1
|
Slate ML, Antoninka A, Bailey L, Berdugo MB, Callaghan DA, Cárdenas M, Chmielewski MW, Fenton NJ, Holland-Moritz H, Hopkins S, Jean M, Kraichak BE, Lindo Z, Merced A, Oke T, Stanton D, Stuart J, Tucker D, Coe KK. Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles. THE NEW PHYTOLOGIST 2024; 242:2411-2429. [PMID: 38659154 DOI: 10.1111/nph.19772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.
Collapse
Affiliation(s)
- Mandy L Slate
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Lydia Bailey
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Monica B Berdugo
- Plant Ecology and Geobotany, Department of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany
| | - Des A Callaghan
- Bryophyte Surveys Ltd, Almondsbury, South Gloucestershire, BS32 4DU, UK
| | - Mariana Cárdenas
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Nicole J Fenton
- Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Samantha Hopkins
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Mélanie Jean
- Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Bier Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University in Bangkok, Bangkok, 10900, Thailand
| | - Zoë Lindo
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Amelia Merced
- Department of Biology, University of Puerto Rico Río Piedras, San Juan, PR, 00925, USA
| | - Tobi Oke
- Wildlife Conservation Society & School of Environment & Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Daniel Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julia Stuart
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
- Mountain Planning Service Group, US Forest Service, Lakewood, CO, 80401, USA
| | - Daniel Tucker
- School of Environmental Studies, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Kirsten K Coe
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| |
Collapse
|
2
|
Esteban R, Pollastri S, Brilli F, García-Plazaola JI, Odriozola I, Michelozzi M, Loreto F. Dehydration and rehydration differently affect photosynthesis and volatile monoterpenes in bryophytes with contrasting ecological traits. PHYSIOLOGIA PLANTARUM 2024; 176:e14395. [PMID: 38922932 DOI: 10.1111/ppl.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/10/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Bryophytes desiccate rapidly when relative humidity decreases. The capacity to withstand dehydration depends on several ecological and physiological factors. Volatile organic compounds (VOCs) may have a role in enhancing tolerance to desiccating bryophytes. However, the functions of VOCs in bryophytes have received little attention so far. We aimed to investigate the impact of a dehydration-rehydration treatment on primary carbon metabolism and volatile terpenes (VTs) in three bryophytes with contrasting ecological traits: Vessicularia dubyana, Porella platyphylla and Pleurochaete squarrosa. First, we confirmed the desiccation sensitivity gradient of the species. Under fully hydrated conditions, the photosynthetic rate (A) was inversely associated with stress tolerance, with a lower rate in more tolerant species. The partial recovery of A in P. platyphylla and P. squarrosa after rehydration confirmed the desiccation tolerance of these two species. On the other hand, A did not recover after rehydration in V. dubyana. Regarding VT, each species exhibited a distinct VT profile under optimum hydration, with the highest VT pool found in the more desiccation-sensitive species (V. dubyana). However, the observed species-specific VT pattern could be associated with the ecological habitat of each species. P. squarrosa, a moss of dry habitats, may synthesize mainly non-volatile secondary metabolites as stress-defensive compounds. On the other hand, V. dubyana, commonly found submerged, may need to invest photosynthetically assimilated carbon to synthesize a higher amount of VTs to cope with transient water stress occurrence. Further research on the functions of VTs in bryophytes is needed to deepen our understanding of their ecological significance.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | | | - Iñaki Odriozola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
- Department of Biology, University of Naples Federico II, Italy
| |
Collapse
|
3
|
Nikolić N, Zotz G, Bader MY. Modelling the carbon balance in bryophytes and lichens: Presentation of PoiCarb 1.0, a new model for explaining distribution patterns and predicting climate-change effects. AMERICAN JOURNAL OF BOTANY 2024; 111:e16266. [PMID: 38038342 DOI: 10.1002/ajb2.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
PREMISE Bryophytes and lichens have important functional roles in many ecosystems. Insight into their CO2 -exchange responses to climatic conditions is essential for understanding current and predicting future productivity and biomass patterns, but responses are hard to quantify at time scales beyond instantaneous measurements. We present PoiCarb 1.0, a model to study how CO2 -exchange rates of these poikilohydric organisms change through time as a function of weather conditions. METHODS PoiCarb simulates diel fluctuations of CO2 exchange and estimates long-term carbon balances, identifying optimal and limiting climatic patterns. Modelled processes were net photosynthesis, dark respiration, evaporation and water uptake. Measured CO2 -exchange responses to light, temperature, atmospheric CO2 concentration, and thallus water content (calculated in a separate module) were used to parameterize the model's carbon module. We validated the model by comparing modelled diel courses of net CO2 exchange to such courses from field measurements on the tropical lichen Crocodia aurata. To demonstrate the model's usefulness, we simulated potential climate-change effects. RESULTS Diel patterns were reproduced well, and the modelled and observed diel carbon balances were strongly positively correlated. Simulated warming effects via changes in metabolic rates were consistently negative, while effects via faster drying were variable, depending on the timing of hydration. CONCLUSIONS Reproducing weather-dependent variation in diel carbon balances is a clear improvement compared to simply extrapolating short-term measurements or potential photosynthetic rates. Apart from predicting climate-change effects, future uses of PoiCarb include testing hypotheses about distribution patterns of poikilohydric organisms and guiding conservation strategies for species.
Collapse
Affiliation(s)
- Nada Nikolić
- Faculty of Geography, Ecological Plant Geography, University of Marburg, Germany
| | - Gerhard Zotz
- University of Oldenburg, Institute for Biology and Environmental Sciences, Functional Ecology of Plants, Germany
| | - Maaike Y Bader
- Faculty of Geography, Ecological Plant Geography, University of Marburg, Germany
| |
Collapse
|
4
|
Sheng X, Qiying C, Shifeng S, Liu Yizhen, Bicai G, Lan W, Gang G. The trait co-variation regulates the response of bryophytes to nitrogen deposition: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122739. [PMID: 37852313 DOI: 10.1016/j.envpol.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The nitrogen deposition has the potential to alter the trait composition of plant communities by affecting the fitness and physiological adaptation of species, consequently exerting an influence on ecosystem processes. Despite the importance of bryophytes in nutrient and carbon dynamics across different ecosystems, there is a lack of research examining the relationship between nitrogen deposition and the co-variation of bryophyte traits. To address this gap, a meta-analysis was conducted using data from 27 independent studies to investigate potential associations between trait co-variation of bryophytes and nitrogen deposition. The results revealed that interspecific variability regulates the influence of nitrogen deposition on bryophytes by affecting trait co-variation. Multiple correspondence analysis identified six combinations of closely related traits. For example, species with unbranched main stems frequently exhibit robust leaf midribs, leading to leaf wrinkling and leaf clasping around the stem as a response to water loss. Some weft or mat species tend to obtain resources (nitrogen) through their scale hairs on the main stem. Some species with narrow leaves require leaf teeth to maintain a normal leaf shape. The subgroup analyses indicated that certain traits, including unbranched main stem, changes in leaf morphology, robust leaf midrib, main stem without scale hairs, narrow leaf, leaf margin with teeth, undeveloped apophysis, and erect capsule minimize interaction with pollutants and represent a resource strategy. Conversely, functional traits representing a resource acquisition strategy, such as branched main stem, no changes in leaf morphology, short and weak leaf midrib, main stem with scale hairs, broad leaf, leaf margin without teeth, developed apophysis, and non-erect capsule increase pollutant exposure. Overall, our results suggest that anthropogenic global change may significantly impact bryophytes due to changes in their individual physiology and colony ecological indicators caused by increased nitrogen deposition.
Collapse
Affiliation(s)
- Xu Sheng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Cai Qiying
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Sun Shifeng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liu Yizhen
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Guan Bicai
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Wu Lan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Ge Gang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
He Y, Bader MY, Li D, Stark LR, Li X, Liu X, Yuan Q, Guo S, Fang Z, Wang Z. Relationships among sporophytic and gametophytic traits of 27 subtropical montane moss species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16253. [PMID: 37938812 DOI: 10.1002/ajb2.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PREMISE Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.
Collapse
Affiliation(s)
- Yunyu He
- Shanghai Normal University, Shanghai, 200234, China
| | - Maaike Y Bader
- Ecological Plant Geography, Faculty of Geography, University of Marburg, Marburg, 35032, Germany
| | - Dandan Li
- Shanghai Normal University, Shanghai, 200234, China
| | - Lloyd R Stark
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89154-4004, USA
| | - Xiaoming Li
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Liu
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qizhang Yuan
- Shanghai Normal University, Shanghai, 200234, China
| | | | - Zhiqiang Fang
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu, 610041, China
| | - Zhe Wang
- Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
6
|
Roth-Nebelsick A, Konrad W, Ebner M, Miranda T, Thielen S, Nebelsick JH. When rain collides with plants-patterns and forces of drop impact and how leaves respond to them. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1155-1175. [PMID: 35038724 DOI: 10.1093/jxb/erac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Raindrop impact on leaves is a common event which is of relevance for numerous processes, including the dispersal of pathogens and propagules, leaf wax erosion, gas exchange, leaf water absorption, and interception and storage of rainwater by canopies. The process of drop impact is complex, and its outcome depends on many influential factors. The wettability of plants has been recognized as an important parameter which is itself complex and difficult to determine for leaf surfaces. Other important parameters include leaf inclination angle and the ability of leaves to respond elastically to drop impact. Different elastic motions are initiated by drop impact, including local deformation, flapping, torsion, and bending, as well as 'swinging' of the petiole. These elastic responses, which occur on different time scales, can affect drop impact directly or indirectly, by changing the leaf inclination. An important feature of drop impact is splashing, meaning the fragmentation of the drop with ejection of satellite droplets. This process is promoted by the kinetic energy of the drop and leaf traits. For instance, a dense trichome cover can suppress splashing. Basic drop impact patterns are presented and discussed for a number of different leaf types, as well as some exemplary mosses.
Collapse
Affiliation(s)
- Anita Roth-Nebelsick
- State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany
| | - Wilfried Konrad
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
- Technical University of Dresden, Institute of Botany, Zellescher Weg 20b, D-01217 Dresden, Germany
| | - Martin Ebner
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| | - Tatiana Miranda
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Hölderlinstr. 12, D-72074 Tübingen, Germany
| | - Sonja Thielen
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| | - James H Nebelsick
- University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, D-72076 Tübingen, Germany
| |
Collapse
|
7
|
Bengtsson F, Granath G, Cronberg N, Rydin H. Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses. ANNALS OF BOTANY 2020; 126:219-230. [PMID: 32185391 PMCID: PMC7523593 DOI: 10.1093/aob/mcaa033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS The ecosystem engineers Sphagnum (peat mosses) are responsible for sequestering a large proportion of carbon in northern peatlands. Species may respond differently to hydrological changes, and water level changes may lead to vegetation shifts in peatlands, causing them to revert from sinks to sources of carbon. We aimed to compare species-specific responses to water level drawdown within Sphagnum, and investigate which traits affect water economy in this genus. METHODS In a mesocosm experiment, we investigated how water level drawdown affected water content (WC) in the photosynthetically active apex of the moss and maximum quantum yield of photosystem II (i.e. Fv/Fm) of 13 Sphagnum species. Structural traits were measured, and eight anatomical traits were quantified from scanning electron microscopy micrographs. KEY RESULTS Mixed-effects models indicated that at high water level, large leaves were the most influential predictor of high WC, and at low water level WC was higher in species growing drier in the field, with larger hyaline cell pore sizes and total pore areas associated with higher WC. Higher stem and peat bulk density increased WC, while capitulum mass per area and numerical shoot density did not. We observed a clear positive relationship between Fv/Fm and WC in wet-growing species. CONCLUSIONS While we found that most hummock species had a relatively high water loss resistance, we propose that some species are able to maintain a high WC at drawdown by storing large amounts of water at a high water level. Our result showing that leaf traits are important warrants further research using advanced morphometric methods. As climate change may lead to more frequent droughts and thereby water level drawdowns in peatlands, a mechanistic understanding of species-specific traits and responses is crucial for predicting future changes in these systems.
Collapse
Affiliation(s)
- Fia Bengtsson
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Gustaf Granath
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Nils Cronberg
- Department of Biology, Lund University, Ecology Building, SE-22362 Lund, Sweden
| | - Håkan Rydin
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
8
|
Moreno F, Moreno J, Fatela F, Guise L, Vieira C, Leira M. Bromine biogeodynamics in the NE Atlantic: A perspective from natural wetlands of western Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137649. [PMID: 32208235 DOI: 10.1016/j.scitotenv.2020.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Bromine (Br) cycling in natural wetlands is highly complex, including abiotic/biotic processes and multiphase inorganic/organic Br-species. Wetland ecosystems receive Br primarily from the ocean, functioning as either sinks or sources of Br, with the overall imbalance largely decided by the prevailing climate. Aiming to trace the present-day transport of oceanogenic Br (i.e., derived from salt-water spray-droplets) and its uptake and storage in brackish and freshwater wetlands, we surveyed waters, autochthonous plants, and soils/sediments from coastal marshes and mountain peatlands in the westernmost fringe of northern Portugal. The calculated enrichment factors of bromide (Br-) relative to chloride in rainfall (EFsea = 16.8-75.3), rivers (EFsea = 1.3-13.9) and wetland waters, superficial (EFsea = 5.8-13.1) and interstitial (EFsea = 2.1-8.9), increased towards the inland highlands. We hypothesized that these values derived mostly from a known Br autocatalytic (heterogeneous) chemical cycle, starting at the seawater-aqueous interface and progressing in altitude. Br-bearing air masses are carried far from the Atlantic Ocean by moist westerlies, with Br- rainout from the atmosphere supplying the neighbouring mountain peatlands. Average [Br] in sampled wetland soils/sediments (111-253 mg/kg) agreed with values from other coastal regions, and they were directly correlated with the abundance of organic matter, varying irrespective the [Br-] of interstitial waters (129 μg/L-79 mg/L). According to the computed bioconcentration factors, the aqueous component was the major source of Br for all plant species investigated (BFplant/water = 2.1-508.0), as described elsewhere. However, Br contents in plants (14-173 mg/kg) evidenced interspecific differences, also suggesting a divergence from the acknowledged halophytic-glycophytic "model". As plants are recognized producers of Br volatile molecules (e.g., methyl bromide, CH3Br), we interpreted translocation factors less than one in vascular species as explanatory of phytovolatilization rather than restriction of Br- upward movement in plants. Further investigation is needed, since considerable intrinsic plant variations in CH3Br emissions are mentioned in the literature.
Collapse
Affiliation(s)
- F Moreno
- Instituto de Ciências da Terra (ICT), Pólo da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J Moreno
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - F Fatela
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - L Guise
- Departamento de Ciências da Terra (DCT), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - C Vieira
- Museu de História Natural e Ciência da Universidade do Porto (MHNC-UP)/UPorto/Infra-estrutura de Colecções Científicas Portuguesas - (PRIS-POCI-01-0145FEDER-022168), Praça Gomes Teixeira, 4099-002 Porto, Portugal
| | - M Leira
- Departamento de Bioloxía, Universidade da Coruña, Campus da Zapateira, 15071A Coruña, Spain
| |
Collapse
|
9
|
Carriquí M, Roig-Oliver M, Brodribb TJ, Coopman R, Gill W, Mark K, Niinemets Ü, Perera-Castro AV, Ribas-Carbó M, Sack L, Tosens T, Waite M, Flexas J. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. THE NEW PHYTOLOGIST 2019; 222:1256-1270. [PMID: 30623444 DOI: 10.1111/nph.15675] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/22/2018] [Indexed: 05/08/2023]
Abstract
Photosynthesis in bryophytes and lycophytes has received less attention than terrestrial plant groups. In particular, few studies have addressed the nonstomatal diffusion conductance to CO2 gnsd of these plant groups. Their lower photosynthetic rate per leaf mass area at any given nitrogen concentration compared with vascular plants suggested a stronger limitation by CO2 diffusion. We hypothesized that bryophyte and lycophyte photosynthesis is largely limited by low gnsd . Here, we studied CO2 diffusion inside the photosynthetic tissues and its relationships with photosynthesis and anatomical parameters in bryophyte and lycophyte species in Antarctica, Australia, Estonia, Hawaii and Spain. On average, lycophytes and, specially, bryophytes had the lowest photosynthetic rates and nonstomatal diffusion conductance reported for terrestrial plants. These low values are related to their very thick cell walls and their low exposure of chloroplasts to cell perimeter. We conclude that the reason why bryophytes lie at the lower end of the leaf economics spectrum is their strong nonstomatal diffusion conductance limitation to photosynthesis, which is driven by their specific anatomical characteristics.
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Rafael Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Warwick Gill
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohte 6, 10130, Tallinn, Estonia
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Mashuri Waite
- Center for Regional System Analysis, Planning, and Development, Bogor Agricultural University, Bogor, 16153, Indonesia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| |
Collapse
|