additive proteins (NAPs) which might lead to heterosis. 'Zhongdan808' (ZD808) and 'Zhongdan909' (ZD909) are excellent maize hybrids in China, however, the heterosis mechanism of them are not clear. Proteomics has been wildly used in many filed, and comparative proteomic analysis of hybrid and its parents is helpful for understanding the mechanism of heterosis in the two maize hybrids. RESULTS Over 2000 protein groups were quantitatively identified from second seedling leaves of two hybrids and their parents by label-free quantification. Statistical analysis of total identified proteins, differentially accumulated proteins (DAPs) and NAPs of the two hybrids revealed that both of them were more similar to their female parents. In addition, most of DAPs were up-regulated and most of NAPs were high parent abundance or above-high parent abundance in ZD808, while in ZD909, most of DAPs were down-regulated and most of NAPs were low parent abundance or below-low parent abundance. Pathway enrichment analysis showed that more of stress response-related NAPs in ZD808 were high parent abundance or above-high parent abundance, and most of PS related NAPs in ZD909 were high parent abundance or above-high parent abundance. Finally, four stress response-related proteins and eight proteins related to PS were verified by PRM, ten of them had significant differences between hybrid and midparent value. CONCLUSIONS Even though every one of the two hybrids were more similar to its female parent at proteome level, the biological basis of heterosis is different in the two maize hybrids. In comparison with their parents, the excellent agronomic traits of hybrid ZD808 is mainly correlated with the high expression levels of some proteins related to stress responses and metabolic functions, while traits of ZD909 is mainly correlated with high expressed proteins related to photosynthesis. Our proteomics results support previous physiological and morphological research and have provided useful information in understanding the reason of valuable agronomic traits.
Collapse
Affiliation(s)
- Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yongying Mu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiaojiao Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, People's Republic of China
| | - Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Zhibo Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiang Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Changling Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, People's Republic of China.
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, People's Republic of China.
| |
Collapse
|