1
|
Salomón RL, Helm J, Gessler A, Grams TEE, Hilman B, Muhr J, Steppe K, Wittmann C, Hartmann H. The quandary of sources and sinks of CO2 efflux in tree stems-new insights and future directions. TREE PHYSIOLOGY 2024; 44:tpad157. [PMID: 38214910 DOI: 10.1093/treephys/tpad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.
Collapse
Affiliation(s)
- Roberto L Salomón
- Universidad Politécnica de Madrid (UPM), Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Antonio Novais 10, 28040, Madrid, Spain
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Juliane Helm
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Department of Environmental Sciences - Botany, Basel University, Schönbeinstr. 6, Basel CH-4056, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Rämistrasse 101, 8902 Zurich, Switzerland
| | - Thorsten E E Grams
- Technical University of Munich, Ecophysiology of Plants, Land Surface - Atmosphere Interactions, Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Boaz Hilman
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
| | - Jan Muhr
- Department of Forest Botany and Tree Physiology, Laboratory for Radioisotopes, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathy Steppe
- Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
| | - Christiane Wittmann
- Faculty of Biology, Botanical Garden, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Henrik Hartmann
- Max-Planck-Institute for Biogeochemistry, Biogeochemical Processes, Hans-Knöll-Str. 10, 07743 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484 Quedlinburg, Germany
| |
Collapse
|
2
|
Ren Y, Wang H, Harrison SP, Prentice IC, Atkin OK, Smith NG, Mengoli G, Stefanski A, Reich PB. Reduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis. THE NEW PHYTOLOGIST 2024; 241:578-591. [PMID: 37897087 DOI: 10.1111/nph.19355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Leaf dark respiration (Rd ) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models. We hypothesized that Rd and Rubisco carboxylation capacity (Vcmax ) at 25°C (Rd,25 , Vcmax,25 ) are coordinated so that Rd,25 variations support Vcmax,25 at a level allowing full light use, with Vcmax,25 reflecting daytime conditions (for photosynthesis), and Rd,25 /Vcmax,25 reflecting night-time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5-yr warming experiment, and spatially using an extensive field-measurement data set. We compared the results to three published alternatives: Rd,25 declines linearly with daily average prior temperature; Rd at average prior night temperatures tends towards a constant value; and Rd,25 /Vcmax,25 is constant. Our hypothesis accounted for more variation in observed Rd,25 over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night-time temperature dominated the seasonal time-course of Rd , with an apparent response time scale of c. 2 wk. Vcmax dominated the spatial patterns. Our acclimation hypothesis results in a smaller increase in global Rd in response to rising CO2 and warming than is projected by the two of three alternative hypotheses, and by current models.
Collapse
Affiliation(s)
- Yanghang Ren
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Han Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Sandy P Harrison
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Reading, RG6 6AH, UK
| | - I Colin Prentice
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Giulia Mengoli
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
3
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Salomón RL, De Roo L, Oleksyn J, Steppe K. Mechanistic drivers of stem respiration: A modelling exercise across species and seasons. PLANT, CELL & ENVIRONMENT 2022; 45:1270-1285. [PMID: 34914118 DOI: 10.1111/pce.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Stem respiration (RS ) plays a crucial role in plant carbon budgets. However, its poor understanding limits our ability to model woody tissue and whole-tree respiration. A biophysical model of stem water and carbon fluxes (TReSpire) was calibrated on cedar, maple and oak trees during spring and late summer. For this, stem sap flow, water potential, diameter variation, temperature, CO2 efflux, allometry and biochemistry were monitored. Shoot photosynthesis (PN ) and nonstructural carbohydrates (NSC) were additionally measured to evaluate source-sink relations. The highest RS and stem growth was found in maple and oak during spring, both being seasonally decoupled from PN and [NSC]. Temperature largely affected maintenance respiration (RM ) in the short term, but temperature-normalized RM was highly variable on a seasonal timescale. Overall, most of the respired CO2 radially diffused to the atmosphere (>87%) while the remainder was transported upward with the transpiration stream. The modelling exercise highlights the sink-driven behaviour of RS and the significance of overall metabolic activity on nitrogen (N) allocation patterns and N-normalized respiratory costs to capture RS variability over the long term. These insights should be considered when modelling plant respiration, whose representation is currently biased towards a better understanding of leaf metabolism.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Körnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Fan Y, Scafaro AP, Asao S, Furbank RT, Agostino A, Day DA, von Caemmerer S, Danila FR, Rug M, Webb D, Lee J, Atkin OK. Dark respiration rates are not determined by differences in mitochondrial capacity, abundance and ultrastructure in C 4 leaves. PLANT, CELL & ENVIRONMENT 2022; 45:1257-1269. [PMID: 35048399 DOI: 10.1111/pce.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Our understanding of the regulation of respiration in C4 plants, where mitochondria play different roles in the different types of C4 photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (Rdark ), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent rates of Rdark are associated with mitochondrial number, volume and ultrastructure. Based on examination of a single species per C4 type, we found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C4 types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and Rdark . We suggest that Rdark is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.
Collapse
Affiliation(s)
- Yuzhen Fan
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew P Scafaro
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Asao
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert T Furbank
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Antony Agostino
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Susanne von Caemmerer
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florence R Danila
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Owen K Atkin
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Suárez JC, Urban MO, Contreras AT, Noriega JE, Deva C, Beebe SE, Polanía JA, Casanoves F, Rao IM. Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia. FRONTIERS IN PLANT SCIENCE 2021; 12:644010. [PMID: 34912351 PMCID: PMC8667034 DOI: 10.3389/fpls.2021.644010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Colombia
| | - Milan O Urban
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Amara Tatiana Contreras
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Jhon Eduar Noriega
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia, Colombia
- Facultad de Ingeniería, Programa de Maestría en Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia, Colombia
| | - Chetan Deva
- Climate Impacts Group, School of Earth and Environment, Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
| | - Stephen E Beebe
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - José A Polanía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fernando Casanoves
- CATIE - Centro Agronómico de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Idupulapati M Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
7
|
Hogan JA, Baraloto C, Ficken C, Clark MD, Weston DJ, Warren JM. The physiological acclimation and growth response of Populus trichocarpa to warming. PHYSIOLOGIA PLANTARUM 2021; 173:1008-1029. [PMID: 34272872 DOI: 10.1111/ppl.13498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Plant metabolic acclimation to thermal stress remains underrepresented in current global climate models. Gaps exist in our understanding of how metabolic processes (i.e., photosynthesis, respiration) acclimate over time and how aboveground versus belowground acclimation differs. We measured the thermal acclimation of Populus trichocarpa, comparing aboveground versus belowground physiology over time. Ninety genetically identical ramets were propagated in mesocosms that separated root and microbial components. After establishment at 25°C for 6 weeks, 60 clones were warmed +4 or +8°C and monitored for 10 weeks, measuring photosynthesis (A), leaf respiration (R), soil respiration (Rs ), root plus soil respiration (Rs+r ), and root respiration (Rr ). We observed thermal acclimation in both A and R, with rates initially increasing, then declining as the thermal photosynthetic optimum (Topt ) and the temperature-sensitivity (Q10 ) of respiration adjusted to warmer conditions. Photosynthetic acclimation was constructive, based on an increase in both Topt and peak A. Belowground, Rs+r decreased linearly with warming, while Rs rates declined abruptly, then remained constant with additional warming. Plant biomass was greatest at +4°C, with 30% allocated belowground. Rates of mass-based Rr were similar among treatments; however, root nitrogen declined at +8°C leading to less mass nitrogen-based Rr in that treatment. The Q10 -temperature relationship of Rr was affected by warming, leading to differing values among treatments. Aboveground acclimation exceeded belowground acclimation, and plant nitrogen-use mediated the acclimatory response. Results suggest that moderate climate warming (+4°C) may lead to acclimation and increased plant biomass production but increases in production could be limited with severe warming (+8°C).
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, Florida, USA
- Division of Environmental Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Cari Ficken
- Department of Geology, University at Buffalo, Buffalo, New York, USA
| | - Miranda D Clark
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jeffrey M Warren
- Division of Environmental Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Ishida A, Nakamura T, Saiki ST, Yoshimura J, Kakishima S. Evolutionary loss of thermal acclimation accompanied by periodic monocarpic mass flowering in Strobilanthes flexicaulis. Sci Rep 2021; 11:14273. [PMID: 34253817 PMCID: PMC8275617 DOI: 10.1038/s41598-021-93833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
While life history, physiology and molecular phylogeny in plants have been widely studied, understanding how physiology changes with the evolution of life history change remains largely unknown. In two closely related understory Strobilanthes plants, the molecular phylogeny has previously shown that the monocarpic 6-year masting S. flexicaulis have evolved from a polycarpic perennial, represented by the basal clade S. tashiroi. The polycarpic S. tashiroi exhibited seasonal thermal acclimation with increased leaf respiratory and photosynthetic metabolism in winter, whereas the monocarpic S. flexicaulis showed no thermal acclimation. The monocarpic S. flexicaulis required rapid height growth after germination under high intraspecific competition, and the respiration and N allocation were biased toward nonphotosynthetic tissues. By contrast, in the long-lived polycarpic S. tashiroi, these allocations were biased toward photosynthetic tissues. The life-history differences between the monocarpic S. flexicaulis and the polycarpic S. tashiroi are represented by the “height growth” and “assimilation” paradigms, respectively, which are controlled by different patterns of respiration and nitrogen regulation in leaves. The obtained data indicate that the monocarpic S. flexicaulis with the evolutionary loss of thermal acclimation may exhibit increased vulnerability to global warming.
Collapse
Affiliation(s)
- Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan.
| | - Tomomi Nakamura
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Shin-Taro Saiki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan
| | - Jin Yoshimura
- Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.,Faculty of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.,The University Museum, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Satoshi Kakishima
- Center for Molecular Biodiversity Research, National Museum of Nature and Sciences, Tsukuba, Ibaraki, 305-0005, Japan.
| |
Collapse
|
9
|
Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, Atkin OK. Responses of leaf respiration to heatwaves. PLANT, CELL & ENVIRONMENT 2021; 44:2090-2101. [PMID: 33534189 DOI: 10.1111/pce.14018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial respiration (R) is central to plant physiology and responds dynamically to daily short-term temperature changes. In the longer-term, changes in energy demand and membrane fluidity can decrease leaf R at a common temperature and increase the temperature at which leaf R peaks (Tmax ). However, leaf R functionality is more susceptible to short-term heatwaves. Catalysis increases with rising leaf temperature, driving faster metabolism and leaf R demand, despite declines in photosynthesis restricting assimilate supply and growth. Proteins denature as temperatures increase further, adding to maintenance costs. Excessive heat also inactivates respiratory enzymes, with a concomitant limitation on the capacity of the R system. These competing push-and-pull factors are responsible for the diminishing acceleration in leaf R rate as temperature rises. Under extreme heat, membranes become overly fluid, and enzymes such as the cytochrome c oxidase are impaired. Such changes can lead to over-reduction of the energy system culminating in reactive oxygen species production. This ultimately leads to the total breakdown of leaf R, setting the limit of leaf survival. Understanding the heat stress responses of leaf R is imperative, given the continued rise in frequency and intensity of heatwaves and the importance of R for plant fitness and survival.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Natural Resources Institute, Agriculture, Health and Environment Department, University of Greenwich, Kent, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Rakocevic M, Batista ER, Pazianotto RAA, Scholz MBS, Souza GAR, Campostrini E, Ramalho JC. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO 2. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:469-482. [PMID: 33423738 DOI: 10.1071/fp20298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Leaves in different positions respond differently to dynamic fluctuations in light availability, temperature and to multiple environmental stresses. The current hypothesis states that elevated atmospheric CO2 (e[CO2]) can compensate for the negative effects of water scarcity regarding leaf gas exchanges and coffee bean quality traits over the canopy vertical profile, in interactions with light and temperature microclimate during the two final stages of berry development. Responses of Coffea arabica L. were observed in the 5th year of a free air CO2 enrichment experiment (FACE) under water-limited rainfed conditions. The light dependent leaf photosynthesis curves (A/PAR) were modelled for leaves sampled from vertical profile divided into four 50-cm thick layers. e[CO2] significantly increased gross photosynthesis (AmaxGross), the apparent quantum yield efficiency, light compensation point, light saturation point (LSP) and dark respiration rate (Rd). As a specific stage response, considering berry ripening, all parameters calculated from A/PAR were insensitive to leaf position over the vertical profile. Lack of a progressive increase in AmaxGross and LSP was observed over the whole canopy profile in both stages, especially in the two lowest layers, indicating leaf plasticity to light. Negative correlation of Rd to leaf temperature (TL) was observed under e[CO2] in both stages. Under e[CO2], stomatal conductance was also negatively correlated with TL, reducing leaf transpiration and Rd even with increasing TL. This indicated coffee leaf acclimation to elevated temperatures under e[CO2] and water restriction. The e[CO2] attenuation occurred under water restriction, especially in A and water use efficiency, in both stages, with the exception of the lowest two layers. Under e[CO2], coffee produced berries in moderate- and high light level layers, with homogeneous distribution among them, contrasted to the heterogeneous distribution under actual CO2. e[CO2] led to increased caffeine content in the highest layer, with reduction of chlorogenic acid and lipids under moderate light and to raised levels of sugar in the shaded low layer. The ability of coffee to respond to e[CO2] under limited soil water was expressed through the integrated individual leaf capacities to use the available light and water, resulting in final plant investments in new reproductive structures in moderate and high light level layers.
Collapse
Affiliation(s)
- Miroslava Rakocevic
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil; and Embrapa Meio Ambiente, Rodovia SP 340 km 127.5, 13820-000 Jaguariúna-SP, Brazil; and Corresponding author.
| | - Eunice R Batista
- Embrapa Meio Ambiente, Rodovia SP 340 km 127.5, 13820-000 Jaguariúna-SP, Brazil
| | | | - Maria B S Scholz
- IAPAR, Department of Ecophysiology, Rodovia Celso Garcia Cid, km 375, PO Box 10030, 86047-902 Londrina-PR, Brazil
| | - Guilherme A R Souza
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil
| | - Eliemar Campostrini
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes-RJ, Brazil
| | - José C Ramalho
- University of Lisbon, School of Agriculture, Plant Stress and Biodiversity, Forest Research Center, 2784-505 Oeiras, Portugal; and Universidade NOVA de Lisboa, Faculdade de Ciências e Tecnologia, GeoBioTec, 2829-516 Caparica, Portugal
| |
Collapse
|