1
|
Kim J, Park MJ, Shim D, Ryoo R. De novo genome assembly of the bioluminescent mushroom Omphalotus guepiniiformis reveals an Omphalotus-specific lineage of the luciferase gene block. Genomics 2022; 114:110514. [PMID: 36332840 DOI: 10.1016/j.ygeno.2022.110514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Omphalotus guepiniiformis, a bioluminescent mushroom species, is a source of the potentially valuable anticancer chemical. To provide genome information, we de novo assembled the high-quality O. guepiniiformis genome using two Next-Generation sequencing techniques, PacBio and Illumina sequencing. Our draft O. guepiniiformis genome comprises 42.5 Mbp of sequence with only 80 contigs and an N50 sequence length of over 1 Mbp. There were 15,554 predicted coding genes, and 7693 genes were functionally annotated with Gene Ontology terms. We performed a genomic study focusing on mushroom bioluminescent pathway cluster genes by comparing 17 luminescent and 23 non-luminescent Agaricales species belonging to 23 genera. Synteny analysis of genomic regions near the luminescent pathway cluster genes inferred that the Omphalotus lineage was genus-specific. In summary, our de novo assembled O. guepiniiformis genome provides significant biological insights into this organism, including the evolution of the luciferase gene block, and forms the basis for future analyses.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Biological Sciences, Chungnam National University, 34134 Daejeon, Republic of Korea
| | - Mi-Jeong Park
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, 16631 Suwon, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, 34134 Daejeon, Republic of Korea.
| | - Rhim Ryoo
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, 16631 Suwon, Republic of Korea.
| |
Collapse
|
2
|
Lee S, Kim TW, Lee YH, Kang DM, Ryoo R, Ko YJ, Ahn MJ, Kim KH. Two New Fatty Acid Derivatives, Omphalotols A and B and Anti-Helicobacterpylori Fatty Acid Derivatives from Poisonous Mushroom Omphalotus japonicus. Pharmaceuticals (Basel) 2022; 15:ph15020139. [PMID: 35215253 PMCID: PMC8874359 DOI: 10.3390/ph15020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/22/2023] Open
Abstract
As part of ongoing systematic research into the discovery of bioactive secondary metabolites with novel structures from Korean wild mushrooms, we investigated secondary metabolites from a poisonous mushroom, Omphalotus japonicus (Kawam.) Kirchm. & O. K. Mill. belonging to the family Marasmiaceae, which causes nausea and vomiting after consumption. The methanolic extract of O. japonicus fruiting bodies was subjected to the fractionation by solvent partition, and the CH2Cl2 fraction was analyzed for the isolation of bioactive compounds, aided by an untargeted liquid chromatography mass spectrometry (LC–MS)-based analysis. Through chemical analysis, five fatty acid derivatives (1–5), including two new fatty acid derivatives, omphalotols A and B (1 and 2), were isolated from the CH2Cl2 fraction, and the chemical structures of the new compounds were determined using 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and high resolution electrospray ionization mass spectrometry (HR-ESIMS), as well as fragmentation patterns in MS/MS data and chemical reactions followed by the application of Snatzke’s method and competing enantioselective acylation (CEA). In the anti-Helicobacter pylori activity test, compound 1 showed moderate antibacterial activity against H. pylori strain 51 with 27.4% inhibition, comparable to that of quercetin as a positive control. Specifically, compound 3 exhibited the most significant antibacterial activity against H. pylori strain 51, with MIC50 and MIC90 values of 9 and 20 μM, respectively, which is stronger inhibitory activity than that of another positive control, metronidazole (MIC50 = 17 μM and MIC90 = 46 μM). These findings suggested the experimental evidence that the compound 3, an α,β-unsaturated ketone derivative, could be used as a moiety in the development of novel antibiotics against H. pylori.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.L.); (T.W.K.); (Y.H.L.)
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Korea
| | - Tae Wan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.L.); (T.W.K.); (Y.H.L.)
| | - Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.L.); (T.W.K.); (Y.H.L.)
| | - Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.-M.K.); (M.-J.A.)
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Korea;
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Korea;
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.-M.K.); (M.-J.A.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (S.L.); (T.W.K.); (Y.H.L.)
- Correspondence: ; Tel.: +82-31-290-7700
| |
Collapse
|