1
|
Backes A, Turchetto C, Mäder G, Segatto ALA, Bonatto SL, Freitas LB. Shades of white: The Petunia long corolla tube clade evolutionary history. Genet Mol Biol 2024; 47:e20230279. [PMID: 38385448 PMCID: PMC10882218 DOI: 10.1590/1415-4757-gmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024] Open
Abstract
Delimiting species is challenging in recently diverged species, and adaptive radiation is fundamental to understanding the evolutionary processes because it requires multiple ecological opportunities associated with adaptation to biotic and abiotic environments. The young Petunia genus (Solanaceae) is an excellent opportunity to study speciation because of its association with pollinators and unique microenvironments. This study evaluated the phylogenetic relationships among a Petunia clade species with different floral syndromes that inhabit several environments. We based our work on multiple individuals per lineage and employed nuclear and plastid phylogenetic markers and nuclear microsatellites. The phylogenetic tree revealed two main groups regarding the elevation of the distribution range, whereas microsatellites showed high polymorphism-sharing splitting lineages into three clusters. Isolation by distance, migration followed by new environment colonization, and shifts in floral syndrome were the motors for lineage differentiation, including infraspecific structuring, which suggests the need for taxonomic revision in the genus.
Collapse
Affiliation(s)
- Alice Backes
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Geraldo Mäder
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ana Lúcia A Segatto
- Universidade Federal de Santa Maria, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | - Sandro L Bonatto
- Pontifícia Universidade Católica do Rio Grande do Sul, A Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Simon L, Soares LS, Freitas LB. Disentangling the causes of high polymorphism sharing in sympatric Petunia species from subtropical highland grasslands: insights from nuclear diversity. Genet Mol Biol 2023; 46:e20230159. [PMID: 37931074 PMCID: PMC10619130 DOI: 10.1590/1678-4685-gmb-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
Genetic polymorphism sharing between closely related and sympatric plant species could result from common ancestry, ancient or recent hybridization. Here we analyzed four Petunia species from the subtropical highland grasslands in southern South America based on nuclear diversity to disentangle the causes of high polymorphism sharing between them. We genotyped microsatellite loci, employed population genetic methods to estimate variability, species limits, and ancient and recent gene flow, and assigned individuals to genetic and taxonomic groups. Finally, we modeled evolutionary processes to determine the impact of Quaternary climate changes on species phylogenetic relationships. Our results indicated that genetic diversity was strongly influenced by expansion and habitat fragmentation during the Quaternary cycles. The extensive polymorphism sharing is mainly due to species' common ancestry, and we did not discard ancient hybridization. Nowadays, niche differentiation is the primary driver for maintaining genetic and morphological limits between the four analysed Petunia species and there is no recent gene flow between them.
Collapse
Affiliation(s)
- Luize Simon
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Luana S Soares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Binaghi M, Esfeld K, Mandel T, Freitas LB, Roesti M, Kuhlemeier C. Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species. BMC Biol 2023; 21:58. [PMID: 36941631 PMCID: PMC10029178 DOI: 10.1186/s12915-023-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.
Collapse
Affiliation(s)
- Marta Binaghi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marius Roesti
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland.
| |
Collapse
|
4
|
Lüthi MN, Berardi AE, Mandel T, Freitas LB, Kuhlemeier C. Single gene mutation in a plant MYB transcription factor causes a major shift in pollinator preference. Curr Biol 2022; 32:5295-5308.e5. [PMID: 36473466 DOI: 10.1016/j.cub.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Understanding the molecular basis of reproductive isolation and speciation is a key goal of evolutionary genetics. In the South American genus Petunia, the R2R3-MYB transcription factor MYB-FL regulates the biosynthesis of UV-absorbing flavonol pigments, a major determinant of pollinator preference. MYB-FL is highly expressed in the hawkmoth-pollinated P. axillaris, but independent losses of its activity in sister taxa P. secreta and P. exserta led to UV-reflective flowers and associated pollinator shifts in each lineage (bees and hummingbirds, respectively). We created a myb-fl CRISPR mutant in P. axillaris and studied the effect of this single gene on innate pollinator preference. The mutation strongly reduced the expression of the two key flavonol-related biosynthetic genes but only affected the expression of few other genes. The mutant flowers were UV reflective as expected but additionally contained low levels of visible anthocyanin pigments. Hawkmoths strongly preferred the wild-type P. axillaris over the myb-fl mutant, whereas both social and solitary bee preference depended on the level of visible color of the mutants. MYB-FL, with its specific expression pattern, small number of target genes, and key position at the nexus of flavonol and anthocyanin biosynthetic pathways, provides a striking example of evolution by single mutations of large phenotypic effect.
Collapse
Affiliation(s)
- Martina N Lüthi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Andrea E Berardi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, POB 15053, Porto Alegre, 91501970 Rio Grande do Sul, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
5
|
Matra DD, Fathoni MAN, Majiidu M, Wicaksono H, Sriyono A, Gunawan G, Susanti H, Sari R, Fitmawati F, Siregar IZ, Widodo WD, Poerwanto R. The genetic variation and relationship among the natural hybrids of Mangifera casturi Kosterm. Sci Rep 2021; 11:19766. [PMID: 34611275 PMCID: PMC8492637 DOI: 10.1038/s41598-021-99381-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Mangifera casturi Kosterm., a mango plant from Kalimantan Selatan, Indonesia, has limited genetic information, severely limiting the research on its genetic variation and phylogeny. We collected M. casturi's genomic information using next-generation sequencing, developed microsatellite markers and performed Sanger sequencing for DNA barcoding analysis. These markers were used to confirm parental origin and genetic diversity of M. casturi hybrids. The clean reads of the Kasturi accession were assembled de novo, producing 259 872 scaffolds (N50 = 1 445 bp). Fourteen polymorphic microsatellite markers were developed from 11 040 microsatellite motif-containing sequences. In total, 58 alleles were produced with a mean of 4.14 alleles per locus. Microsatellite marker analysis revealed broad genetic variation in M. casturi. Phylogenetic analysis was performed using internal transcribed spacers (ITS), matK, rbcL, and trnH-psbA. The phylogenetic tree of chloroplast markers placed Kasturi, Cuban, Pelipisan, Pinari, and Hambawang in one group, with M. indica as the female ancestor. Meanwhile, the phylogenetic tree of ITS markers indicated several Mangifera species as ancestors of M. casturi. Thus, M. casturi very likely originated from the cross-hybridization of multiple ancestors. Furthermore, crossing the F1 hybrids of M. indica and M. quadrifida with other Mangifera spp. may have generated much genetic variation. The genetic information for M. casturi will be a resource for breeding improvement, and conservation studies.
Collapse
Affiliation(s)
- Deden Derajat Matra
- Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Bogor, Indonesia.
- Molecular Science Research Group, Advanced Research Laboratory, Bogor Agricultural University (IPB University), Bogor, Indonesia.
| | - Muh Agust Nur Fathoni
- Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Muhammad Majiidu
- Molecular Science Research Group, Advanced Research Laboratory, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Hanif Wicaksono
- Tunas Meratus Conservation Organization of South Kalimantan, Kandangan, Indonesia
| | - Agung Sriyono
- Banua Botanical Garden, Province of South Kalimantan, Banjarbaru, Indonesia
| | - Gunawan Gunawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru, Indonesia
| | - Hilda Susanti
- Department of Agronomy, Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru, Indonesia
| | - Rismita Sari
- Research Centre for Plant Conservation and Botanic Gardens-Indonesian Institute of Sciences (LIPI), Bogor, Indonesia
| | - Fitmawati Fitmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Indonesia
| | - Iskandar Zulkarnaen Siregar
- Molecular Science Research Group, Advanced Research Laboratory, Bogor Agricultural University (IPB University), Bogor, Indonesia
- Department of Silviculture, Faculty of Forestry and Environment, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Winarso Drajad Widodo
- Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Roedhy Poerwanto
- Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Bogor, Indonesia
| |
Collapse
|
6
|
Genetic Diversity of Blueberry Genotypes Estimated by Antioxidant Properties and Molecular Markers. Antioxidants (Basel) 2021; 10:antiox10030458. [PMID: 33804143 PMCID: PMC8001406 DOI: 10.3390/antiox10030458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022] Open
Abstract
Blueberries (Vaccinium spp.) have gained much attention worldwide because of their potential health benefits and economic importance. Genetic diversity was estimated in blueberry hybrids, wild clones and cultivars by their antioxidant efficacy, total phenolic and flavonoid contents, and express sequence tag–simple sequence repeat (SSR) (EST–SSR), genomic (G)–SSR and express sequence tag–polymerase chain reaction (EST–PCR) markers. Wide diversity existed among the genotypes for antioxidant properties, with the highest variation for DPPH radical scavenging activity (20-fold), followed by the contents of total flavonoids (16-fold) and phenolics (3.8-fold). Although a group of 11 hybrids generated the maximum diversity for antioxidant activity (15-fold), wild clones collected from Quebec, Canada, had the maximum variation for total phenolic (2.8-fold) and flavonoid contents (6.9-fold). Extensive genetic diversity was evident from Shannon’s index (0.34 for EST–SSRs, 0.29 for G–SSR, 0.26 for EST–PCR) and expected heterozygosity (0.23 for EST–SSR, 0.19 for G–SSR, 0.16 for EST–PCR). STRUCTURE analysis separated the genotypes into three groups, which were in agreement with principal coordinate and neighbour-joining analyses. Molecular variance suggested 19% variation among groups and 81% among genotypes within the groups. Clustering based on biochemical data and molecular analysis did not coincide, indicating a random distribution of loci in the blueberry genome, conferring antioxidant properties. However, the stepwise multiple regression analysis (SMRA) revealed that 17 EST–SSR, G–SSR and EST–PCR markers were associated with antioxidant properties. The study is valuable to breeding and germplasm conservation programs.
Collapse
|
7
|
An economic method for the identification of catfish hybrids using microsatellites: a case study of Pseudoplatystoma metaense × Leiarius marmoratus hybrids. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Schnitzler CK, Turchetto C, Teixeira MC, Freitas LB. What could be the fate of secondary contact zones between closely related plant species? Genet Mol Biol 2020; 43:e20190271. [PMID: 32556035 PMCID: PMC7299303 DOI: 10.1590/1678-4685-gmb-2019-0271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
Interspecific hybridization has been fundamental in plant evolution.
Nevertheless, the fate of hybrid zones throughout the generations remains poorly
addressed. We analyzed a pair of recently diverged, interfertile, and sympatric
Petunia species to ask what fate the interspecific hybrid
population has met over time. We analyzed the genetic diversity in two
generations from two contact sites and evaluated the effect of introgression. To
do this, we collected all adult plants from the contact zones, including
canonicals and intermediary colored individuals, and compared them with purebred
representatives of both species based on seven highly informative microsatellite
loci. We compared the genetic diversity observed in the contact zones with what
is seen in isolated populations of each species, considering two generations of
these annual species. Our results have confirmed the genetic differentiation
between the species and the hybrid origin of the majority of the intermediary
colored individuals. We also observed a differentiation related to genetic
variability and inbreeding levels among the populations. Over time, there were
no significant differences per site related to genetic diversity or phenotype
composition. We found two stable populations kept by high inbreeding and
backcross rates that influence the genetic diversity of their parental species
through introgression.
Collapse
Affiliation(s)
- Carolina K Schnitzler
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Marcelo C Teixeira
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Loreta B Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Assessment of Genetic Relationships between Streptocarpus x hybridus V. Parents and F1 Progenies Using SRAP Markers and FT-IR Spectroscopy. PLANTS 2020; 9:plants9020160. [PMID: 32012949 PMCID: PMC7076643 DOI: 10.3390/plants9020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022]
Abstract
The genetic relationship among three Streptocarpus parents and twelve F1 hybrids was assessed using sequence-related amplified polymorphism (SRAP) molecular markers and Fourier-transform infrared (FT-IR) spectroscopy. Both methods were able to discriminate F1 hybrids and parents as revealed by cluster analysis. For hybrid identification, the type III SRAP marker was the most effective due to the presence of male-specific bands in the hybrids. Different behaviors in the biochemical variability of DNA samples have been observed by FT-IR spectral analysis, which might be attributed to the inherent nature of the genomic DNA from parents and their F1 progenies. Mantel test was also carried out to compare morphological, SRAP, and FT-IR results based on genetic distances. The highest correlation coefficient was found between morphological and SRAP marker distances (R = 0.607; p ≤ 0.022). A lower correlation was observed between the morphological and FT-IR distance matrix (R = 0.231; p ≤0.008). Moreover, a positive correlation was found between the distances generated with SRAP and FT-IR analyses (R = 0.026) but was not statistically significant. These findings show that both SRAP and FT-IR techniques combined with morphological descriptions can be used effectively for nonconventional breeding programs for Streptocarpus to obtain new and valuable varieties.
Collapse
|
10
|
Dubey H, Rawal HC, Rohilla M, Lama U, Kumar PM, Bandyopadhyay T, Gogoi M, Singh NK, Mondal TK. TeaMiD: a comprehensive database of simple sequence repeat markers of tea. Database (Oxford) 2020; 2020:baaa013. [PMID: 32159215 PMCID: PMC7065459 DOI: 10.1093/database/baaa013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/05/2020] [Accepted: 01/25/2020] [Indexed: 12/05/2022]
Abstract
Tea is a highly cross-pollinated, woody, perennial tree. High heterozygosity combined with a long gestational period makes conventional breeding a cumbersome process. Therefore, marker-assisted breeding is a better alternative approach when compared with conventional breeding. Considering the large genome size of tea (~3 Gb), information about simple sequence repeat (SSR) is scanty. Thus, we have taken advantage of the recently published tea genomes to identify large numbers of SSR markers in the tea. Besides the genomic sequences, we identified SSRs from the other publicly available sequences such as RNA-seq, GSS, ESTs and organelle genomes (chloroplasts and mitochondrial) and also searched published literature to catalog validated set of tea SSR markers. The complete exercise yielded a total of 935 547 SSRs. Out of the total, 82 SSRs were selected for validation among a diverse set of tea genotypes. Six primers (each with four to six alleles, an average of five alleles per locus) out of the total 27 polymorphic primers were used for a diversity analysis in 36 tea genotypes with mean polymorphic information content of 0.61-0.76. Finally, using all the information generated in this study, we have developed a user-friendly database (TeaMiD; http://indianteagenome.in:8080/teamid/) that hosts SSR from all the six resources including three nuclear genomes of tea and transcriptome sequences of 17 Camellia wild species. Database URL: http://indianteagenome.in:8080/teamid/.
Collapse
Affiliation(s)
- Himanshu Dubey
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Hukam C Rawal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Megha Rohilla
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Urvashi Lama
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - P Mohan Kumar
- Darjeeling Tea Research and Development Centre, Tea Board, Ministry of Commerce, B.T.M. Sarani (Brabourne Road), Kolkata, West Bengal 700001, India
| | - Tanoy Bandyopadhyay
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Madhurjya Gogoi
- Department of Biotechnology, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India
| | - Nagendra Kumar Singh
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Tapan Kumar Mondal
- Indian Council Agricultural Research-National Institute for Plant Biotechnology, Lal Bahadur Sashtri Centre, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| |
Collapse
|
11
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|
12
|
Genetic status of the endangered plant species Gladiolus palustris in the western part of its distribution area. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Backes A, Mäder G, Turchetto C, Segatto AL, Fregonezi JN, Bonatto SL, Freitas LB. How diverse can rare species be on the margins of genera distribution? AOB PLANTS 2019; 11:plz037. [PMID: 31391895 PMCID: PMC6677564 DOI: 10.1093/aobpla/plz037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.
Collapse
Affiliation(s)
- Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Lúcia Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandro L Bonatto
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Do HDK, Jung J, Hyun J, Yoon SJ, Lim C, Park K, Kim JH. The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data. Mol Biol Rep 2019; 46:3287-3297. [PMID: 30980269 DOI: 10.1007/s11033-019-04789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Medicinal effects of Crepidiastrum denticulatum have been previously reported. However, the genomic resources of this species and its applications have not been studied. In this study, based on the next generation sequencing method (Miseq sequencing system), we characterize the chloroplast genome of C. denticulatum which contains a large single copy (84,112 bp) and a small single copy (18,519 bp), separated by two inverted repeat regions (25,074 bp). This genome consists of 80 protein-coding gene, 30 tRNAs, and four rRNAs. Notably, the trnT_GGU is pseudogenized because of a small insertion within the coding region. Comparative genomic analysis reveals a high similarity among Asteraceae taxa. However, the junctions between LSC, SSC, and IRs locate in different positions within rps19 and ycf1 among examined species. Also, we describe a newly developed single nucleotide polymorphism (SNP) marker for C. denticulatum based on amplification-refractory mutation system (ARMS) technique. The markers, inferred from SNP in rbcL and matK genes, show effectiveness to recognize C. denticulatum from other related taxa through simple PCR protocol. The chloroplast genome-based molecular markers are effective to distinguish a potentially medicinal species, C. denticulatum, from other related taxa. Additionally, the complete chloroplast genome of C. denticulatum provides initial genomic data for further studies on phylogenomics, population genetics, and evolutionary history of Crepidiastrum as well as other taxa in Asteraceae.
Collapse
Affiliation(s)
- Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - JongYoung Hyun
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Seok Jeong Yoon
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Chaejin Lim
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Keedon Park
- Incospharm Corp, 328 Techno-2-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
15
|
Islam MR, Li ZZ, Gichira AW, Alam MN, Fu PC, Hu GW, Wang QF, Chen LY. Population Genetics of Calotropis gigantea, a Medicinal and Fiber Resource Plant, as Inferred from Microsatellite Marker Variation in two Native Countries. Biochem Genet 2019; 57:522-539. [PMID: 30734131 DOI: 10.1007/s10528-019-09904-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/04/2019] [Indexed: 11/26/2022]
Abstract
Calotropis gigantea is well known for its aesthetic, medicinal, pharmacological, fodder, fuel, and fiber production potential. Unfortunately, this plant species is still undomesticated, and the genetic information available for crop improvement is limited. For this study, we sampled 21 natural populations of C. gigantea from two key areas of its natural distribution range (Bangladesh and China) and genotyped 379 individuals using nine nuclear microsatellite markers. Population genetic diversity was higher in Bangladesh than that observed in Chinese populations. Overall, a moderate level of genetic diversity was found (Na = 3.73, HE = 0.466), with most of the genetic variation detected within populations (65.49%) and substantial genetic differentiation (FST = 0.345) between the study regions. We observed a significant correlation between genetic and geographic distances (r = 0.287, P = 0.001). The Bayesian clustering, UPGMA tree, and PCoA analyses yielded three distinct genetic pools, but the number of migrants per generation was high (NM = 0.52-2.78) among them. Our analyses also revealed that some populations may have experienced recent demographic bottlenecks. Our study provides a baseline for exploitation of the genetic resources of C. gigantea in domestication and breeding programs as well as some insights into the germplasm conservation of this valuable plant.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Crop Physiology and Ecology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mohammad Nur Alam
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Cheng Fu
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Guang-Wan Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qing-Feng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Ling-Yun Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
16
|
Rodrigues DM, Caballero-Villalobos L, Turchetto C, Assis Jacques R, Kuhlemeier C, Freitas LB. Do we truly understand pollination syndromes in Petunia as much as we suppose? AOB PLANTS 2018; 10:ply057. [PMID: 30386543 PMCID: PMC6202611 DOI: 10.1093/aobpla/ply057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/27/2018] [Indexed: 05/29/2023]
Abstract
Petunia is endemic to South America grasslands; member of this genus exhibit variation in flower colour and shape, attracting bees, hawkmoths or hummingbirds. This group of plants is thus an excellent model system for evolutionary studies of diversification associated with pollinator shifts. Our aims were to identify the legitimate pollinator of Petunia secreta, a rare and endemic species, and to assess the importance of floral traits in pollinator attraction in this Petunia species. To determine the legitimate pollinator, field observations were conducted, and all floral visitors were recorded and evaluated. We also measured the nectar volume and sugar concentration. To characterize morphological cues for pollinators, we assessed the ultraviolet (UV)-light response in detached flowers, and characterized the floral pigments and pollen volatile scents for four different Petunia species that present different pollination syndromes. Petunia secreta shares the most recent ancestor with a white hawkmoth-pollinated species, P. axillaris, but presents flavonols and anthocyanin pigments responsible for the pink corolla colour and UV-light responses that are common to bee-pollinated Petunia species. Our study showed that a solitary bee in the genus Pseudagapostemon was the most frequent pollinator of P. secreta, and these bees collect only pollen as a reward. Despite being mainly bee-pollinated, different functional groups of pollinators visit P. secreta. Nectar volume, sugar concentration per flower, morphology and components of pollen scent would appear to be attractive to several different pollinator groups. Notably, the corolla includes a narrow tube with nectar at its base that cannot be reached by Pseudagapostemon, and flowers of P. secreta appear to follow an evolutionary transition, with traits attractive to several functional groups of pollinators. Additionally, the present study shows that differences in the volatiles of pollen scent are relevant for plant mutualistic and antagonist interactions in Petunia species and that pollen scent profile plays a key role in characterizing pollination syndromes.
Collapse
Affiliation(s)
- Daniele M Rodrigues
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lina Caballero-Villalobos
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosangela Assis Jacques
- Department of Inorganic Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, Altenbergrain, Bern, Switzerland
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Morphological and Genetic Diversity of Sea Buckthorn (Hippophae rhamnoides L.) in the Karakoram Mountains of Northern Pakistan. DIVERSITY 2018. [DOI: 10.3390/d10030076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a dioecious, wind-pollinated shrub growing in Eurasia including the Karakoram Mountains of Pakistan (Gilgit-Baltistan territory). Contrary to the situation in other countries, in Pakistan this species is heavily underutilized. Moreover, a striking diversity of berry colors and shapes in Pakistan raises the question: which varieties might be more suitable for different national and international markets? Therefore, both morphological and genetic diversity of sea buckthorn were studied to characterize and evaluate the present variability, including hypothetically ongoing domestication processes. Overall, 300 sea buckthorn individuals were sampled from eight different populations and classified as wild and supposedly domesticated stands. Dendrometric, fruit and leaf morphometric traits were recorded. Twelve EST-SSRs (expressed sequence tags-simple sequence repeats) markers were used for genotyping. Significant differences in morphological traits were found across populations and between wild and village stands. A significant correlation was found between leaf area and altitude. Twenty-two color shades of berries and 20 dorsal and 15 ventral color shades of leaves were distinguished. Mean genetic diversity was comparatively high (He = 0.699). In total, three distinct genetic clusters were observed that corresponded to the populations’ geographic locations. Considering high allelic richness and genetic diversity, the Gilgit-Baltistan territory seems to be a promising source for selection of improved germplasm in sea buckthorn.
Collapse
|
18
|
Cheng J, Zhang N, Sha ZL. Isolation and characterization of microsatellite markers for exploring introgressive hybridization between the Oratosquilla oratoria complex. Mol Biol Rep 2018; 45:1499-1505. [PMID: 29948633 DOI: 10.1007/s11033-018-4208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
The Japanese mantis shrimp Oratosquilla oratoria is one of the most dominant stomatopod species found in coastal waters of the northwestern Pacific. We previously reported cryptic speciation and hybridization in this taxon by integrating mitochondrial and nuclear evidence. The present study aims at developing potential useful microsatellite markers for the O. oratoria complex through transcriptome sequencing, with a view to reveal the occurrence of hybridization. Of the 100 tested microsatellites, 55 were experimentally validated. 24 of these microsatellites were transferable across different species of the O. oratoria complex and showed polymorphic among individuals. The average number of alleles, observed and expected heterozygosity per locus was 6.125, 0.446 and 0.577 for the temperate species, and 6.083, 0.444 and 0.578 for the subtropical and tropical species. We also explore genetic differentiation and hybridization between O. oratoria cryptic species using these 24 microsatellite loci. The pairwise FST values and phylogenetic tree indicated a strong genetic differentiation between the two cryptic species. In addition, Bayesian analysis provided evidence for the presence of hybridization between the O. oratoria complex. These markers provide valuable genomic resources for exploring introgressive hybridization and expanding understanding of evolution in the O. oratoria complex.
Collapse
Affiliation(s)
- Jiao Cheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100039, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhong-Li Sha
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
19
|
Segatto ALA, Reck-Kortmann M, Turchetto C, Freitas LB. Multiple markers, niche modelling, and bioregions analyses to evaluate the genetic diversity of a plant species complex. BMC Evol Biol 2017; 17:234. [PMID: 29187208 PMCID: PMC5707870 DOI: 10.1186/s12862-017-1084-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023] Open
Abstract
Background The classification of closely related plants is not straightforward. These morphologically similar taxa frequently maintain their inter-hybridization potential and share ancestral polymorphisms as a consequence of their recent divergence. Under the biological species concept, they may thus not be considered separate species. The Petunia integrifolia complex is especially interesting because, in addition to the features mentioned above, its taxa share a pollinator, and their geographical ranges show multiple overlaps. Here, we combined plastid genome sequences, nuclear microsatellites, AFLP markers, ecological niche modelling, and bioregions analysis to investigate the genetic variability between the different taxa of the P. integrifolia complex in a comprehensive sample covering the entire geographical range of the complex. Results Results from molecular markers did not fully align with the current taxonomic classification. Niche modelling and bioregions analyses revealed that taxa were associated with different ecological constraints, indicating that the habitat plays an important role in preserving species boundaries. For three taxa, our analyses showed a mostly conserved, non-overlapping geographical distribution over time. However, for two taxa, niche modelling found an overlapping distribution over time; these taxa were also associated with the same bioregions. Conclusions cpDNA markers were better able to discriminate between Petunia taxa than SSRs and AFLPs. Overall, our results suggest that the P. integrifolia complex represents a continuum of individuals from distant and historically isolated populations, which share some morphological traits, but are established in four different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12862-017-1084-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Maikel Reck-Kortmann
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
20
|
Saha D, Rana RS, Chakraborty S, Datta S, Kumar AA, Chakraborty AK, Karmakar PG. Development of a set of SSR markers for genetic polymorphism detection and interspecific hybrid jute breeding. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Montecinos AE, Guillemin ML, Couceiro L, Peters AF, Stoeckel S, Valero M. Hybridization between two cryptic filamentous brown seaweeds along the shore: analysing pre- and postzygotic barriers in populations of individuals with varying ploidy levels. Mol Ecol 2017; 26:3497-3512. [PMID: 28295812 DOI: 10.1111/mec.14098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/17/2023]
Abstract
We aimed to study the importance of hybridization between two cryptic species of the genus Ectocarpus, a group of filamentous algae with haploid-diploid life cycles that include the principal genetic model organism for the brown algae. In haploid-diploid species, the genetic structure of the two phases of the life cycle can be analysed separately in natural populations. Such life cycles provide a unique opportunity to estimate the frequency of hybrid genotypes in diploid sporophytes and meiotic recombinant genotypes in haploid gametophytes allowing the effects of reproductive barriers preventing fertilization or preventing meiosis to be untangle. The level of hybridization between E. siliculosus and E. crouaniorum was quantified along the European coast. Clonal cultures (568 diploid, 336 haploid) isolated from field samples were genotyped using cytoplasmic and nuclear markers to estimate the frequency of hybrid genotypes in diploids and recombinant haploids. We identified admixed individuals using microsatellite loci, classical assignment methods and a newly developed Bayesian method (XPloidAssignment), which allows the analysis of populations that exhibit variations in ploidy level. Over all populations, the level of hybridization was estimated at 8.7%. Hybrids were exclusively observed in sympatric populations. More than 98% of hybrids were diploids (40% of which showed signs of aneuploidy) with a high frequency of rare alleles. The near absence of haploid recombinant hybrids demonstrates that the reproductive barriers are mostly postzygotic and suggests that abnormal chromosome segregation during meiosis following hybridization of species with different genome sizes could be a major cause of interspecific incompatibility in this system.
Collapse
Affiliation(s)
- Alejandro E Montecinos
- UMI, EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688, Roscoff cedex, France
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Marie-Laure Guillemin
- UMI, EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688, Roscoff cedex, France
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Lucia Couceiro
- UMI, EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688, Roscoff cedex, France
| | - Akira F Peters
- Bezhin Rosko, 40 rue des pêcheurs, 29250, Santec, France
| | - Solenn Stoeckel
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Rennes, France
| | - Myriam Valero
- UMI, EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688, Roscoff cedex, France
| |
Collapse
|
22
|
Barth S, Jankowska MJ, Hodkinson TR, Vellani T, Klaas M. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae). BMC Res Notes 2016; 9:184. [PMID: 27005474 PMCID: PMC4804619 DOI: 10.1186/s13104-016-1994-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 12/03/2022] Open
Abstract
Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3 % Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.
Collapse
Affiliation(s)
- Susanne Barth
- Teagasc Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland.
| | | | | | - Tia Vellani
- Teagasc Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Manfred Klaas
- Teagasc Crops Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| |
Collapse
|
23
|
Turchetto C, Segatto ALA, Mäder G, Rodrigues DM, Bonatto SL, Freitas LB. High levels of genetic diversity and population structure in an endemic and rare species: implications for conservation. AOB PLANTS 2016; 8:plw002. [PMID: 26768602 PMCID: PMC4768524 DOI: 10.1093/aobpla/plw002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 05/23/2023]
Abstract
The analysis of genetic structure and variability of isolated species is of critical importance in evaluating whether stochastic or human-caused factors are affecting rare species. Low genetic diversity compromises the ability of populations to evolve and reduces their chances of survival under environmental changes. Petunia secreta, a rare and endemic species, is an annual and heliophilous herb that is bee-pollinated and easily recognizable by its purple and salverform corolla. It was described as a new species of the Petunia genus in 2005. Few individuals of P. secreta have been observed in nature and little is known about this species. All the natural populations of P. secreta that were found were studied using 15 microsatellite loci, two intergenic plastid sequences and morphological traits. Statistical analysis was performed to describe the genetic diversity of this rare species and the results compared with those of more widespread and frequent Petunia species from the same geographic area to understand whether factors associated with population size could affect rare species of this genus. The results showed that despite its rarity, P. secreta presented high genetic diversity that was equivalent to or even higher than that of widespread Petunia species. It was shown that this species is divided into two evolutionary lineages, and the genetic differentiation indices between them and other congeneric species presented different patterns. The major risk to P. secreta maintenance is its rarity, suggesting the necessity of a preservation programme and more biological and evolutionary studies that handle the two evolutionary lineages independently.
Collapse
Affiliation(s)
- Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Ana Lúcia A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Daniele M Rodrigues
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| | - Sandro L Bonatto
- Laboratory of Genomics and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, 90619-900 Rio Grande do Sul, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PO Box 15053, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
| |
Collapse
|