Ahmadi N, Niazmand M, Ghasemi A, Mohaghegh S, Motamedian SR. Applications of Machine Learning in Facial Cosmetic Surgeries: A Scoping Review.
Aesthetic Plast Surg 2023;
47:1377-1393. [PMID:
37277660 DOI:
10.1007/s00266-023-03379-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/23/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE
To review the application of machine learning (ML) in the facial cosmetic surgeries and procedures METHODS AND MATERIALS: Electronic search was conducted in PubMed, Scopus, Embase, Web of Science, ArXiv and Cochrane databases for the studies published until August 2022. Studies that reported the application of ML in various fields of facial cosmetic surgeries were included. The studies' risk of bias (ROB) was assessed using the QUADAS-2 tool and NIH tool for before and after studies.
RESULTS
From 848 studies, a total of 29 studies were included and categorized in five groups based on the aim of the studies: outcome evaluation (n = 8), face recognition (n = 7), outcome prediction (n = 7), patient concern evaluation (n = 4) and diagnosis (n = 3). Total of 16 studies used public data sets. ROB assessment using QUADAS-2 tool revealed that six studies were at low ROB, five studies were at high ROB, and others had moderate ROB. All studies assessed with NIH tool showed fair quality. In general, all studies showed that using ML in the facial cosmetic surgeries is accurate enough to benefit both surgeons and patients.
CONCLUSION
Using ML in the field of facial cosmetic surgery is a novel method and needs further studies, especially in the fields of diagnosis and treatment planning. Due to the small number of articles and the qualitative analysis conducted, we cannot draw a general conclusion about the impact of ML in the sphere of facial cosmetic surgery.
LEVEL OF EVIDENCE IV
This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse