1
|
Oi CA. Honeybee queen mandibular pheromone fails to regulate ovary activation in the common wasp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:297-302. [PMID: 35028724 DOI: 10.1007/s00359-021-01531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
The queen mandibular pheromone (QMP) identified from the honeybee is responsible for maintaining reproductive division of labour in the colony, and affects multiple behaviours. Interestingly, QMP inhibits reproduction not only in honeybee workers, but also in distantly related insect species such as fruit flies and bumblebees. This study examines whether QMP also affects worker reproduction in the common wasp Vespula vulgaris. Wasp workers were exposed to one of the following treatments: QMP, wasp queen pheromone (the hydrocarbon heptacosane n-C27), or acetone (solvent-only control). After dissecting the workers, no evidence that QMP inhibits development in V. vulgaris could be found. However, this study could confirm the inhibitory effect of the hydrocarbon heptacosane on ovary activation. The reason why non-social species such as the fruit fly and social species such as bumblebees and ants respond to the QMP, while the social wasp V. vulgaris does not, is unclear. The investigation of whether olfaction is key to sensing QMP in other insect species, and the detailed study of odorant receptors in other social insects, may provide insights into the mechanisms of response to this pheromone.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Resisting majesty: Apis cerana, has lower antennal sensitivity and decreased attraction to queen mandibular pheromone than Apis mellifera. Sci Rep 2017; 7:44640. [PMID: 28294146 PMCID: PMC5353700 DOI: 10.1038/srep44640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/13/2017] [Indexed: 11/08/2022] Open
Abstract
In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p-hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Am workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses [corrected].
Collapse
|
3
|
Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. Bioessays 2015; 37:808-21. [PMID: 25916998 DOI: 10.1002/bies.201400180] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Queen pheromones, which signal the presence of a fertile queen and induce daughter workers to remain sterile, are considered to play a key role in regulating the reproductive division of labor of insect societies. Although queen pheromones were long thought to be highly taxon-specific, recent studies have shown that structurally related long-chain hydrocarbons act as conserved queen signals across several independently evolved lineages of social insects. These results imply that social insect queen pheromones are very ancient and likely derived from an ancestral signalling system that was already present in their common solitary ancestors. Based on these new insights, we here review the literature and speculate on what signal precursors social insect queen pheromones may have evolved from. Furthermore, we provide compelling evidence that these pheromones should best be seen as honest signals of fertility as opposed to suppressive agents that chemically sterilize the workers against their own best interests.
Collapse
Affiliation(s)
- Cintia A Oi
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Jelle S van Zweden
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Ricardo C Oliveira
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Annette Van Oystaeyen
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Fabio S Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Tom Wenseleers
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Tan K, Liu X, Dong S, Wang C, Oldroyd BP. Pheromones affecting ovary activation and ovariole loss in the Asian honey bee Apis cerana. JOURNAL OF INSECT PHYSIOLOGY 2015; 74:25-29. [PMID: 25614964 DOI: 10.1016/j.jinsphys.2015.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
The Asian hive bee Apis cerana has similar queen mandibular pheromones (QMP) to the Western honey bee Apismellifera. However the effects of individual QMP components have never been tested to determine their effects on the reproductive physiology of A. cerana workers. We fed one queen equivalent of each of the major components of A. cerana QMP to groups of c.a. 500 day-old, caged, workers twice a day until the workers were 10 days old. Half of the cages were also provided with 10% royal jelly in the food. Workers were sampled each day and dissected to determine the number of ovarioles and the degree of ovary activation (egg development). In cages treated with 9-carbon fatty acids ovary activation was minimal, whereas the 10-carbon acids suppressed ovary activation very little. Royal jelly enhanced ovary activation, especially in cages treated with 10-carbon acids. The number of ovarioles declined with bee age, but the rate of decline was slowed by the 9-carbon acids in particular. The results show conservation of the composition and function of QMP between A. cerana and A. mellifera and support the hypothesis that QMP is an honest signal of queen fecundity rather than a chemical castrator of workers.
Collapse
Affiliation(s)
- Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province 650223, China; Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, China.
| | - Xiwen Liu
- Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, China.
| | - Sihao Dong
- Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, China.
| | - Chao Wang
- Eastern Bee Research Institute of Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, China.
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Holmes MJ, Tan K, Wang Z, Oldroyd BP, Beekman M. Why acquiesce? Worker reproductive parasitism in the Eastern honeybee (Apis cerana
). J Evol Biol 2014; 27:939-49. [DOI: 10.1111/jeb.12366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 02/02/2023]
Affiliation(s)
- M. J. Holmes
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences; University of Sydney; Sydney NSW Australia
| | - K. Tan
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Science; Kunming China
- Eastern Bee Research Institute of Yunnan Agricultural University; Kunming China
| | - Z. Wang
- Eastern Bee Research Institute of Yunnan Agricultural University; Kunming China
| | - B. P. Oldroyd
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences; University of Sydney; Sydney NSW Australia
| | - M. Beekman
- Behaviour and Genetics of Social Insects Laboratory; School of Biological Sciences; University of Sydney; Sydney NSW Australia
| |
Collapse
|
6
|
Van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, d'Ettorre P, Khalesi M, Billen J, Wäckers F, Millar JG, Wenseleers T. Conserved class of queen pheromones stops social insect workers from reproducing. Science 2014; 343:287-90. [PMID: 24436417 DOI: 10.1126/science.1244899] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.
Collapse
Affiliation(s)
- Annette Van Oystaeyen
- Laboratory of Socioecology and Social Evolution, Zoological Institute, University of Leuven, Naamsestraat 59-Box 2466, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Beekman M, Allsopp MH, Holmes MJ, Lim J, Noach-Pienaar LA, Wossler TC, Oldroyd BP. Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Tan K, Yang M, Wang Z, Radloff SE, Pirk CWW. The pheromones of laying workers in two honeybee sister species: Apis cerana and Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:319-23. [PMID: 22252612 DOI: 10.1007/s00359-012-0710-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
Abstract
When a honeybee colony loses its queen, workers activate their ovaries and begin to lay eggs. This is accompanied by a shift in their pheromonal bouquet, which becomes more queen like. Workers of the Asian hive bee Apis cerana show unusually high levels of ovary activation and this can be interpreted as evidence for a recent evolutionary arms race between queens and workers over worker reproduction in this species. To further explore this, we compared the rate of pheromonal bouquet change between two honeybee sister species of Apis cerana and Apis mellifera under queenright and queenless conditions. We show that in both species, the pheromonal components HOB, 9-ODA, HVA, 9-HDA, 10-HDAA and 10-HDA have significantly higher amounts in laying workers than in non-laying workers. In the queenright colonies of A. mellifera and A. cerana, the ratios (9-ODA)/(9-ODA + 9-HDA + 10-HDAA + 10-HDA) are not significantly different between the two species, but in queenless A. cerana colonies the ratio is significant higher than in A. mellifera, suggesting that in A. cerana, the workers' pheromonal bouquet is dominated by the queen compound, 9-ODA. The amount of 9-ODA in laying A. cerana workers increased by over 585% compared with the non-laying workers, that is 6.75 times higher than in A. mellifera where laying workers only had 86% more 9-ODA compared with non-laying workers.
Collapse
Affiliation(s)
- Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, 650223, People's Republic of China.
| | | | | | | | | |
Collapse
|
9
|
Rueppell O, Phaincharoen M, Kuster R, Tingek S. Cross-species correlation between queen mating numbers and worker ovary sizes suggests kin conflict may influence ovary size evolution in honeybees. Naturwissenschaften 2011; 98:795-9. [PMID: 21732186 DOI: 10.1007/s00114-011-0822-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, University of North Carolina-Greensboro, NC 27403, USA.
| | | | | | | |
Collapse
|
10
|
Queen pheromones in Temnothorax ants: control or honest signal? BMC Evol Biol 2011; 11:55. [PMID: 21356125 PMCID: PMC3060118 DOI: 10.1186/1471-2148-11-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 03/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The division of reproductive labor among group members in insect societies is regulated by "queen pheromones". However, it remains controversial whether these are manipulative, i.e., actively suppress worker reproduction, or honestly signal the fertility status of the queen to which workers react in their own interest by refraining from laying eggs. Manipulative queen control is thought to lead to an evolutionary arms race between queens and workers, resulting in complex queen bouquets that diverge strongly among different populations and species. In contrast, honest signals would evolve more slowly and might therefore differ less strongly within and among species. RESULTS We aimed at determining the tempo of the evolution of queen signals in two ways. First, we investigated whether queens of Temnothorax ants are capable of controlling egg laying by workers of their own, closely, and distantly related species. Second, we compared the species- and caste-specific patterns of cuticular hydrocarbons, which are assumed to convey information on reproductive status. In mixed-species colonies, queens were not able to fully suppress egg-laying and male production by workers of unrelated species, while workers did not reproduce under the influence of a queen from their own species. Furthermore, the chemical profiles differed more strongly among queens of different species than among the respective workers. CONCLUSIONS Our results suggest that cuticular hydrocarbons associated with fecundity are not fully conserved in evolution and evolve slightly faster than worker-specific components in the blend of cuticular hydrocarbons. While this higher rate of evolution might reflect an arms race between queens and workers, the observation that workers still respond to the presence of a queen from another species support the honest signal hypothesis. Future studies need to examine alternative explanations for a higher rate of evolution of queen-specific substances, such as an involvement of such compounds in mating.
Collapse
|
11
|
Tan K, Wang ZW, Li H, Yang MX, Pirk CWW, Hepburn HR, Radloff SE. Responses of Queenright and Queenless Workers of Apis Cerana to 9-keto-2(E)-decenoic Acid, a Pheromonal Constituent of the Mandibular Gland. J Chem Ecol 2010; 36:966-8. [DOI: 10.1007/s10886-010-9833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 06/01/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
|
12
|
Wongvilas S, Higgs JS, Beekman M, Wattanachaiyingcharoen W, Deowanish S, Oldroyd BP. Lack of interspecific parasitism between the dwarf honeybees Apis andreniformis and Apis florea. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Yang MX, Tan K, Radloff SE, Phiancharoen M, Hepburn HR. Comb construction in mixed-species colonies of honeybees, Apis cerana and Apis mellifera. J Exp Biol 2010; 213:1659-64. [DOI: 10.1242/jeb.035626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Comb building in mixed-species colonies of Apis cerana and Apis mellifera was studied. Two types of cell-size foundation were made from the waxes of these species and inserted into mixed colonies headed either by an A. cerana or an A. mellifera queen. The colonies did not discriminate between the waxes but the A. cerana cell-size foundation was modified during comb building by the workers of both species. In pure A. cerana colonies workers did not accept any foundation but secreted wax and built on foundation in mixed colonies. Comb building is performed by small groups of workers through a mechanism of self-organisation. The two species cooperate in comb building and construct nearly normal combs but they contain many irregular cells. In pure A. mellifera colonies, the A. cerana cell size was modified and the queens were reluctant to lay eggs on such combs. In pure A. cerana colonies, the A. mellifera cell size was built without any modification but these cells were used either for drone brood rearing or for food storing. The principal elements of comb-building behaviour are common to both species, which indicates that they evolved prior to and were conserved after speciation.
Collapse
Affiliation(s)
- Ming-Xian Yang
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
| | - Ken Tan
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, 650223, People's Republic of China
| | - Sarah E. Radloff
- Department of Statistics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Mananya Phiancharoen
- Rachaburi campus, King Mongkut's University of Technology Thonburi, 126 Prachautid Road, Bangkok 10140, Thailand
| | - H. Randall Hepburn
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- Eastern Bee Research Institute, Yunnan Agricultural University, Heilongtan, Kunming, Yunnan Province 650201, People's Republic of China
| |
Collapse
|