1
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
Yang Y, Nan Y, Du Y, Liu W, Ning N, Chen G, Gu Q, Yuan L. Ginsenosides in cancer: Proliferation, metastasis, and drug resistance. Biomed Pharmacother 2024; 177:117049. [PMID: 38945081 DOI: 10.1016/j.biopha.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.
Collapse
Affiliation(s)
- Yi Yang
- School of Basic Medical, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Yuhua Du
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Na Ning
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Guoqing Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Qian Gu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ling Yuan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
3
|
Zhuang ZJ, Li FJ, Lv D, Duan HQ, Chen LY, Chen P, Shen ZQ, He B. Regulation of Autophagy Signaling Pathways by Ginseng Saponins: A Review. Chem Biodivers 2024; 21:e202400934. [PMID: 38898600 DOI: 10.1002/cbdv.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.
Collapse
Affiliation(s)
- Zhu-Jun Zhuang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fa-Jing Li
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
- The First People's Hospital of Liangshan Prefecture, Sichuan, 615000, People's Republic of China
| | - Di Lv
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Heng-Qian Duan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Lin-Yi Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Peng Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Bo He
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| |
Collapse
|
4
|
Lu T, Wu T, Zhong H, Li X, Zhang Y, Yue H, Dai Y, Li H, Ouyang D. Computer-driven formulation development of Ginsenoside Rh2 ternary solid dispersion. Drug Deliv Transl Res 2024:10.1007/s13346-024-01628-4. [PMID: 38914874 DOI: 10.1007/s13346-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
(20 S)-Ginsenoside Rh2 is a natural saponin derived from Panax ginseng Meyer (P. ginseng), which showed significantly potent anticancer properties. However, its low water solubility and bioavailability strongly restrict its pharmaceutical applications. The aim of current research is to develop a modified (20 S)-Ginsenoside Rh2 formulation with high solubility, dissolution rate and bioavailability by combined computational and experimental methodology. The "PharmSD" model was employed to predict the optimal polymer for (20 S)-Ginsenoside Rh2 solid dispersion formulations. The solubility of (20 S)-Ginsenoside Rh2 in various polymers was assessed, and the optimal ternary solid dispersion was evaluated across different dissolution mediums. Characterization techniques included the Powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). Molecular dynamics simulations were employed to elucidate the formation mechanism of the solid dispersion and the interactions among active pharmaceutical ingredient (API) and excipient molecules. Cell and animal experiments were conducted to evaluate the in vivo performance of the modified formulation. The "PharmSD" solid dispersion model identified Gelucire 44/14 as the most effective polymer for enhancing the dissolution rate of Rh2. Subsequent experiment also confirmed that Gelucire 44/14 outperformed the other selected polymers. Moreover, the addition of the third component, sodium dodecyl sulfate (SDS), in the ternary solid dispersion formulation significantly amplified dissolution rates than the binary systems. Characterization experiments revealed that the API existed in an amorphous state and interacted via hydrogen bonding with SDS and Gelucire. Moreover, molecular modeling results provided additional evidence of hydrogen bonding interactions between the API and excipient molecules within the optimal ternary solid dispersion. Cell experiments demonstrated efflux ratio (EfR) of Rh2 ternary solid dispersion was lower than that of pure Rh2. In vivo experiments revealed that the modified formulation substantially improved the absorption of Rh2 in rats. Our research successfully developed an optimal ternary solid dispersion for Rh2 with high solubility, dissolution rate and bioavailability by integrated computational and experimental tools. The combination of Artificial Intelligence (AI) technology and molecular dynamics simulation is a wise way to support the future formulation development.
Collapse
Affiliation(s)
- Tianshu Lu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, 999078, China
| | - Tongchuan Wu
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, 999078, China
| | - Xue Li
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, 999078, China
| | - Hao Yue
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yulin Dai
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Haifeng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China.
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, 999078, China.
| |
Collapse
|
5
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Li Q, Sun H, Liu S, Tang J, Liu S, Yin P, Mi Q, Liu J, yu L, Bi Y. Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway. J Ginseng Res 2023; 47:645-653. [PMID: 37720575 PMCID: PMC10499649 DOI: 10.1016/j.jgr.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.
Collapse
Affiliation(s)
| | | | - Shiwei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jinxin Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Shengnan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Pei Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Qianwen Mi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Lei yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Guan W, Qi W. Ginsenoside Rh2: A shining and potential natural product in the treatment of human nonmalignant and malignant diseases in the near future. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154938. [PMID: 37406390 DOI: 10.1016/j.phymed.2023.154938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ginseng is well-known as one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide including East, Russia, Southeast Asia, North America and some Western European countries. Ginsenosides, as one of the main high active components of Ginseng, have various pharmacological activities, such as anti-inflammatory, antianaphylaxis, anti-depression, and anticancer activities. Ginsenoside Rh2 (Rh2), one of the major bioactive ginsenosides in Panax ginseng, also exhibits versatile pharmacological activities, such as increasing non-specific resistance and specific immune response, improving cardiac function and fibrosis, anti-inflammatory effects and antitumor effects, which may serve as an excellent medicinal potential. PURPOSE As one of hundreds of ginsenosides being identified from ginseng, Rh2 exerts a markedly pharmacological effect on various diseases without severe toxicity, it has attracted many researchers 'attention. Although Rh2 plays important roles in some animal models and cell lines to simulate human diseases, its underlying molecular mechanisms have yet to be determined. During the past ten years, nearly 450 studies on Rh2 in the treatment of complex disease have been reported, however, up to now, no comprehensive reviews about the roles of Rh2 in animal models and cellular lines of human nonmalignant and malignant diseases have been conducted. METHOD We searched articles on ginsenoside-related diseases from December 2010 to February 2023 in peer-reviewed and nonclinical databases, which include Web of Science, Scopus, PubMed, China national knowledge internet and Medline, and using the following keywords: Ginsenoside Rh2, Human diseases, Cancer, Mechanisms, Chinese herbal medicine, Natural products and Signaling pathway. RESULTS Therefore, in this review, we make a comprehensive summary on the roles of Rh2 and support the potential mechanisms of Rh2 according to the disease classification, including nonmalignant disease such as ulcerative colitis, neuropathic pain, Asthma, myocardial injury, depression and malignant disease such as breast cancer, colorectal cancer, hepatocellular carcinoma and gastric cancer. Finally, the combination therapy of Rh2 and other medications in human diseases are summarized, apart from that, there are other problems such as the bioavailability of oral administration Rh2 to be overcome in following research. CONCLUSION These findings provide strong evidence that Ginsenoside Rh2 plays important roles in the treatment of nonmalignant and malignant diseases.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; School of Medicine, Nantong University, Nantong, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
8
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
10
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|