1
|
Pontes GH, Ramos CPW, de Noronha L, Serra-Guimarães F, Cavalcanti AS, Barbosa APF, Duarte MEL. Long-term Insights: Histopathological Assessment of Polyurethane Implant Capsules Over 24 Years. Aesthet Surg J 2024; 44:915-924. [PMID: 38470860 PMCID: PMC11334203 DOI: 10.1093/asj/sjae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Polyurethane (PU)-coated breast implants are known for their strong integration into breast tissue and the formation of capsules around them. However, capsular contracture can pose both aesthetic and clinical challenges. OBJECTIVES The objectives of this study were to analyze the biological and morphological characteristics of the capsular tissue surrounding PU-coated implants, irrespective of their contracture status, and to assess their potential suitability as a flap in revisional breast surgery for capsular contracture. METHODS A total of 23 tissue samples were harvested from the capsules surrounding PU-coated breast implants in 12 female patients during replacement or revisional surgery. We evaluated collagen abundance, cellular and vascular density, inflammation, collagen band types and alignment, synovial metaplasia, capsule thickness, and the expression of inflammatory biomarkers and myofibroblasts with immunohistochemical techniques. Scanning electron microscopy was employed to assess implant surface characteristics over time. RESULTS We found a significant association of capsule contraction with longer implantation durations and greater implant surface roughness (P = .018 and P = .033, respectively). Synovial metaplasia was significantly more frequent in noncontracted capsules (P = .0049). Both capsule types consisted of paucicellular, type I collagen-rich compact fibrous tissue with low vascularization. There was a marked reduction in inflammatory cells within the foreign body granuloma. The expression of inflammatory biomarkers in the capsular tissue was negligible. CONCLUSIONS Given the reduced levels of inflammatory and vascular components within the dense, fibrous capsular tissue, we consider them to be viable alternatives for capsular flaps in revisional surgery. This strategy has the potential to mimic the reconstruction achieved with acellular dermal matrix. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Gisela H Pontes
- Corresponding Author: Dr Gisela Hobson Pontes, Av. 28 de setembro, n° 87, Vila Isabel 20.561-030, RJ, Brazil. E-mail:
| | | | | | | | | | | | | |
Collapse
|
2
|
Cagli B, Carotti S, Segreto F, Francesconi M, Marangi GF, Tenna S, Diomedi M, Perrone G, Morini S, Persichetti P. Histologic and Immunohistochemical Evaluation of Human Breast Capsules Formed around Five Different Expander Surfaces. Plast Reconstr Surg 2023; 152:388e-397e. [PMID: 36827480 DOI: 10.1097/prs.0000000000010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
BACKGROUND Polyurethane (PU) coating and implant texturization were designed to reduce the incidence of capsular contracture (CC), even if the link between surface type and CC remains unclear. To date, the etiopathogenetic aspects have not been fully clarified. The aim of this study was to evaluate capsules formed around five different breast expanders. METHODS Thirty patients were divided into randomized groups implanted with five different expanders: smooth, coated with PU foam (poly), with a low-microtextured, high-microtextured, and macrotextured surface (L-micro, H-micro, macro). Specimens of the capsules were removed at implant reconstruction and evaluated for morphology and immunohistochemistry expression of α-smooth muscle actin (α-SMA), collagen type I and III, CD68, CD34, and CD3. Remodeling Combined Index was also evaluated. RESULTS Expression of α-SMA was significantly increased in smooth capsules versus poly, low-microtextured, and high-microtextured groups ( P = 0.007; P = 0.010; P = 0.028), whereas the prevalence of collagen type I in smooth capsules and collagen type III in poly capsules identified a stable versus an unstable tissue. Remodeling Combined Index and α-SMA showed an inverted correlation. CD68 and CD34 cellular expression increased significantly in poly capsules with respect to smooth ( P < 0.001; P < 0.001) and macrotextured groups ( P < 0.001; P < 0.001). CD3 showed no significant difference among the groups. CONCLUSION In this human study, the authors observed that increased tissue remodeling and reduced myofibroblast activation, along with the inflammatory infiltration and neoangiogenesis, especially in the poly and low-microtextured groups, might promote the formation of an unstable and less fibrotic capsule, lowering the risk of CC. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, III.
Collapse
Affiliation(s)
| | - Simone Carotti
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | | - Maria Francesconi
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | | | | | | - Giuseppe Perrone
- Research Unit of Pathology, Campus Bio-Medico University of Rome
| | - Sergio Morini
- Department of Medicine and Surgery, Laboratory of Microscopic and Ultrastructural Anatomy
| | | |
Collapse
|
3
|
de Castro Santos AL, da Silva NJA, Viana CTR, Dos Santos LCC, da Silva GHC, Scalzo Júnior SRA, Costa PAC, da Silva WN, de Jesus ICG, Birbrair A, de Magalhães MTQ, Frézard F, Guatimosim S, Haley RM, Mitchell MJ, Andrade SP, Campos PP, Guimaraes PPG. Oral formulation of Wnt inhibitor complex reduces inflammation and fibrosis in intraperitoneal implants in vivo. Drug Deliv Transl Res 2023; 13:1420-1435. [PMID: 36749480 DOI: 10.1007/s13346-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
The use of implantable biomaterials to replace physiological and anatomical functions has been widely investigated in the clinic. However, the selection of biomaterials is crucial for long-term function, and the implantation of certain biomaterials can cause inflammatory and fibrotic processes, triggering a foreign body reaction that leads to loss of function and consequent need for removal. Specifically, the Wnt signaling pathway controls the healing process of the human body, and its dysregulation can result in inflammation and fibrosis, such as in peritoneal fibrosis. Here, we assessed the effects of daily oral administration of a Wnt pathway inhibitor complex (CD:LGK974) to reduce the inflammatory, fibrotic, and angiogenic processes caused by intraperitoneal implants. CD:LGK974 significantly reduced the infiltration of immune cells and release of inflammatory cytokines in the implant region compared to the control groups. Furthermore, CD:LGK974 inhibited collagen deposition and reduced the expression of pro-fibrotic α-SMA and TGF-β1, confirming fibrosis reduction. Finally, the CD:LGK974 complex decreased VEGF levels and both the number and area of blood vessels formed, suggesting decreased angiogenesis. This work introduces a potential new application of the Wnt inhibitor complex to reduce peritoneal fibrosis and the rejection of implants at the intraperitoneal site, possibly allowing for longer-term functionality of existing clinical biomaterials.
Collapse
Affiliation(s)
- Ana Luíza de Castro Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Natália Jordana Alves da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | | | - Gabriel Henrique Costa da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, 31270-901, Brazil
| | - Mariana T Q de Magalhães
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil
| | - Paula Peixoto Campos
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, 31270-901, Brazil
| | - Pedro Pires Goulart Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte-MG, 31270-901, Brazil.
| |
Collapse
|
4
|
Austin RE, Ahmad J, Lista F. Commentary on: Single Center and Surgeon's Long-term (15-19 Years) Patient Satisfaction and Revision Rate of Round Textured Eurosilicone Breast Implants. Aesthet Surg J 2022; 42:NP293-NP296. [PMID: 35084459 DOI: 10.1093/asj/sjab426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Jamil Ahmad
- Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lista
- Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Berger R, Ribas Filho JM, Souza MAD, Paula PHD, Doubek JGC, Pires RDCES, Nassif PAN, Silva EN. TGF-β1 and CD68 immunoexpression in capsules formed by textured implants with and without mesh coverage: a study on female rats. Acta Cir Bras 2022; 37:e370201. [PMID: 35475808 PMCID: PMC9020789 DOI: 10.1590/acb370201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate fibrosis formation and number of macrophages in capsules formed around textured implants without and with mesh coverage. METHODS Fibrosis was analyzed through transforming growth factor-beta 1 (TGF-β1) immunomarker expression and the number of macrophages through CD68 percentage of cells in magnified field. Sixty female Wistar rats were distributed into two groups of 30 rats (unmeshed and meshed). Each group was then subdivided into two subgroups for postoperative evaluation after 30 and 90 days. The p value was adjusted by Bonferroni lower than 0.012. RESULTS No difference was observed in fibrosis between meshed and unmeshed groups (30 days p = 0.436; 90 days p = 0.079) and from 30 to 90 days in the unmeshed group (p = 0.426). The meshed group showed higher fibrosis on the 90th day (p = 0.001). The number of macrophages was similar between groups without and with mesh coverage (30 days p = 0.218; 90 days p = 0.044), and similar between subgroups 30 and 90 days (unmeshed p = 0.085; meshed p = 0.059). CONCLUSIONS In the meshed group, fibrosis formation was higher at 90 days and the mesh-covered implants produced capsules similar to microtextured ones when analyzing macrophages. Due to these characteristics, mesh coating did not seem to significantly affect the local fibrosis formation.
Collapse
|