1
|
Zhao Y, Liao LB, Zhu ZW, Zhang LD, Xiong ZD, Song ZP, Yan N, Zhong AW, Zhang J, Zhou CC, Rong J. De novo assembly of a near-complete genome of aquatic vegetable Zizania latifolia in the Yangtze River Basin. Sci Data 2024; 11:1341. [PMID: 39695195 PMCID: PMC11655518 DOI: 10.1038/s41597-024-04220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
The cultivated Zizania latifolia, an aquatic vegetable prevalent in the Yangtze River Basin, represents a unique plant-fungus complex whose domestication is associated with host-parasite co-evolution. In this study, we present a high-quality, chromosome-scale genome assembly of cultivated Z. latifolia. We employed PacBio long-read sequencing and Hi-C technology to generate ~578.42 Mb genome assembly, which contains 47.59% repeat sequences with a contig N50 of ~33.75 Mb. The contigs were successfully clustered into 17 chromosomal-sized scaffolds with a GC content of 43.26%, showing 98.39% completeness in BUSCO analysis. In total, we predicted 39,934 protein-coding genes, 88.79% of which could be functionally annotated. This genome assembly provides a valuable resource for unraveling Z. latifolia's domestication process, and advances our understanding of the evolutionary history and agricultural potential of Z. latifolia.
Collapse
Affiliation(s)
- Yao Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Li-Bing Liao
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Zi-Wei Zhu
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China
| | - Li-Dong Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zi-Dong Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Zhi-Ping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai, 200438, P. R. China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Ai-Wen Zhong
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China
| | - Jian Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
| | - Cheng-Chuan Zhou
- Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi, P. R. China.
| | - Jun Rong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base, National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.
- Jiangxi Province Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, P. R. China.
| |
Collapse
|
2
|
Zou Y, Yang W, Zhang R, Xu X. Signatures of local adaptation and maladaptation to future climate in wild Zizania latifolia. Commun Biol 2024; 7:1313. [PMID: 39396070 PMCID: PMC11470956 DOI: 10.1038/s42003-024-07036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Global climate change poses challenges to agricultural production and food security. Assessing the adaptive capacity of crop wild relatives to future climate is important for protecting key germplasm resources and breeding new crops. We performed population genomics, genotype-environment association analyses, and genomic offset assessment of Chinese wild rice, Zizania latifolia, a crop wild relative and potential new grain crop, based on 168 individuals from 42 populations. We found two genetic lineages in Z. latifolia, corresponding to the south and north of its range, that diverged during the Late Pleistocene. We also identified lineage-specific positively selected genes associated with flower development and flowering, seed shattering, pathogen defense response and cold tolerance. We further found that populations from southeastern China are the most maladapted to future climate and should be prioritized for conservation. Our findings provide important clues for leveraging existing genetic diversity to identify important germplasm resources and create climate-resilient crops.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weidong Yang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruxue Zhang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Xie YN, Qi QQ, Li WH, Li YL, Zhang Y, Wang HM, Zhang YF, Ye ZH, Guo DP, Qian Q, Zhang ZF, Yan N. Domestication, breeding, omics research, and important genes of Zizania latifolia and Zizania palustris. FRONTIERS IN PLANT SCIENCE 2023; 14:1183739. [PMID: 37324716 PMCID: PMC10266587 DOI: 10.3389/fpls.2023.1183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wan-Hong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Fen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zi-Hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Pathirana R, Carimi F. Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. PLANTS 2022; 11:plants11152038. [PMID: 35956515 PMCID: PMC9370719 DOI: 10.3390/plants11152038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022]
Abstract
Despite the dramatic increase in food production thanks to the Green Revolution, hunger is increasing among human populations around the world, affecting one in nine people. The negative environmental and social consequences of industrial monocrop agriculture is becoming evident, particularly in the contexts of greenhouse gas emissions and the increased frequency and impact of zoonotic disease emergence, including the ongoing COVID-19 pandemic. Human activity has altered 70–75% of the ice-free Earth’s surface, squeezing nature and wildlife into a corner. To prevent, halt, and reverse the degradation of ecosystems worldwide, the UN has launched a Decade of Ecosystem Restoration. In this context, this review describes the origin and diversity of cultivated species, the impact of modern agriculture and other human activities on plant genetic resources, and approaches to conserve and use them to increase food diversity and production with specific examples of the use of crop wild relatives for breeding climate-resilient cultivars that require less chemical and mechanical input. The need to better coordinate in situ conservation efforts with increased funding has been highlighted. We emphasise the need to strengthen the genebank infrastructure, enabling the use of modern biotechnological tools to help in genotyping and characterising accessions plus advanced ex situ conservation methods, identifying gaps in collections, developing core collections, and linking data with international databases. Crop and variety diversification and minimising tillage and other field practices through the development and introduction of herbaceous perennial crops is proposed as an alternative regenerative food system for higher carbon sequestration, sustaining economic benefits for growers, whilst also providing social and environmental benefits.
Collapse
Affiliation(s)
- Ranjith Pathirana
- Plant & Food Research Australia Pty Ltd., Waite Campus Research Precinct—Plant Breeding WT46, University of Adelaide, Waite Rd, Urrbrae, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Campus Research Precinct—Plant Breeding WT46, University of Adelaide, Waite Rd, Urrbrae, SA 5064, Australia
- Correspondence:
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), C.N.R., Corso Calatafimi 414, 90129 Palermo, Italy
| |
Collapse
|
5
|
Wagutu GK, Fan X, Fu W, Tengwer MC, Li W, Chen Y. Genetic structure of wild rice Zizania latifolia in an expansive heterogeneous landscape along a latitudinal gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.929944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global aquatic habitats are undergoing rapid degradation and fragmentation as a result of climate change and changes in land use. Understanding the genetic variability and adaptive potential of aquatic plant species is thus important for conservation purposes. In this study, we investigated the genetic diversity and structure of the extant natural populations of Zizania latifolia from five river basins in China based on 46 microsatellite markers. We tested isolation by environment (IBE), isolation by resistance (IBR), and isolation by distance (IBD) patterns using a reciprocal causal model (RCM). Furthermore, we elucidated the impact of the environment on Z. latifolia genetic diversity using generalized linear models (GLMs) and spatially explicit mixed models. Low genetic diversity (HE = 0.125–0.433) and high genetic differentiation (FST = 0.641, Øpt = 0.654) were found. Higher historical gene flow (MH = 0.212–2.354) than contemporary gene flow (MC = 0.0112–0.0247) and significant bottlenecks in almost all populations were identified, highlighting the negative impact of wetland fragmentation. The IBE model was exclusively supported for all populations and in three river basins. The IBD and IBR models were supported in one river basin each. The maximum temperature of the warmest month and precipitation seasonality were the plausible environmental parameters responsible for the observed pattern of genetic diversity. Local adaptation signatures were found, with nine loci identified as outliers, four of which were gene-linked and associated with environmental variables. Based on these findings, IBE is more important than IBD and IBR in shaping the genetic structure of Z. latifolia.
Collapse
|
6
|
Transgenerational Genetic Effects Help Explain Latitudinal Variation in Seed Mass and Germination Timing in Plantago lanceolata. PLANTS 2022; 11:plants11040522. [PMID: 35214858 PMCID: PMC8880339 DOI: 10.3390/plants11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
We know little about the underlying genetic control of phenotypic patterns of seed traits across large-scale geographic and environmental gradients. Such knowledge is important for understanding the evolution of populations within species and for improving species conservation. Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between northern and southern genotypes that span the species’ range in Europe. The results provide evidence of transgenerational genetic effects on seed mass and germination timing. Northern mothers produced larger seeds with delayed germination, in contrast to southern mothers, which produced smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germination timing can be explained, in part, by the direct influence of maternal genotype, independent of zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers exploring the existence and evolution of large-scale geographic variation within species test for transgenerational genetic effects. In addition, data suggest that transgenerational control of seed traits should be considered when developing procedures designed to facilitate species conservation and restoration.
Collapse
|
7
|
Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 2020; 331:127293. [DOI: 10.1016/j.foodchem.2020.127293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
|