1
|
Fite T, Tefera T, Goftishu M, Damte T. Genetic diversity and demographic history of the Old World Bollworm,
Helicoverpa armigera
(Hubner) (Lepidoptera: Noctuidae), in Ethiopia inferred from mitochondrial gene sequences. Ecol Evol 2022; 12:e8907. [PMID: 35592065 PMCID: PMC9102519 DOI: 10.1002/ece3.8907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022] Open
Abstract
The Old World bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a globally distributed agricultural and horticultural insect pest. Despite the economic importance of this insect in Ethiopia, its genetic diversity and demographic history are poorly understood. We examined the nucleotide variation of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment of 74 H. armigera individuals from six collection sites in Ethiopia. We recorded 15 COI haplotypes in H. armigera, ten globally shared and five exclusive to Ethiopia (HaET15, HaET14, HaET10, HaET7, and HaET4). Haplotype HaET1 was the most widely geographically distributed and frequent (71.62%). Analysis of molecular variance (AMOVA) revealed a high and significant level of variation within H. armigera populations (θST = −0.0135). Negative values of the neutrality test and nonsignificant index of mismatch distribution supported the demographic expansion of H. armigera populations in Ethiopia; furthermore, this was also supported by the nonsignificant values of the sum of squared deviations (SSD) and raggedness index (r). The high genetic variation and population expansion of H. armigera have immense implications for devising locally adapted management strategies in area‐wide integrated pest management IPM programs. However, a comprehensive study of H. armigera genetic diversity and population structure using various molecular markers is needed for future confirmation.
Collapse
Affiliation(s)
- Tarekegn Fite
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tadele Tefera
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
| | - Muluken Goftishu
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tebekew Damte
- Debre Zeit Agricultural Research Center Pulses, Oil and Fibre Crops Research Team Ethiopian Institute of Agricultural Research Debre Zeit Oromiya Ethiopia
| |
Collapse
|
2
|
Benítez-Benítez C, Otero A, Ford KA, García-Moro P, Donadío S, Luceño M, Martín-Bravo S, Jiménez-Mejías P. An Evolutionary Study of Carex Subg. Psyllophorae (Cyperaceae) Sheds Light on a Strikingly Disjunct Distribution in the Southern Hemisphere, With Emphasis on Its Patagonian Diversification. FRONTIERS IN PLANT SCIENCE 2021; 12:735302. [PMID: 34819937 PMCID: PMC8606891 DOI: 10.3389/fpls.2021.735302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Carex subgenus Psyllophorae is an engaging study group due to its early diversification compared to most Carex lineages, and its remarkable disjunct distribution in four continents corresponding to three independent sections: sect. Psyllophorae in Western Palearctic, sect. Schoenoxiphium in Afrotropical region, and sect. Junciformes in South America (SA) and SW Pacific. The latter section is mainly distributed in Patagonia and the Andes, where it is one of the few Carex groups with a significant in situ diversification. We assess the role of historical geo-climatic events in the evolutionary history of the group, particularly intercontinental colonization events and diversification processes, with an emphasis on SA. We performed an integrative study using phylogenetic (four DNA regions), divergence times, diversification rates, biogeographic reconstruction, and bioclimatic niche evolution analyses. The crown age of subg. Psyllophorae (early Miocene) supports this lineage as one of the oldest within Carex. The diversification rate probably decreased over time in the whole subgenus. Geography seems to have played a primary role in the diversification of subg. Psyllophorae. Inferred divergence times imply a diversification scenario away from primary Gondwanan vicariance hypotheses and suggest long-distance dispersal-mediated allopatric diversification. Section Junciformes remained in Northern Patagonia since its divergence until Plio-Pleistocene glaciations. Andean orogeny appears to have acted as a northward corridor, which contrasts with the general pattern of North-to-South migration for temperate-adapted organisms. A striking niche conservatism characterizes the evolution of this section. Colonization of the SW Pacific took place on a single long-distance dispersal event from SA. The little ecological changes involved in the trans-Pacific disjunction imply the preadaptation of the group prior to the colonization of the SW Pacific. The high species number of the section results from simple accumulation of morphological changes (disparification), rather than shifts in ecological niche related to increased diversification rates (radiation).
Collapse
Affiliation(s)
- Carmen Benítez-Benítez
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Ana Otero
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL, United States
| | - Kerry A. Ford
- Allan Herbarium, Manaaki-Whenua Landcare Research, Lincoln, New Zealand
| | - Pablo García-Moro
- Department of Biology (Botany), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sabina Donadío
- Instituto de Botánica Darwinion (ANCEFN-CONICET), San Isidro, Argentina
| | - Modesto Luceño
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Santiago Martín-Bravo
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Pedro Jiménez-Mejías
- Department of Biology (Botany), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Connection, isolation and reconnection: Quaternary climatic oscillations and the Andes shaped the phylogeographical patterns of the Patagonian bee Centris cineraria (Apidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe joint effect of the Andes as a geographical barrier and the Quaternary glaciations as promoters of genetic divergence remains virtually unexplored in southern South America. To help fill this knowledge gap, in this study we investigated the demographic history of Centris cineraria, a solitary bee mainly distributed in Patagonia. We used mitochondrial and nuclear markers and performed phylogeographical and dating analyses, adjusted spatio-temporal diffusion and species distribution models, and used Approximate Bayesian Computation to identify likely historical demographic scenarios. Our results revealed that during glacial periods the Andes represented a barrier due to the extent of the ice-sheets and the occurrence of unsuitable habitats, while interglacials allowed for gene flow across the Andes. Secondary contact between previously isolated lineages was evident across at least two low-altitude Andean areas, the northern one being a putative glacial refugium. Our findings also suggest that C. cineraria has persisted in situ in four periglacial refugia located along a north–south transect, congruent with the maximum extent of the ice sheet during the Greatest Patagonian Glaciation. As the first phylogeographical study of Patagonian insects, our work reveals that the interaction between Quaternary climatic oscillations and the Andes as a barrier was the main driver of the spatial and demographic history of C. cineraria.
Collapse
|
4
|
Suguiyama VF, Vasconcelos LAB, Rossi MM, Biondo C, de Setta N. The population genetic structure approach adds new insights into the evolution of plant LTR retrotransposon lineages. PLoS One 2019; 14:e0214542. [PMID: 31107873 PMCID: PMC6527191 DOI: 10.1371/journal.pone.0214542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) in plant genomes differ in abundance, structure and genomic distribution, reflecting the large number of evolutionary lineages. Elements within lineages can be considered populations, in which each element is an individual in its genomic environment. In this way, it would be reasonable to apply microevolutionary analyses to understand transposable element (TE) evolution, such as those used to study the genetic structure of natural populations. Here, we applied a Bayesian method to infer genetic structure of populations together with classical phylogenetic and dating tools to analyze LTR-RT evolution using the monocot Setaria italica as a model species. In contrast to a phylogeny, the Bayesian clusterization method identifies populations by assigning individuals to one or more clusters according to the most probabilistic scenario of admixture, based on genetic diversity patterns. In this work, each LTR-RT insertion was considered to be one individual and each LTR-RT lineage was considered to be a single species. Nine evolutionary lineages of LTR-RTs were identified in the S. italica genome that had different genetic structures with variable numbers of clusters and levels of admixture. Comprehensive analysis of the phylogenetic, clusterization and time of insertion data allowed us to hypothesize that admixed elements represent sequences that harbor ancestral polymorphic sequence signatures. In conclusion, application of microevolutionary concepts in genome evolution studies is suitable as a complementary approach to phylogenetic analyses to address the evolutionary history and functional features of TEs.
Collapse
Affiliation(s)
- Vanessa Fuentes Suguiyama
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | - Maria Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cibele Biondo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Nair RR, Karumathil S, Udayan PS, Prakashkumar RP, Sérsic AN. Evolutionary history of Kingiodendron pinnatum(Fabaceae: Caesalpinoideae), an endangered species of the Western Ghats, India: a phylogeographical approach. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | - Sudeesh Karumathil
- Centre for Evolutionary Ecology, Aushmath Biosciences, Coimbatore District, Tamil Nadu, India
| | | | | | - Alicia N Sérsic
- Laboratorio de Ecología Evolutiva – Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET–Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Barrasso DA, Basso NG. Low genetic divergence but many names in the endemic Patagonian frogs of the genus
Atelognathus
(Anura, Batrachylidae): A molecular genetic and morphological perspective. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Andrés Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus‐CONICET) Puerto Madryn Chubut Argentina
- Facultad de Ciencias Naturales y Ciencias de la SaludUniversidad Nacional de la Patagonia “San Juan Bosco” (UNPSJB) Puerto Madryn Chubut Argentina
| | - Néstor Guillermo Basso
- Instituto de Diversidad y Evolución Austral (IDEAus‐CONICET) Puerto Madryn Chubut Argentina
- Facultad de Ciencias Naturales y Ciencias de la SaludUniversidad Nacional de la Patagonia “San Juan Bosco” (UNPSJB) Puerto Madryn Chubut Argentina
| |
Collapse
|
7
|
Pamplona da Silva D. Crossing-effect in non-isolated and non-symmetric systems of patches. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Population genetic structure of the land snail Camaena cicatricosa (Stylommatophora, Camaenidae) in China inferred from mitochondrial genes and ITS2 sequences. Sci Rep 2017; 7:15590. [PMID: 29142227 PMCID: PMC5688059 DOI: 10.1038/s41598-017-15758-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/01/2017] [Indexed: 02/01/2023] Open
Abstract
The phylogeographic structure of the land snail Camaena cicatricosa was analyzed in this study based on mitochondrial gene (COI and 16srRNA, mt DNA) and internal transcribed spacer (ITS2) sequences in 347 individuals. This snail is the vector of the zoonotic food-borne parasite Angiostrongylus cantonensis and one of the main harmful snails distributed exclusively in China. The results revealed significant fixation indices of genetic differentiation and high gene flow between most populations except several populations. An isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among C. cicatricosa populations, which suggested that gene flow was not restricted by distance. The levels of haplotype and nucleotide diversity of C. cicatricosa were generally high, except those in some special populations, according to the mt DNA and ITS2 data. Furthermore, the phylogenetic trees and asteroid networks of haplotypes indicated nonobvious genetic structure, the same as results got based on the synonymous and non synonymous sites of 347 sequences of the COI gene. All lines of evidence indicated that climatic changes and geographical and human barriers do not substantially affect the current population structure and distribution of the investigated snails.
Collapse
|